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1 Introduction
In several two-sided matching markets, agents on one side are matched to a
large number of agents on the other side. For example, Princeton, Harvard,
Yale, Stanford, and MIT all have incoming classes with over 1,000 freshmen.
Even CalTech, which has a relatively small entering class accepts around 250
freshmen yearly.1 In some of these markets matching is decentralized.2 One
example is college admissions in the US. Another is the market for junior as-
sociates at top law firms. Most of the top American law firms hire around
50-150 associates from each cohort, mostly from the nation’s most prestigious
law schools.3 Other markets also have a larger number of agents on one side,
but are organized around a centralized clearinghouse, where agents report their
preferences, and receive a match based on a mechanism. This is the case of
public schools in several American cities, in Hungary, and of college admissions
in Hungary and Turkey.4 These markets are usually modeled using the Gale
and Shapley (1962) college admissions model. Moreover, the centralized clear-
inghouses often employ variations of their deferred acceptance mechanism. An
extensive literature considers the design and properties of these markets.5 How-
ever, there is little work understanding matching markets with a large number
of agents on one side, although this is the case in many applications.6

In this paper, we propose a variation of the Gale and Shapley (1962) college
admissions model, where a finite number of colleges is matched to a continuum
of students. Although we use the colleges and students terminology, the model
can represent other matching markets, and we extend it to allow for matching
with contracts. Our model allows for tractable analysis of markets where agents
on one side are matched to a large number of agents on the other side. Our main
results are as follows. Generically (though not always), (i) the continuum model

1Forbes ranking of “America’s Best Colleges 2008”.
2For models of two-sided matching in decentralized markets, see Adachi (2003); Niederle

and Yariv (n.d.). These papers outline conditions under which decentralized matching process
lead to stable allocations.

3See Avery et al. (2004) for details on the college admission market, and (Ginsburg and
Wolf, 2003) for a description of the American and Canadian markets for junior law associates.

4A discussion of school choice mechanisms used in various cities is given in the seminal work
of Abdulkadiroglu and Sonmez (2003), which introduced the problem of designing school choice
mechanisms in the literature. Accounts of the redesign of the matching systems in Boston
and NYC are given by Abdulkadiroglu et al. (2005a,b). College admissions in Turkey are
described by Balinski and Sonmez (1999). Biró (2007) describes the centralized clearinghouses
in Hungary.

5See Roth (2008) for a survey.
6Some interesting papers have investigated strategic properties of stable mechanisms in

markets where the number of agents on both sides grows. The conclusion typically is that, as
agents become insignificant, stable mechanisms become approximately strategy-proof (Roth
and Peranson (1999); Immorlica and Mahdian (2005); Kojima and Pathak (2009)). This is
different from the direction we pursue, in which the number of colleges is fixed, and its the
number of students and the quotas of each college that grow. Our model is more similar in
spirit with a literature on asymptotics of the assignment problem where the number of object
types remains constant and the market grows (Che and Kojima (Forthcoming); Kojima and
Manea (2009); Manea (2009)), and on large markets in the course allocation problem, where
the number of courses is fixed (Budish and Cantillon (Forthcoming); Budish (2008)).
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admits a unique stable matching, (ii) this stable matching varies continuously
with the underlying economy, and (iii) it is the limit of the set of stable match-
ings of approximating discrete economies. These results provide foundations
to continuum matching models considered in the literature ((Abdulkadiroglu
et al., 2008; Miralles, 2008)), imply new results on the size of the set of sta-
ble matchings in discrete models (complementing those in (Roth and Peranson,
1999; Immorlica and Mahdian, 2005; Kojima and Pathak, 2009)), and general-
izes characterizations of the asymptotic behavior of commonly used mechanisms
((Che and Kojima, Forthcoming)). Besides contributing to understand markets
with a large number of agents in one side, the tractability of the model makes
it useful in exploring problems which are too complex in the discrete setting.

To fix ideas, say colleges preferences rank students according a number,
which we term the score. Different colleges may rank students differently. A
unifying idea in our analysis is considering the score of the marginal student
accepted to each college, in a given stable matching. We denote the score
of a marginal student accepted as the cutoff 7 at each college. This means
students with scores above the cutoff are accepted, and those with lower scores
are rejected. We offer a new lemma, in both the discrete and continuum models,
that shows that stable matchings are associated with cutoffs that clear the
market.8 That is, such that when each student points to her favorite college that
would accept her, demand for colleges equals supply.9 Since cutoffs characterize
stable matchings in both the continuum and discrete model, this Lemma is
the key idea linking continuum and discrete economies. This gives, first, a
tractable characterization of stable matchings in the continuum model. And,
second, allows us to prove convergence results without relying on combinatorial
arguments. Therefore the arguments used to establish our limit results differ
markedly from those used in other papers that considered large markets in
matching and the assignment problem (Immorlica and Mahdian (2005); Che
and Kojima (Forthcoming); Manea (2009); Kojima and Manea (2009); Kojima
and Pathak (2009)).

