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Abstract

Recursive utility models of the type introduced by Kreps and Porteus (1978) are

used extensively in applied research in macroeconomics and asset pricing in envi-

ronments with uncertainty. These models represent preferences as the solution to a

nonlinear forward-looking difference equation with a terminal condition. Such pref-

erences feature investor concerns about the intertemporal composition of risk. In

this paper we study infinite horizon specifications of this difference equation in the

context of a Markov environment. We establish a connection between the solution

to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of

the type that occurs in the study of large deviations for Markov processes. By ex-

ploiting this connection, we establish existence and uniqueness results. Moreover, we

explore a substantive link between large deviation bounds for tail events for stochastic

consumption growth and preferences induced by recursive utility.

Keywords : recursive utility, Markov process, stochastic growth, large deviations

∗We benefitted from presenting this work at the Stanford SITE conference in 2011, from discussions with
Henri Berestycki, Anmol Bhandari, Xiaohong Chen, Valentin Haddad, Eric Renault, and from discussions
with and computational assistance from Mark Hendricks.
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1 Introduction

Recursive utility models of the type suggested by Kreps and Porteus (1978) and featured

in the asset pricing literature by Epstein and Zin (1989) and others represent preferences

as the solution to a nonlinear forward-looking difference equation with a terminal condi-

tion. Such preferences are used in economic dynamics because seemingly simple parametric

versions provide a convenient device to change risk aversion while maintaining the same

intertemporal elasticity of intertemporal substitution. In this paper we explore infinite

horizon specifications in the context of a Markov environment. Even under the Markov

specification, establishing the existence of a solution to this forward-looking recursion used

to depict preferences can be challenging.1 In this paper we establish a connection between

the solution to this equation and to an arguably simpler eigenvalue equation of the type

that occurs in the study of large deviations for Markov processes, see Donsker and Varad-

han (1975), Donsker and Varadhan (1976), Balaji and Meyn (2000) and Kontoyiannis and

Meyn (2005).

The remainder of the paper is organized as follows. In section 2 we state formally the

recursive utility problem and a related Perron-Frobenius eigenvalue problem. In section 3

we use the the latter problem to construct a change in probability that will play a central

role in our analysis. Under this change of measure, we establish several inequalites in

section 4. Section 5 states and proves our main analytical result, and section 6 expands

on some of the ramifications our analysis. Finally, in section 7 we discuss the link to the

analysis of large deviations applied to a Markov process.

2 Two related problems

Consider a discrete-time specification of recursive preferences of the type suggested by

Kreps and Porteus (1978) and Epstein and Zin (1989). We use the homogeneous-of-degree-

one aggregator specified in terms of current period consumption Ct and the continuation

value Vt:.

Vt =
�
(ζCt)

1−ρ + exp(−δ) [Rt(Vt+1)]
1−ρ� 1

1−ρ . (1)

1See Marinacci and Montrucchio (2010) for a recent thorough analysis of existence and uniqueness of
continuation value processes, but the sufficient conditions given there impose restrictions that preclude
some of the parametric models used in practice.
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where

Rt (Vt+1) =
�
E
�
(Vt+1)

1−γ|Ft
�� 1

1−γ

adjusts the continuation value Vt+1 for risk. With these preferences, 1
ρ

is the elasticity of

intertemporal substitution and δ is a subjective discount rate. Finally, the parameter ζ

does not alter preferences, but it gives some additional flexibility, and we will select it in a

judicious manner.

Next exploit the homogeneity-of-degree one specification of the aggregator (1) and di-

vide by Ct to obtain:

Vt
Ct

=

"
ζ1−ρ + exp(−δ)

�
Rt

�
Vt+1

Ct+1

Ct+1

Ct

��1−ρ# 1
1−ρ

. (2)

Applying the aggregator requires a terminal condition for the continuation value. In what

follows we will consider infinite-horizon limits. Thus we will explore the construction of the

continuation value Vt as a function of Ct, Ct+1, Ct+2, .... For convenience we rewrite (2) as�
Vt
Ct

�1−ρ

= ζ1−ρ + exp(−δ)
�
Rt

�
Vt+1

Ct+1

Ct+1

Ct

��1−ρ
Consider now a Markov specification in discrete time. Let (X, Y ) = {(Xt, Yt)} be an

underlying Markov process, and suppose that

Assumption 2.1. (a) The joint distribution of (Xt+1, Yt+1) conditioned on (Xt, Yt) de-

pends only on Xt.