Albeit very simple, the Lemmas relating stable matchings to cutoffs are of
independent interest, and among our main results. In the discrete case, the
cutoff Lemma can be described informally as follows. Given a stable matching,
we can define admission thresholds at each college such that, if each student
points to her favorite college that would accept her, the result is the original
stable matching. Moreover, the lemma implies that any vector of thresholds
that clears the market induces a stable matching.

The model has implications to several strands of the matching literature. We
7This term was introduced by Abdulkadiroglu et al. (2008), who consider the case where

all colleges have the same preferences.
8As we detail below, this was observed by Biró (2007). Yet, the particular bijection between

market clearing cutoffs and stable matchings given in our lemma was is new, as are the version
with a continuum of students and of matching with contracts. As discussed below, this is
also related to an important result by (Roth and Sotomayor, 1989), although the results are
independent.

9More precisely, a set of cutoffs clears the market if the demand for each school does not
exceed its quota, and equals the quota if the cutoff is strictly positive.
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show that a generic continuum economy has a unique stable matching, which
is the limit of the sets of stable matchings of any sequence of approximating
discrete economies. Therefore, large discrete economies with many agents on
one side may have several stable matchings, but they will often be very simi-
lar. This complements results by (Immorlica and Mahdian, 2005; Kojima and
Pathak, 2009) who give conditions under which the set of stable matchings of
large discrete economies is small, and seems to be consistent with data from
the redesign of the National Resident Matching Program (NRMP) (Roth and
Peranson (1999)).10

Another important implication for empirical work and simulations is that we
should expect the set of stable matchings in actual markets to be robust with
respect to small perturbations of the economy. This is important, in light of
examples we give in the text where the set of stable matchings can change dis-
continuously with respect to small perturbations of the economy. Even though
such cases do exist, they only arise for a measure 0 set of economies, and there-
fore are not likely to arise in empirical settings. This is important if data and
simulations are to be used to evaluate the impact of alternative mechanisms.11 If
stable matching mechanisms were very sensitive with respect to the underlying
economy, these exercises would have little value. The continuity result is con-
sistent with empirical results reported by Abdulkadiroglu et al. (2009). They
consider preference data from the New York City school choice mechanism.
Students are given priorities to schools based on some criteria, such as the area
where they live and where their siblings go to school, and ties are broken using
a lottery. Seats are then assigned according to the student-proposing deferred
acceptance mechanism. Interestingly, in several different runs of the algorithm,
many aggregate statistics of the match do not vary much. For example, on
average 32,105.3 students receive their first choice, with a standard deviation of
only 62.2. The average number of students receiving their 7th choice is 1,732.7
with a standard deviation of 26.0. It seems remarkable at first that aggregate
statistics of the match are so stable, as the allocation depends on the results of
a lottery. However, this is consistent with the fact that, for a typical draw, the
economy after tie-breaking does not vary too much, and the result that stable
matchings generically depend continuously on the primitives.

The convergence results give foundations to some interesting recent work
that applies continuum models to school choice problems (Abdulkadiroglu et
al. (2008); Miralles (2008)). These papers have considered the particular case
of our model where all colleges have the same preferences over students. Mi-
ralles (2008) uses the continuum model to compare deferred acceptance with the
Boston Mechanism. Abdulkadiroglu et al. (2008) evaluate mechanisms where
agents can express the intensity of their preferences. Our results show that,
generically, the stable matchings in these continuum models correspond to lim-
its of discrete economies. In addition, we generalize the models to encompass

10While this is interesting, the number of doctors hired by each hospital is small, rendering
the continuum model a very coarse approximation.

11Budish and Cantillon (Forthcoming) for example use data from the Harvard Business
School course allocation mechanism to evaluate different mechanisms.
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the case where school preferences are not the same.
Our results also imply a characterization of the limit of deferred acceptance

mechanisms. In particular, it includes as a special case the state of the art mech-
anism used in school choice, which is deferred acceptance where ties are broken
according to a single lottery (DA-STB). In a related paper, Che and Kojima
(Forthcoming) consider the limit of the widely used random serial dictatorship
mechanism. They show that, in the limit, it corresponds to the probabilistic
serial mechanism proposed by Bogomolnaia and Moulin (2001). Because serial
dictatorship is equivalent to deferred acceptance in the particular case where all
colleges have the same preferences, their result is also a particular case of ours.
Therefore, our model gives a unified description of the limit behavior or random
serial dictatorship, deferred acceptance, and the probabilistic serial mechanism.

Finally, we pursue additional applications of the model in two companion
papers. Azevedo and Leshno (2010) evaluate the equilibrium performance of
the stable improvement cycles mechanism, proposed by Erdil and Ergin (2008).
Azevedo (2010) investigates strategic behavior of firms in matching markets.12

Section 2 presents the model, some preliminary results, and gives an example
illustrating the results. Section 3 describes the main results, and Section 4
concludes. The appendix provides all omitted proofs, and also covers additional
results on matching with a continuum of students, asymptotics of commonly
used mechanisms, and extends the continuum model to matching with contracts.