(b) Consumption dynamics evolve as:

logCt+1 − logCt = κ(Xt+1, Yt+1, Xt).

When the joint process (X, Y ) is stationary, the logarithm of consumption has stationary

increments and the level process for consumption displays stochastic geometric growth. For

convenience we normalize C0 = 1. Given our assumed homogeneity in preference, it is

straightforward to allow for more general initial conditions.2 This specification allows us

to feature the the process X in our analysis while allowing for some additional flexibility.

2In the special case in which κ does not depend on Yt+1, the consumption process is what is called a
multiplicative functional in the applied mathematics literature.
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Generally, we may think of this as a convenient specification of consumption that could

emerge from a model in which consumption is determined endogenously.

Given the Markov dynamics, we seek a solution:�
Vt
Ct

�1−ρ

= f̂(Xt).

for f ≥ 0. Thus equation (2) can be expressed equivalently as

f̂(x) = ζ1−ρ + exp(−δ)
�
E
h
f̂(Xt+1)

α exp[(1− γ)κ(Xt+1, Yt+1, Xt)]|Xt = x
i� 1

α
(3)

where

α =
1− γ
1− ρ

.

We write this equation compactly as:

f̂(x) = Uf̂(x) (4)

where U (f) is given by the right-hand side of (3). Notice that

Uf(x) ≥ ζ1−ρ. (5)

An alternative equation will also be of interest. Construct this equation using:�
Vt
Ct

�1−γ

= f̄(Xt)

In this case the fixed-point equation of interest is

f̄(x) =
h
ζ1−ρ + exp(−δ)

�
E
�
f̄(Xt+1) exp[(1− γ)κ(Xt+1, Yt+1, Xt)]|Xt = x

�� 1
α

iα
, (6)

which we obtain by raising both sides of (3) to the power α. We write this equation

compactly as:

f̄(x) = Vf̄(x) (7)

where V(f) is given by the right-hand side of (6). Notice that

(Vf)
1
α = U

�
f

1
α

�
.
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In particular, there is a one-to-one correspondence between positive fixed points of V and

positive fixed points of Uf . Furthermore,

Vf(x) ≥ ζ1−γ (8)

provided that α > 0.

Remarkably, the solution to the fixed point equations (4) and (6) are closely related to

a Perron-Frobenius eigenvalue equation of the type analyzed by Hansen and Scheinkman

(2009) in their study of risk-return relations and risk pricing over long-term investment

horizons. The eigenvalue problem studied in Hansen and Scheinkman (2009) is also closely

related to an eigenvalue equation that occurs in the study of large-deviations. The eigen-

value equation is:

E [exp[(1− γ)κ(Xt+1, Yt+1, Xt)]e(Xt+1)|Xt = x] = exp(η)e(x) (9)

for e > 0. In many specifications this equation has multiple positive solutions with eigen-

functions that are not equal up to a scale factor.

3 Changing the probability measure

We use a Perron-Frobenius eigenfunction to change the probability measure. Associated

with each such eigenfunction is a positive random variable

Mt+1 =
exp[(1− γ)κ(Xt+1, Yt+1, Xt)]e(Xt+1)

e(Xt)
exp(−η)

which has conditional expectation equal to unity. We use this to define a change of measure

for the transition probability of the Markov process, via:

eE [φ(Xt+1, Yt+1)|Xt = x, Yt+1 = y] = E [Mt+1φ(Xt+1, Yt+1)|Xt = x]

for any Borel measurable function φ with the appropriate domain. This change in the tran-

sition probability preserves the Markov property and the restrictions imposed by Assump-

tion 2.1. Only one of the eigenfunctions induces a change of measure that is stochastically
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stable in the sense that3

Assumption 3.1. Under the change of probability measure,

lim
t→∞

eE [φ(Xt, Yt)|X0 = x] = eE[φ(Xt, Yt)]

for any bounded Borel measurable function φ. The expectation on the right-hand side uses a

stationary distribution implied by the change in the transition distribution. We require that

the convergence apply for almost all Markov states (x, y) under the stationary distribution

for the change in measure.

There is an extensive literature that gives sufficient conditions for stochastic stability.

To apply this change in measure, we use a multiplicative scaling of functions:

g(x) = f(x)e(x)−
1
α .

Notice that

exp(−δ) (E [f(Xt+1)
α exp[(1− γ)κ(Xt+1, Yt+1, Xt)]|Xt = x])

1
α

= exp(−ξ)e(x)
1
α

h eE (g (Xt+1)
α |Xt = x)

i 1
α

where

ξ = δ − η

α

The transformed counterpart to recursion (4) is:

ĝ(x) = bUĝ(x)

where bUg(x) = ζ1−ρe(x)
−1
α + exp(−ξ)

� eE [g (Xt+1)
α |Xt = x]

� 1
α

This altered recursion has absorbed growth into a conveniently chosen change of measure.

In light of bound (5), bUg(x) ≥ ζ1−ρe(x)
−1
α (10)

3Uniqueness is established in Hansen and Scheinkman (2009) for a continuous-time Markov specification,
but their result has a direct counterpart for discrete-time.

6



Next we consider the transformed counterpart to V. In this case we let

h(x) = f(x)e(x)−1,

and notice that

exp(−δ) (E [f(Xt+1) exp[(1− γ)κ(Xt+1, Yt+1, Xt)]|Xt = x])
1
α

= exp(−ξ)e(x)
1
α

� eE [h (Xt+1) |Xt = x]
� 1
α
.

The transformed counterpart to recursion (7) is:

ĥ(x) = bVĥ(x)

where bVh(x) =

�
ζ1−ρe(x)−

1
α + exp(−ξ)

� eE [h(Xt+1)|Xt = x]
� 1
α

�α
.

In light of bound (8), bVh(x) ≥ ζ1−γe(x)−1

provided that α > 0.4

The change-probability motivates one of our restrictions. To maintain discounting in

the presence of stochastic growth, we assume:

Assumption 3.2. ξ > 0.

In terms of the initial parameters, the restriction on ξ implies that:

δ >
1− ρ
1− γ

η

The scalar η is negative for typical parameterizations. Thus when γ > 1, this bound on δ

is positive for ρ < 1 and negative when γ > 1.5

4Marinacci and Montrucchio (2010) construct L∞ spaces weighted by scale factors that depend on
time, including factors with geometric decay as a featured case. The L∞ structure presumes processes
with bounded support, although the support can increase over time because of the scale factors that they
introduce. In contrast, we exploit heavily a Markov structure and use the Perron-Frobenius eigenvalue
embedded in our change of probability measure to accommodate geometric growth and other convenient
forms of stochastic growth in consumption. The recursion, bU, maps into special case of the recursions in
Marinacci and Montrucchio (2010) for α < 0 and 1 < α ≤ 1; and the recursion, bV, maps into a special case
when α > 0 except that we feature L1 spaces instead of L∞ spaces.

5It is possible that η is positive, which alters the parameter restrictions.
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4 Some Useful Inequalities

In this section we establish some useful inequalities that we will use to show the existence

of fixed points to bU and bV, We will consider alternative operators with fixed points that are

considerably easier to characterize. The fixed points of these operators will provide upper

and lower bounds for the fixed points that interest us. Starting from these bounds, we will

construct monotone sequences that converge point-wise to candidate fixed points of bU andbV. We also show when the constructed fixed-points coincide.

Recall that we have the flexibility to set ζ > 0 in an arbitrary fashion. We exploit this

convenience by setting ζ to satisfy:

ζ1−ρ = [1− exp(−ξ)].

4.1 Inequalities for Û

Suppose that α < 0 and apply Jensen’s inequality to obtain

eE [g (Xt+1)
α |Xt = x] ≥

� eE [g (Xt+1) |Xt = x]
�α
. (11)

Since 1
α
< 0, � eE [g (Xt+1)

α |Xt = x]
� 1
α ≤ eE [g (Xt+1) |Xt = x] . (12)

When 0 < α < 1, relation (11) holds with the reverse inequality and raising both sides to

the 1
α

power preserves inequality (12). When α ≥ 1, relation (11) holds and raising both

side to the power 1
α

gives us inequality (12) with the reverse sign . Thus we have

bUg(x) ≤ eUg(x) α < 0bUg(x) ≤ eUg(x) 0 < α < 1bUg(x) ≥ eUg(x) α ≥ 1

where eUg(x) = [1− exp(−ξ)]e(x)−
1
α + exp(−ξ) eE [g (Xt+1) |Xt = x] .

A sufficient condition for the existence of a fixed point for eU is:

Assumption 4.1. eE he(x)−
1
α

i
<∞.