2 Model

2.1 College admissions with a continuum of students
The model follows closely the Gale and Shapley (1962) college admissions prob-
lem. The main departure is that a finite number of colleges C = {1, 2, . . . , n} is
matched to a continuum mass of students. A student is described by θ = (�θ
, eθ). �θ is the student’s strict preference ordering over colleges. The vector
eθ ∈ [0, 1]n describes the colleges’ ordinal preferences for the student. We refer
to eθs as student θ’s score or rank at college s. Colleges prefer students with
higher scores. That is, college c prefers13 student θ over θ′ if eθc > eθ

′

c . To
simplify notation we assume that all students and colleges are acceptable. Let

12Since Roth (1985) it has been known that no stable matching mechanism is strategyproof
for the colleges in the college admissions model. This is in contrast to the marriage model,
where the men have no incentives to manipulate the men-optimal stable mechanism. Sonmez
(1997) has shown that they may always gain by manipulating reported capacity. Konishi and
Unver (2006) have then introduced games of capacity manipulation, which were also studied
by Ehlers (2010); Kesten (2008); Kojima (2006); Mumcu and Saglam (2009); Romero-Medina
and Triossi (2007). Azevedo (2010) also focuses on quantity manipulations, and uses the
continuum model to derive equilibrium predictions in matching markets, with firms acting
strategically.

13We take college’s preferences over students as primitives, rather than preferences over sets
of students. It would have been equivalent to start with preferences over sets of students that
were responsive to the preferences over students, as in Roth (1985).
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S be the set of all strict preference orderings over colleges. We denote the set
of all student types by Θ = S × [0, 1]n.

A continuum economy is given by E = [η, q], where η is a probability mea-
sure14 over Θ and q = (q1, q2, . . . , qn) is a vector of strictly positive capacities
for each college. We make the following assumption on η, which corresponds to
colleges having strict preferences over students in the discrete model.

Assumption 1. (Strict Preferences) Every college’s indifference curves have
η-measure 0.15

The set of all economies satisfying Assumption 1 is denoted by E .
A matching for a continuum economy E = [η, q] is a function µ : C ∪Θ→

2Θ ∪ C, such that16

1. Each student is matched to a college or to herself.

2. Each college c is matched to a subset of students of measure of at most
qc.

3. A college is matched to a student iff the student is matched to the college.

4. The matching is right-continuous.17

This is the standard definition, with the addition of the last technical require-
ment, which eliminates multiplicities of matchings that coincide in a measure
0 set. A student-college pair (θ, c) blocks a matching µ at economy E if the
student θ prefers c to her match and either (i) college c does not fill its quota or
(ii) college c is matched to another student that has a stricly lower score than
θ.18

Definition 1. A matching µ for a continuum economy E is stable if it is not
blocked by any student-college pair.

We will refer to the stable matching correspondence as the correspondence
associating each economy in E with its set of stable matchings. In some sections
in the paper the economy is kept fixed. Whenever there is no risk of confusion we
will omit dependence of certain variables on the economy, to make the notation
less cumbersome.

14We must also specify a σ-algebra where η is defined. The set Θ is the product of [0, 1]n

and the finite set of all possible orderings. We take the Borel σ-algebra of the product topology
(the normal topology for Rn times the discrete topology for the set of orderings) .

15That is, for any college c and real number x we have η({θ|eθc = x}) = 0.
16Mathematically, these properties are:
1. For all θ ∈ Θ: µ(θ) ∈ C ∪ {θ}.
2. For all c ∈ C: µ(c) ⊂ Θ, and η(µ(c)) ≤ qc.
3. c = µ(θ) iff θ ∈ µ(c).
4. For any sequence of students θk = (�, ek), with ek converging to e, and all ek ≥ e (in

every coordinate), we can find some large K so that µ(θk) = µ(θ) for k > K.

17See the previous footnote for a precise definition.
18That is, (θ, c) blocks µ if c �θ µ(θ) and either (i) η(µ(c)) < qc or (ii) there exists θ′ ∈ µ(c)

with eθ
′
c < eθc .
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2.1.1 Cutoffs

Scores of marginal accepted students in each college will play a large role in the
analysis. This subsection shows that the score of the marginal accepted student
at a college, which we term the college’s cutoff following Abdulkadiroglu et al.
(2008), parametrizes the set of stable matchings. This idea is closely related to
a result by Roth and Sotomayor (1989). They show that the entering classes a
college receives in any two stable matchings are ordered by first order stochastic
dominance. This suggests the possibility of parametrizing the set of stable
matchings using the score of the worst student in each college’s entering class.

Throughout this subsection, we fix an economy E, and abuse notation by
omitting dependence on E when there is no risk of confusion. A cutoff is a
minimal score pc ∈ [0, 1] required for admission at a college c. We say that a
student θ can afford college c if pc ≤ eθc , that is c would accept θ. A student’s
demand given a vector of cutoffs is her favorite college among those that would
accept her. That is,

Dθ(p) = arg max
��
{c|pc ≤ eθc}. (1)

Aggregate demand for college c is the mass of students that demand it,

Dc(p) = η({Dθ(p) = c}).