A consequence of Assumption 4.1 is that a solution in L1 (using the ·̃ stationary distri-
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bution) to the fixed point problem eUg̃ = g̃ is given by

g̃(x) = [1− exp(−ξ)]
∞X
t=0

exp(−tξ) eE he(Xt)
− 1
α |X0 = x

i
since the right hand side converges in L1 using the ·̃ stationary distribution. In addition

under Assumption 4.1, if α ≤ 1, since inequality (12) holds, bU maps L1
+ into L1

+.

4.2 Inequalities for bV
Suppose again that α < 0 and apply Jensen’s inequality to obtain

[1− exp(−ξ)]e(x)
−1
α + exp(−ξ)

� eE [h (Xt+1) |Xt = x]
� 1
α

≥
h
[1− exp(−ξ)]e(x)−1 + exp(−ξ)

� eE [h (Xt+1) |Xt = x]
�i 1

α
(13)

Raising both sides to the power α reverses the inequality and thus�
[1− exp(−ξ)]e(x)

−1
α + exp(−ξ)

� eE [h (Xt+1) |Xt = x]
� 1
α

�α
≤ [1− exp(−ξ)]e(x)−1 + exp(−ξ)

� eE [h (Xt+1) |Xt = x]
�
.

For 0 < α < 1, the inequality in (13) remains the same and raising both side to power α

does not reverse this inequality. For α ≥ 1 the inequality (13) is reversed and raising both

sides to the power α does not reverse the inequality. Thus

bVh(x) ≤ eVh(x) α < 0bVh(x) ≥ eVh(x) 0 < α < 1bVh(x) ≤ eVh(x) α ≥ 1

where eVh(x) = [1− exp(−ξ)]e(x)−1 + exp(−ξ) eE [h (Xt+1) |Xt = x] .

A sufficient condition for the existence of a fixed point for eV is:

Assumption 4.2. eE [e(x)−1] <∞.
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The fixed point for eV satisfies:

h̃(x) = [1− exp(−ξ)]
∞X
t=0

exp(−tξ) eE �e(Xt)
−1|X0 = x

�
where the infinite sum converges in L1.

We conclude this subsection by making some comparisons between assumptions and the

fixed points of the operators eU and eV as upper or lower bounds. A consequence of Jensen’s

inequality is that Assumption 4.1 implies Assumption 4.2 when 0 < α < 1 and conversely

for α ≥ 1. For α < 0, the assumptions are not comparable. For all three cases, we can

apply Jensen’s equality to rank fixed points of the ·̃ operators:

h̃(x)
1
α ≤ g̃(x) α < 0

h̃(x)
1
α ≤ g̃(x) 0 < α < 1

h̃(x)
1
α ≥ g̃(x) α ≥ 1.

4.3 Candidate fixed points for bU and bV
We now use monotonicity to construct candidate fixed points for bU and bV. We consider

three cases associated with three different intervals for α.

4.3.1 α < 0

When Assumption 4.2 is satisfied,

bVh̃(x) ≤ eVh̃(x) = h̃(x).

Thus bV2h̃(x) ≤ bVeVh̃ ≤ bVh̃,
and more generally

nbVjh̃
o

is a decreasing sequence of functions. This sequence converges

pointwise to a limit function ĥ. We will establish below that this limit solves the fixed-point

equation:

ĥ = bVĥ
When Assumption 4.1 is satisfied, we construct a fixed point ĝ using the decreasing
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sequence
nbUj g̃

o
. In this case the limit solves:

ĝ = bUĝ
Since h̃

1
α ≤ g̃, �bVjh̃

� 1
α

= bUj
�
h̃

1
α

�
≤ bUj g̃.

Taking limits as j tends to infinity,

ĥ
1
α (x) ≤ ĝ(x)

when Assumptions 4.1 and 4.2 are both satisfied.

4.3.2 0 < α < 1

In this case we impose the more restrictive Assumption 4.1 and use bU to construct a fixed

point. Notice that bVh̃ ≤ heU�h̃ 1
α

�iα
≤
�eUg̃�α = g̃α

Applying bV to both sides,

bV2h̃ ≤ bV heU�h̃ 1
α

�iα
≤
heU2

�
h̃

1
α

�iα
≤
�eU2g̃

�α
= g̃α.

Repeating this argument, we see that

bVjh̃ ≤ g̃α.

Also bVh̃ ≥ eVh̃ = h̃

Thus bV2h̃(x) ≥ bVeVh̃ ≥ bVh̃.
Consequently {bVjh̃ : j = 1, 2, ...} is an increasing sequence of functions with a finite upper

bound. This sequence converges pointwise to a limit function ĥ.