A market clearing cutoff, is a vector of cutoffs that clears supply and demand
for colleges.

Definition 2. A vector of cutoffs p is a market clearing cutoff if satisfies
the market clearing equations: for all c

Dc(p) ≤ qc

and Dc(p) = qc if pc > 0.

Market clearing cutoffs can be used to parametrize stable matchings. To
describe this parametrization, we define two operators. Given a market clearing
cutoff p, we define the associated matching µ =Mp using the demand function:

µ(θ) = Dθ(p).

Conversely, for a stable matching µ, we define the associated cutoff p = Pµ
by:

pc = inf
θ∈µ(c)

eθc . (2)

The operatorsM and P give a bijection between stable matchings and mar-
ket clearing cutoffs.
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Lemma 1. (Cutoff Lemma)19 If µ is stable matching, then Pµ is a market
clearing cutoff. If p is a market clearing cutoff, then Mp is a stable matching.
In addition, the operators P andM are inverses of each other.20

Intuitively, the Lemma says that stable matchings can be described by cutoff
scores at each college. Given a stable matching, define its corresponding cutoffs
for each college as the lowest score of all students matched to the college. We
then have that if each student points to her favorite affordable college, the result
is the stable matching. This means we could have defined stability directly in
terms of cutoffs. That is, a matching µ is stable if and only if for some market
clearing cutoff p we have µ =Mp. In addition, it implies that the structure of
stable matchings is simple, and stable matchings can be described by a vector
of one real number per school. Moreover, the Lemma guarantees that any cutoff
that clears supply and demand corresponds to a stable matching. We defer the
proof to the Appendix, but for the reader interested in the intuition of the proof
the next section gives a proof of the counterpart of this result in the discrete
model, which is simpler and contains similar ideas.

The lemma shows that we could have equivalently defined stability by using
cutoffs, instead of the standard definition, given in section 2.1. That is, a
matching µ is stable if and only if for some market clearing cutoff p we have
µ = Mp. In addition, the Lemma specifies a natural bijection between stable
matchings and market clearing cutoffs. If one could compute the cutoffs related
to a stable matching, and have each student points to her favorite college that
would accept her, the result would be the stable matching.

Note that demand functions depend on the economy E. When there is no
risk of confusion, we will omit this dependence, as above. However, when we
consider different economies, we will write D(p|E)or D(p|η).

2.2 College admissions with a finite number of students
We use the standard definition of the college admissions model with a finite
number of students. The set of colleges is again C. A finite economy F = [Θ̃, q̃]

19To our knowledge, the discrete and continuum versions of the cutoff lemma are new,
but they have some precursors in the literature. Abdulkadiroglu et al. (2008) use cutoffs
extensively, in a model where all colleges rank students in the same order, and introduced the
term cutoff. Biró (2007) describes the algorithm used for college admissions in Hungary. In
the algorithm, colleges start with a low cutoff score. At each step, students apply to their
favorite college that would accept them, and each college increase the cutoff score up to the
point where its quota is filled exactly. With strict preferences, the outcome is the same as
student proposing deferred acceptance. Biró (2007) terms this a “score limit algorithm”, and
remarks that a definition of stability similar to market clearing cutoffs is equivalent to the
standard definition, although he does not offer a proof. Cutoffs are also related, but different,
to a very interesting characterization of stable matchings due to Adachi (2000), in terms of
what he calls pre-matchings. The main difference is that pre-matchings assign a “cutoff” to
each man and each woman, while cutoffs only have to be assigned for one side of the market.
Similar ideas have been successfully applied to a series of matching problems (Adachi (2003);
Hatfield and Milgrom (2005); Echenique and Oviedo (2004, 2006); Ostrovsky (2008)).

20This lemma relates to the results by Roth and Sotomayor (1989), they prove that the
entering classes a college may receive, in any stable matching, are always ordered by first
order stochastic dominance.
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specifies a finite set of students Θ̃ ⊂ Θ, and a vector of integer quotas qc > 0
for each college. We assume that no college is indifferent between two students
in Θ̃. A matching for finite economy F is a function µ̃ : Θ̃∪C → C ∪ 2Θ̃ such
that21

1. Each student is matched to a college or to herself.

2. Each college is matched to a at most q̃c students.

3. A college is matched to a student iff the student is matched to the college.

The definition of a blocking pair is the same as in section 2.1.1. A matching
µ̃ is said to be stable for finite economy F if it has no blocking pairs.

2.2.1 Cutoffs

In this section we fix a finite economy F , and will omit dependence on F in the
notation. A cutoff is a number p̃i in [0, 1] specifying an admission threshold for
college i. Given a vector of cutoffs p, a student’s demand is defined as in section
2.1.1. Demand for a college c is defined as

D̃c(p̃) = #{θ ∈ Θ̃ : Dθ(p̃) = c}.

p̃ is a market clearing cutoff for economy F if for all colleges

D̃c(p̃) ≤ q̃c,

with equality if p̃c > 0.
In the discrete model, we define the operators M̃ and P̃, which have essen-

tially the same definitions as M and P; we only adjust the definition of P̃ in
that if a school has empty spots we assign it a cutoff of 0. In the discrete case,
we have an analogue of the cutoff lemma. The only difference is that, in the
discrete model, each matching can have many corresponding market clearing
cutoffs, so we don’t get a bijection.