Since h̃
1
α ≤ g̃, �bVjh̃

� 1
α

= bUj
�
h̃

1
α

�
≤ bUj g̃.
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Taking limits as j tends to infinity

ĥ(x)
1
α ≤ ĝ(x).

4.3.3 α ≥ 1

In this case we impose the more restrictive Assumption 4.2 and use bV to construct a

decreasing sequence that is bounded from below by a strictly positive function. Hence the

resulting sequence converges pointwise to a positive function ĝ. We use bU to construct an

increasing sequence that is bounded from above by a positive function. This sequence also

converges. Finally, ĥ
1
α ≥ ĝ.

4.4 Extending the domain of convergence

We constructed fixed points by iterating operators starting from a specific function, say

g̃, and converging to a limit point, say ĝ where ĝ ≤ g̃. Consider a function g such that

ĝ ≤ g ≤ g̃. Then

ĝ = bU j ĝ ≤ bU jg ≤ bU j g̃.

Since {bU j g̃ : j = 1, 2, ...} converges to ĝ, {bU jg : j = 1, 2, ...} also converges to ĝ. This

argument applies to all of the cases we have studied. At least in this specific sense, the

candidate fixed points are “stable”.

5 Main result

We are now ready to state and prove our result on the existence of recursive utilities in

a Markov framework. This proposition collects intermediate results from Section 4 and

shows that the constructed fixed points are actually fixed points and that the fixed points

coincide for α > 0.

Proposition 5.1. Suppose a) (X, Y ) is a Markov process satisfying Assumption 2.1 holds;

b) e is a solution to the Perron-Frobenius equation (9) satisfying Assumption 3.1 with

exp(η) the associated eigenvalue; and c) the subjective rate of discount satisfies δ > η
α

(Assumption 3.2). Then for alternative ranges of α we have the following results.

i) If α < 0, ĥ
1
α is a fixed point of bU provided that Assumption 4.2 is satisfied, and ĝ is a

fixed point of bU provided that Assumption 4.1 is satisfied. When both assumptions are
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satisfied, ĥ
1
α ≤ ĝ.

ii) If 0 < α < 1, ĥ
1
α = ĝ is a fixed point of bU provided that Assumption 4.2 is satisfied.

iii) If α ≥ 1, ĥ
1
α = ĝ is a fixed point of bU provided that Assumption 4.1 is satisfied.

Moreover, ĝ is the unique fixed point with a finite α moment under the ·̃ stationary

distribution

While the proposition features bU, fixed points of bV are constructed by raising the fixed

points of bU to the power α. Solutions for Vt
Ct

are given by multiplying fixed points of bU by

the eigenfunction e
1
α and raising the product to the power 1

1−ρ .

We prove this proposition in the next two subsections. We first show that the limits we

constructed in Section 4 are actually fixed points.

5.1 Existence of fixed points

To prove existence, we again treat three cases separately depending on the magnitude of

α.

5.1.1 α < 0

If Assumption 4.2 holds then h̃ ∈ L1
+ and bVjh̃ is a dominated sequence of L1

+ functions

converging pointwise to ĥ. The Dominated Convergence theorem guarantees that,

lim
j→∞

E[bVjh̃(Xt+1|Xt = x] = eE[ĥ(Xt+1)|Xt = x].

with ·̃ measure one. Hence ĥ is a fixed point of bV.
If Assumption 4.1 holds. Then, as we showed above, g̃ ∈ L1

+ and bU maps L1
+ into

L1
+. Since [1 − exp(−ξ)]e(x)−

1
α ≤ bUj g̃ ≤ g̃(x), where the first inequality follows from

bound (10), the dominated convergence theorem assures us that ĝ ∈ L1
+ and is the strictly

positive (with probability one) L1 limit of bUj g̃. From inequality (12) it follows that for

each j, eE �hbUj g̃ (Xt+1)
iα
|Xt = x

�
<∞. Let

A =

�
x : sup

j

eE �hbUj g̃ (Xt+1)
iα
|Xt = x

�
<∞

�
Since α < 0,

(bUj+1g̃)α ≥ (bUj g̃)α.
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Beppo Levi’s Monotone Convergence theorem thus implies that for x ∈ A

eE �hbUj g̃ (Xt+1)
iα
|Xt = x

�
→ eE ([ĝ (Xt+1)]

α |Xt = x) ,

and as a consequence ḡ(x) = limj→∞ bUj+1g̃(x) = bUĝ(x), for x ∈ A. If x 6∈ A then,eE �hbUj g̃ (Xt+1)
iα
|Xt = x

�
→∞ and,

ĝ(x) = [1− exp(−ξ)]e(x)−
1
α ≤ bUg(x),

for any g ∈ L1
+. Since ĝ ≤ bUj g̃ and bU is monotone, bUĝ ≤ ĝ, and thus for x 6∈ A, we also

have bUĝ(x) = ĝ(x).

5.1.2 0 < α < 1

If Assumption 4.1 holds, g̃ ∈ L1
+ and bVjh̃ is a sequence of L1

+ functions dominated by

gα ∈ L1
+. The remainder of the proof is as above.

5.1.3 α > 1

If Assumption 4.2 holds, the proof in 5.1.1 applies.

We next show that when α > 0 the constructed fixed points are actually the same.

5.2 Coincidence of fixed points when α > 0

Consistent with our prior analysis, we treat separately the the case in which 0 < α < 1

and α ≥ 1.

5.2.1 0 < α < 1

Consider the function:

ψ(r) =
h
s + exp(−ξ)r

1
α

iα
for r > 0 and s > 0. The derivative of this function is:

ψ′(r) = exp(−ξ)

"
r
1
α

s + exp(−ξ)r 1
α

#1−α
= exp(−ξα)

"
exp(−ξ)r 1

α

s + exp(−ξ)r 1
α

#1−α
.
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This derivative is increasing in r and hence ψ is convex in r. Consequently for each fixed x,bV is a convex function of h > 0. A subgradient for this convex function at h1 is the linear

map that maps a k ∈ L1
+ into:

d(x) eE [k(Xt+1)|Xt = x]

where

d(x) =

264 exp(−ξ)
� eE [h1(Xt+1)|Xt = x]

� 1
α

[1− exp(−ξ)]e(x)
−1
α + exp(−ξ)

� eE [h1(Xt+1)|Xt = x]
� 1
α

375
1−α

< 1

Thus if h1 ≥ h2 are non-negative fixed points of bV,
h2(x)− h1(x) = bVh2(x)− bVh1(x) ≥ d(x) eE [(h2 − h1)(Xt+1)|Xt = x] .

Integrate both sides with respect to the ·̃ stationary distribution. By the Law of Iterated

Expectations,

eE [h2(Xt+1)− h1(Xt+1)] ≥ eE (d(Xt) [(h2 − h1)(Xt+1)|Xt = x])

Since 0 < d(x) < 1, h2 ≤ h1, h1 and h2 coincide in a set with ·̃ measure one. In particular

ĝα = ĥ.

5.2.2 α ≥ 1

We view
� eE [g (Xt+1)

α |Xt = x]
� 1
α

as a conditional norm. As a consequence, if g1 ≥ 0 and

g2 ≥ 0 are fixed points of bU
|g1(x)− g2(x)| =

���bUg1(x)− bUg2(x)
���

= exp(−ξ)
����� eE [g1(Xt+1)

α|Xt = x]
� 1
α −

� eE [g2 (Xt+1)
α |Xt = x]

� 1
α

����
≤ exp(−ξ)

h
( eE [|g1(Xt+1)− g2(Xt+1)|α |Xt = x]

� 1
α

where the last relation follows from the (reverse) Triangle Inequality. Next raise both sides

to the power α and then integrate with respect to the ·̃ stationary distribution. By the
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Law of Iterated Expectations, we find that

E [|g1(Xt+1)− g2(Xt+1)|α] ≤ exp(−ξ)E [|g1(Xt+1)− g2(Xt+1)|α] .

provided that g1 and g2 have finite α moments under the ·̃ stationary distribution. Thus

g1 and g2 must be equal with ·̃ probability one.

Since

ĝα ≤ ĥ ≤ h̃,

under Assumption 4.2 ĝ and ĥ
1



recursion:

bUg(x) =
η exp(−δ)

1− γ
− [1− exp(−δ)] log e(x) +

exp(−δ)
1− γ

eE (exp [(1− γ)g(Xt+1)] |Xt = x)

where we no longer restrict g to be positive. This recursion is a special case of the so-called

“risk sensitive recursion” studied by Jacobson (1973) and Whittle (1990) where discounting

is included in the manner suggested by Hansen and Sargent (1995). Let

eUg(x) =
η exp(−δ)

1− γ
− [1− exp(−δ)] log e(x) + exp(−δ) eE [g(Xt+1)|Xt = x] .