Lemma 2. (Discrete Cutoff Lemma) In a discrete economy, the operators
M̃ and P̃ take stable matchings into market clearing cutoffs, and vice versa.
Moreover, M̃P̃ is the identity.

Proof. Consider a stable matching µ̃, and let p̃ = P̃µ̃. Any student θ can afford
c = µ̃(θ), as eθc ≥ p̃c. It also can’t afford any other college c′ �θ c: if it could,
then there would be another student θ′ matched to c′ with eθ

′

c′ < eθc′ , which
would contradict µ̃ being stable. Consequently, we must have Dθ(p̃) = µ̃(θ).
This proves both that M̃P̃ is the identity, and that p is a market clearing cutoff.

21Formally, these conditions are:
1. For all θ in Θ̃ we have µ(θ) ∈ {θ} ∪ C.

2. For all c ∈ C we have that µ(c) ∈ 2Θ̃ and #µ(c) ≤ qc.
3. For all θ ∈ Θ̃, c ∈ C, we have µ(θ) = c iff θ ∈ µ(c).
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In the other direction, let p be a market clearing cutoff, and µ̃ = M̃p̃. By the
definition of the operator and the market clearing conditions it is a matching,
so we only have to show there are no blocking pairs. Assume by contradiction
that (θ, c) is a blocking pair. If c has empty slots, then p̃c = 0 ≤ eθc . If c is
matched to a student θ′ that it likes less than θ, then p̃c ≤ eθ

′

c ≤ eθc . Hence,
we must have p̃c ≤ eθc . But then by the definition of µ we have c ≺θ µ̃(θ), so it
can’t be a blocking pair, reaching a contradiction.

Intuitively, the Lemma says that given a stable matching we can find cutoffs
at each college, such that the matching is given by all students pointing to their
favorite college that would accept them. This means that, even in the discrete
model, stable matchings have a very simple structure. This was previously
pointed out by Biró (2007),22 although he does not provide a proof. He points
out that in Hungary college admissions are made through a clearinghouse, that
uses an algorithm similar to the Gale and Shapley deferred acceptance algorithm
but that uses cutoffs. In addition, Lemma 2 guarantees that any set of cutoffs
that clears the market corresponds to a stable matching. The only respect in
which the discrete cutoff Lemma is weaker than the continuum version, is that
each stable matching can correspond to several different market clearing cutoffs,
while in the continuum model we have a bijection.

2.3 Convergence notions
To describe our convergence results, we must define notions of convergence for
economies and stable matchings. On the set of continuum economies E we take
the product topology given by the weak-* topology over measures and the Eu-
clidean topology over vectors of capacities. We take the distance between stable
matchings to be the distance between their associated cutoffs in the supremum
norm in Rn. That is, the distance between two stable matchings µ and µ′ is

d(µ, µ′) = ‖Pµ− Pµ′‖∞.

There is a natural way to define what it means for a sequence of discrete
economies to converge to a continuum economy. Consider a discrete economy
F = [Θ̃, q̃], with m students. An equivalent notation to describe it is using a
measure η[F ] that gives weight 1/m to each point in Θ̃, and a vector of quotas
q[F ] = q̃/m. Note that the measure η[F ] gives positive weight to some points
in Θ, so that this pair could not be a continuum economy as defined before, as
it violates assumption 1. But it is normalized so that η[F ](Θ) = 1, as in the
definition of a continuum economy.

22The model and definitions used by Biró (2007) are slightly different. However, he states
without proof that the usual definition of stability is equivalent to a definition very similar to a
matching being associated with market clearing cutoffs. More substantially, our result differs
from his in that we outline specific operators associating stable matchings to equilibrium
cutoffs.
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Definition 3. A sequence of finite economies F k converges to a limit economy
E = [η, q] if η[F k] converges to η in the weak-* topology and q[F k] converges to
q in Rn.

Given a stable matching of a continuum economy µ, and a stable matching
of a finite economy µ̃, we define

d(µ̃, µ) = sup
p̃
||p̃− Pµ||∞

over all vectors p̃ with M̃p̃ = µ̃.

Definition 4. The sequence of stable matchings µ̃k with respect to finite
economies F converges to stable matching µ of continuum economy E if d(µ̃k, µ)
converges to 0.

Finally, given a finite economy F , we define the radius of the set of stable
matchings of F as

sup{‖p− p′‖∞ : p and p′ are market clearing cutoffs of F}.

2.4 A simple example
This simple example illustrates the main results. There are two colleges c =
1, 2, and the distribution of students η is uniform. That is, there is a mass
1/2 of students with each preference list 1, 2 or 2, 1, and each mass has scores
distributed uniformly over [0, 1]2 (figure 1). If both colleges had capacity 1/2,
the unique stable matching would have each student matched to her favorite
school. To make the example interesting, assume q1 = 1/4, q2 = 1/2.