Then bUg ≤ eUg
and eU has a fixed point g̃ provided that eE [log e(Xt)] is finite. We may use our previous

arguments to show that {bU j g̃ : j = 1, 2, ...} is a decreasing sequence, but we do not have an

obvious lower bound on these iterations. When they converge to a finite valued function

ĝ, this function is a fixed point of bU .

Our analysis takes as given the consumption dynamics in contrast to stochastic growth

economies such as those studied by Brock and Mirman (1972). The change of probability

measure we use is determined by the multiplicative martingale component for consumption

raised to a power as discussed in Hansen and Scheinkman (2009) and Hansen (2011). Some

stochastic growth economies with production have a balanced growth path relative to some

stochastically growing technology. In such economies, the value of η and the change of

measure may be deduced prior to solving the model. In particular we may check parameter

the restriction:

δ >
1− ρ
1− γ

η

by solving for η using the exogenously specified technology and the balanced-growth re-

striction. This restriction on δ may be viewed as an extension of Kocherlakota (1990)’s

analysis of subjective discount rates in stochastic growth economies for models with power

utility preferences (γ = ρ). The eigenfunction e, which is also restricted in our analysis,

will depend on a conjectured equilibrium solution for consumption, however.
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7 Relation to large deviations

Donsker and Varadhan (1975, 1976) and many others use principal eigenvalue problems

as a device for computing large deviation bounds. While their analysis allows for the

construction of large deviation bounds for a large class of events, we consider bounding a

rather simple set of tail events.

Following the work of Stutzer (2003), we explore the probabilities that consumption

growth will be below some growth threshold at a given date.6 Consider the following

threshold probability:

Pr {logCt − logC0 ≤ −rt|X0 = x} = Pr {− logCt + logC0 − rt ≥ 0|X0 = x} (14)

This probability is the “value at risk” that the growth rate of consumption will be less than

−r. As we will eventually make the time horizon t tend to infinity, adding a constant to the

threshold in (14) will be inconsequential. This computation is similar to but distinct from

calculations for a class of ruin problems initiated by Cramer and Lundberg. See Nyrhinen

(1999) for a more refined use than what we describe here of large deviation theory to

compute asymptotic ruin probabilities.

To bound the probability in (14), we follow the usual approach to large deviations by

constructing a family of functions that dominate the indicator function

xθ ≥ 1{log x≥0}

for any θ ≥ 0. An implication of this domination is:

exp (−θrt)E

"�
Ct
C0

�−θ
|X0 = x

#
≥ Pr {− logCt + logC0 − rt ≥ 0|X0 = x} ,

or in logarithms,

−θr +
1

t
logE

"�
Ct
C0

�−θ
|X0 = x

#
≥ 1

t
logPr {logCt − logC0 + rt ≤ 0|X0 = x}

where we scaled by t. This bound holds for all θ > 0, which leads us to minimize the

6Stutzer (2003) actually investigates the behavior of portfolios over long investment horizons while we
look at consumption growth.
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left-hand side with respect to θ. We will study the limiting result as the time horizon

becomes large. The optimized θ depends on the growth rate r used in constructing the

threshold of interest. We will link the choice of θ to the preference parameter γ − 1, and,

as a consequence, the inverse problem will be of interest to us. Given θ, for what value of

the growth rate threshold r will this θ be the best choice for constructing a large-deviation

bound?

The large t approximation to the left-hand side is:

−θr + η(θ). (15)

where η(θ) is the Perron-Frobenius eigenvalue obtained by solving:

E (exp[−θκ(Xt+1, Yt+1, Xt)]e(Xt+1)|Xt = x) = exp[η(θ)]e(x).

To construct the best possible asymptotic bound we minimize (15) with respect to θ ≥ 0,

or equivalently:

ξ(r) = sup
θ≥0

rθ − η(θ),

which is a Legendre transform. The function η can be shown to be convex in θ as is

the Legendre transform ξ. With this construction, the decay rate in the probabilities for

threshold r is ξ(r). The first-order conditions are:

r = η′(θ) = − eE [κ(Xt+1, Yt+1, Xt)]

provided that η is differentiable where the distorted distribution is evaluated at the opti-

mized value of θ. This same change in probability distribution is commonly used to verify

that the upper bound just computed is also the best possible bound.