A familiar way of finding stable matchings is using the student-proposing
deferred acceptance algorithm. At each step, unassigned students propose to
their favorite college out of the ones that still haven’t rejected them. If a college
has more students than its capacity assigned to it, it rejects the lower ranked
students it has assigned to it, to stay below its capacity. Figure 1 displays the
trace of the algorithm in our example. In the first step, all students apply to
their favorite school. Because school 1 only has capacity 1/4, and each square
has mass 1/2, it then rejects half of the students who applied. The rejected
students then apply to their second choice, college 2. But this leaves college
2 with 1/2 + 1/4 = 3/4 students assigned to it, which is more than its quota.
College 2 then rejects its worse ranked students. Those who had already been
rejected stay unmatched. But those who hadn’t been rejected by college 1 apply
to it, leaving it with more students than capacity, and the process continues.
Although the algorithm does not finish, it always converges, and the outcome
(figure 2) is a stable matching (see Appendix A). Figure 1 hints at this, as
the measure of students getting rejected in each round is becoming smaller and
smaller.

However, figures 1 and 2 give much more information than simply conver-
gence of the deferred acceptance mechanism. We can see that cutoffs yield a
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Figure 1: In the example types are uniformly distributed in the two squares
on the top panel. The lower panels show the first 10 steps of the Gale-Shapley
student-proposing algorithm.
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Figure 2: The outcome of the GS algorithm.

simpler decentralized way to compute the matching. Note that all students ac-
cepted to college 1 are those with a score above a cutoff of p1 ≈ .640. And those
accepted to college 2 are those with a score above some cutoff p2 ≈ .390. Hence,
had we known these numbers in advance, it would not be necessary to run the
deferred acceptance algorithm. All we would have to do is assign each student
to her favorite college such that her score is above the cutoff, eθc ≥ pc (Cutoff
Lemma 1).

Indeed, solving for market clearing cutoffs is much simpler than running the
deferred acceptance algorithm. For example, the fraction of students in the left
square of figure 2 demanding college 1 is 1 − p1. And in the right square it is
p2(1− p1). Market clearing cutoffs must satisfy the pair of equations

q1 = 1/4 = (1 + p2)(1− p1)/2

q2 = 1/2 = (1 + p1)(1− p2)/2.

Solving this system, we get p1 = (
√

17 + 1)/8 and p2 = (
√

17 − 1)/8. In
particular, because the market clearing equations have a unique solution, the
economy has a unique stable matching (Theorem 1 shows this is a more general
phenomenon).

Note that the cutoff lemma is also valid in the discrete college admissions
model, save for the fact that in discrete models each stable matching may cor-
respond to more than one market clearing cutoff (Discrete Cutoff Lemma 2).
Figure 3 illustrates cutoffs for a stable matching in a discrete economy with
1, 000 students, analogous to the continuum economy in the example. Note
that the cutoffs in the discrete economy are approximately the same as the cut-
offs in the continuum economy. Theorem 2 shows that, generically, the market
clearing cutoffs of approximating discrete economies approach market clearing
cutoffs of the limit economy.

13



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Preferences 1,2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

e

Preferences 2,1

 

 

Figure 3: Cutoffs of a stable matching in a discrete economy, approximating
the continuum economy in the example. There are 2 colleges, with capacities
q1 = 250, q2 = 500. 500 students have preferences �θ= 1, 2, ∅ and 500 students
have preferences 2, 1, ∅. Scores eθ were drawn independently according to the
uniform distribution in [0, 1]2. The figure depicts the student-optimal stable
matching. Balls represent students matched to college 1, squares to college 2,
and Xs represent unmatched students.

3 Results
We are now ready to state the main results in the paper. The first result shows
that, typically, continuum economies have a unique stable matching.

Definition 5. Measure η is regular if the closure of the set of points

{p ∈ [0, 1]n : D(·|η) is not continuosuly differentiable at p}

and its image under D(·|η) have Lebesgue measure 0.

In particular, if D(·|η) is continuously differentiable then η is regular.We
then have:

Theorem 1. The economy E = [η, q] has a unique stable matching:
i) For any η with full support.
ii) For any regular measure η and almost every q such that

∑
i qi < 1.

This result shows that, for typical parameter values, the continuum model
has a unique stable matching. This is important because the convergence re-
sults depend on uniqueness, and Theorem 1 guarantees that these results apply
broadly. It also shows that typically the notion of stability is enough to uniquely
determine the market’s allocation in the continuum model.

Proof. (Proof sketch) Here we outline the main ideas in the proof, which is
deferred to Appendix A. The proof depends crucially on two results which we
develop in Appendix A, which extend classic results of matching theory to the
continuum model. The first is the Lattice Theorem, which guarantees that for
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any economy E the set of market clearing cutoffs is a complete lattice. In partic-
ular, this implies that there exist smallest and largest vectors of market clearing
cutoffs. In the proof we will denote these cutoffs p− and p+. The other result is
the Rural Hospitals Theorem, which guarantees that the measure of unmatched
students in any two stable matchings is the same.

Part (i).
First consider the case where p+ > 0. Note that the set of unmatched

students at p+ contains the set of unmatched students at p−, and their difference
is

{θ ∈ Θ : eθ < p+, eθ ≮ p−}.

By the Rural Hospitals Theorem, this set must have η measure 0. Since η has
full support, this implies that p− = p+, and therefore there is a unique stable
matching. In the case where p+

c = 0 for some colleges, the same argument
works using, instead of the set of unmatched students, the set of students that
are either unmatched or matched to a college with p+

c = p−c = 0.

Part (ii).
We assume that p− 6= p+, and will reach a contradiction. For simplicity,

consider the case where for all c we have p−c < p+
c , and where the function

D(p|η) is continuously differentiable. The general case is covered in Appendix
B.

We begin by applying Sard’s Theorem.23 The Theorem states that, given a
continuously differentiable function f : Rn → Rn, we have that for almost every
q0 ∈ Rn the derivative ∂f(p0) is nonsingular at every solution p0 of f(p0)−q0 =
0. The intuition for this result is easy to see in one dimension. It says that if
we randomly perturb the graph of a function with a small vertical translation,
all roots will have a non-zero derivative with probability 1.

Given q, as we assumed that there is excess demand for colleges, the market
clearing cutoffs are the set of roots p of the equation

D(p|η) = q.

By Sard’s Theorem, we have that for almost every q, the derivative ∂pD(·|η) is
invertible at every market clearing cutoff associated with [η, q]. Henceforth, we
will restrict attention to an economy E = [η, q] where this is the case.

To reach a contradiction assume that E = [η, q] has more than one market
clearing cutoff. By the Lattice Theorem we can write p− 6= p+ for the smallest
and largest cutoffs. For any p in the cube [p−, p+], the measure of unmatched
students

1−
∑
c

Dc(p|η) (3)

must be higher than the measure of unmatched students at p− but lower than
the measure at p+. However, by the Rural Hospitals Theorem, this measure

23See (Guillemin and Pollack, 1974).
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must be the same at p− and p+. Therefore, the expression in equation 3 must
be constant in the cube [p−, p+]. This implies that the derivative of D at p−
must satisfy ∑

c

∂pcD(p−|η) = 0.

However this implies that this derivative is not invertible, contradicting Sard’s
Theorem.

The next result shows that in the case where uniqueness holds, stable match-
ings of the continuum model correspond to limits of stable matchings of approx-
imating finite economies.

Theorem 2. Assume that the continuum economy E admits a unique stable
matching µ. We then have

i) The stable matching correspondence is continuous at E.
ii) For any sequence of stable matchings µ̃k of finite economies F k converging

to E, we have that µ̃k converges to µ.
iii) Moreover the diameter of the set of stable matchings of F k converges to

0.

Taken together, Theorems 1 and 2 Part (ii) imply that typically the con-
tinuum model admits a unique stable matching. In addition any sequence of
stable matchings of approximating finite economies is converging to this stable
matching. This shows that the continuum model has an intimate link to the
discrete model, and justifies using the continuum model, under appropriate cir-
cumstances, as a simplified market model. By Part (iii), it is also the case that
the set of stable matchings of the economies F k is shrinking. This is a form of
core convergence result, which says that all stable matchings of large economies
become very similar as the economy grows. Roth and Peranson (1999); Immor-
lica and Mahdian (2005); Kojima and Pathak (2009) had shown results in this
line, in markets where both the number of doctors and hospitals goes to infinity.
However, their results depend on very specific stochastic processes generating
preferences, and on agents having short preference lists.

Theorem 2 part (i) guarantees that the stable matchings of the limit economy
vary continuously with respect to fundamentals. This validates using empiri-
cal data and simulations to study matching markets, as it shows that small
measurement errors do not radically alter the set of stable matchings.

An immediate implication of Theorem 2 is that the stable matchings of an
economy of agents randomly drawn according to η converge almost surely to a
stable matching of the continuum model.

Corollary 1. Assume that the continuum economy E = [η, q] admits a unique
stable matching µ. Let F k = [Θ̃k, q̃k] be a randomly drawn finite economy, with
k students drawn independently according to η and the vector of capacity per
student q̃k/k converging almost surely to q. Let µ̃k be a stable matching of F k.
Then almost surely we have that F k converges to F , and µ̃k converges to µ.
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This corollary follows from a direct application of the Glivenko–Cantelli
theorem. Its importance is twofold. First, for a general class of random processes
generating large finite economies, all sequences of stable matchings will converge
to the unique stable matching given by the continuum model. Second, this can
be used to characterize the asymptotics of mechanisms used in practice. One
particular case is the random serial dictatorship (RSD) mechanism, which is
used to allocate a number of objects (the colleges in our model correspond to
object types) among agents (which correspond to the students). Agents are
randomly ordered in a queue, and take turns selecting their favorite object. In
a recent paper, Che and Kojima Forthcoming show that the RSD mechanism
is asymptotically equivalent to the probabilistic serial mechanism proposed by



school. Consequently, the market clearing equations can be written

1 = q1 = (1− p1) + p2

1 = q2 = (1− p2) + p1.