So far we have taken r to be specified and we solve for θ. We now consider the inverse

problem by computing a threshold r that solves the optimization problem for a given θ.

We solve this inverse problem to build a connection to our earlier analysis of intertemporal

utility functions. To make this link, suppose that γ > 1 and let θ = γ − 1. For each

such value of γ, we compute a threshold for which the the power specification for terminal

consumption gives the best probability bound.

We illustrate these calculations using a specification from Hansen et al. (2007) of a

“long-run risk” model for consumption dynamics featured by Bansal and Yaron (2004).
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Bansal and Yaron (2004) use historical data from the United States to motivate their

model including the choice of parameters. Their model includes predictability in both

conditional means and in conditional volatility. We use the continuous-time specification

from Hansen et al. (2007) because the continuous-time specification of stochastic volatility

is more tractable:

dX
[1]
t = −.021X

[1]
t dt+

q
X

[2]
t

h
.00031 −.00015 0

i
dWt,

dX
[2]
t = −.013(X

[2]
t − 1)dt+

q
X

[2]
t

h
0 0 −.038

i
dWt

d logCt = .0015dt+X
[1]
t dt+

q
X

[2]
t

h
.0034 0.007 0

i
dWt,

where W is a trivariate standard Brownian motion. The unit of time in this specification

is one month. The first component of the state vector is the state dependent component

to the conditional growth rate, and the second component is a volatility state.7 Both the

growth state and the volatility state are persistent. The average (in logarithms) growth

rate in consumption in this example is .0015.

Our analysis assumes a discrete-time model. A continuous-time Markov process X

observed at say interval points in time remains a Markov process in discrete time. Since

logCt+1 − logCt is constructed via integration, it is not an exact function of Xt+1 and

Xt. To apply our analysis, we define Yt+1 = logCt+1 − logCt. Given the continuous-time

Markov specification, the joint distribution of logCt+1 − logCt and Xt+1 conditioned on

past information only depends on the current Markov state Xt as required by Assumption

2.1. We use the implied discrete-time specification to construct preferences and analyze

implications. In light of this construction of a discrete time process from a continuous

time starting point, we can exploit the continuous-time quasi analytical formulas given by

Hansen (2011) for η(θ) as an important input into our calculations.8

7We follow Hansen (2011) in constructing this example. Hansen configures the shocks so that the first
one is the “permanent shock” identified using standard time series methods and normalized to have a unit
standard deviation. The second shock is a so-called temporary shock, which by construction is uncorrelated
with the first shock.

8The formulas in Hansen (2011) for the continuous-time change of measure also may be used to char-
acterize the discrete-time process under the change of measure with an analogous construction from a
continuous-time process.
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Figure 1: The top panel plots the logarithm of the eigenvalue η as a function of θ. The

middle panel plots the implied threshold r for each value of θ. The bottom panel gives the

implied decay rate in the probabilities for each value of θ. The decay rates are annualized.

We explore the consequences of changes in θ and implicitly for γ in Figure 1. This figure

consists of three panels. The top panel gives the logarithm, η, as a function of θ = γ−1. As

we argued previously, we expect η to be negative for at least modest values of θ. For larger

values of θ stochastic volatility in the logarithm of the growth rate in consumption becomes

sufficiently important that the expected growth rate in (C)−θ becomes positive. For our

example, this occurs for θ = γ− 1 > 8.76. The second panel depicts the threshold r for the
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which the value of θ on the horizontal axis is optimal. This is computed as r(θ) = η′(θ).

The unconditional mean of logCt+1−logCt is .0015, and this is equal to −r(0). For instance

if r is set to the mean of the unconditional distribution of the growth rate (in logarithms) of

consumption, after adjusting for mean growth rate and scaling by 1√
T

the process obeys a

Central Limit Theorem. Thus we do not expect decay in threshold probabilities, consistent

with the zero decay rate for θ = 0 in the bottom panel. As we reduce the threshold,

the probabilities decay at a geometric rate. Positive values of θ, imply larger values of r,

which corresponds to movements to the left tail of the distribution of logCt. The bottom

panel gives the implied decay rates in the probabilities of consumption over an horizon t

exceeding the threshold −r(θ)t. This decay rate increases in θ as does r(θ). For instance

when r(θ) = −.00075, the decay rate is .0104 per anum and when r(θ) = 0, the decay rate

is .0408 per annum. The zero threshold r(θ) = 0 occurs when θ = 4.51 or equivalently

γ = 5.51.
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