The first equation describes demand for school 1. 1 − p1 students in the walk
zone of 2 are able to afford it, and that is the first term. Also, p2 students in the
walk zone of 1 would rather go to 2, but don’t have high enough lottery number,
so they have to stay in school 1. The market clearing equation for school 2 is
the same.

Note that these equations are equivalent to

p1 = p2.

Hence any point in the line {p = (x, x)|x ∈ [0, 1]} is a market clearing cutoff -
the lattice of stable matchings has infinite points, ranging from a student optimal
stable matching, p = (0, 0) to a school optimal stable matching p = (1, 1).

Now modify the economy by adding a small mass of agents that have no
priority, so that the new mass has eθ uniformly distributed in [(0, 0), (1, 1)]. It’s
easy to see that in that case the unique stable matching is p = (1, 1). Therefore
adding this small mass unravels all stable matchings except for p = (1, 1). In
addition it is also possible to find perturbations that undo the school optimal
stable matching p = (1, 1). If we add a small amount ε of capacity to school 1,
the unique stable matching is p = (0, 0). And if we reduce the capacity of school
1 by ε, the unique stable matching is p = (1 + ε, 1), which is close to p = (1, 1).

The following Proposition generalizes the example. It shows that, when the
set of stable matchings is large, then none of the stable matchings are robust to
small perturbations. The statement uses the fact, proven in Appendix A, that
for any economy E there exists a smaller and a largest market clearing cutoff,
in the sense of the usual partial ordering of Rn.

Proposition 1. (Instability) Consider an economy E with more than one
stable matching and

∑
c qc < 1. Let p be one of its market clearing cutoffs.

Assume p is either strictly larger than the smallest market clearing cutoff p−,
or strictly smaller than the largest p+. Let N be a sufficiently small neighborhood
of p. Then there exists a sequence of economies Ek converging to E without any
market clearing cutoffs in N .

Proof. Suppose p > p−; the case p < p+ is analogous. Assume N is small
enough such that all points p′ ∈ N satisfy p′ > p−. Denote E = [η, q], and let
Ek = (η, qk), where qkc = qc + 1/nk. Consider a sequence pk of market clearing
cutoffs of Ek. Then ∑

c∈C
Dc(p

k|η) =
1

k
+
∑

qc.

However, for all points p′ in N ,∑
c∈C

Dc(p
′|η) ≤

∑
c∈C

Dc(p
−|η) =

∑
qc <

∑
qkc .
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However, for large enough k,
∑
qkc < 1, which means that for any market

clearing cutoff pk of Ek we must have D(pk|η) = qkc , and therefore there are no
market clearing cutoffs in N .

4 Conclusion
As market design tackles ever more sophisticated problems, it becomes increas-
ingly common that exact analytic results in discrete models are not available.
Several recent contributions have focused on obtaining results that are valid
only asymptotically, as markets become large in some sense (Roth and Peran-
son (1999); Immorlica and Mahdian (2005); Budish (2008); Che and Kojima
(Forthcoming); Kojima and Pathak (2009); Kojima and Manea (2009); Manea
(2009)). In this paper we consider the case, ubiquitous in practice, of matching
markets where agents on one side are matched to several agents on the other
side. We propose a variation of the Gale and Shapley (1962) college admis-
sions problem, where a finite number of colleges is matched to a continuum of
students that captures this setting.

The main results are, first, the convergence results outlining the close con-
nection between stable matchings of the continuum model and of approximating
discrete economies. This lays foundations for continuum models that have been
used in the case of perfectly correlated college preferences, and permits ex-
tending their analysis to more complex settings (Abdulkadiroglu et al. (2008);
Miralles (2008)). Second, we find that generically the set of stable matchings
depends continuously on the underlying economy. This justifies the use of em-
pirical data and simulations in the study and design of matching markets (Roth
and Peranson (1999); Abdulkadiroglu et al. (2009); Budish and Cantillon (Forth-
coming)). Third, our model implies that generically the continuum model has
a unique stable matching. Coupled with the convergence results, this implies
that large discrete economies close to a given generic limit tend to have stable
matchings which are all very similar. This complements previous results show-
ing that large economies have few stable matchings (Roth and Peranson (1999);
Immorlica and Mahdian (2005)). Fourth, we use the framework to derive new
results on the asymptotics of commonly used mechanisms, generalizing previous
findings (Che and Kojima (Forthcoming)).

Another innovation is the use of the score of marginal accepted students
(cutoffs) as a centerpiece of our analysis. One of our contributions is the cutoff
lemma, which characterizes stable matchings in terms of market clearing cut-
offs, and describes a natural relationship between the two. The fact that this
relationship holds both in the discrete and continuum setting is the driving force
behind our convergence results, and allows us to sidestep the more conventional
combinatorial arguments.

The usefulness of the continuum model will depend on whether it can be
fruitfully applied to new problems in matching theory and market design. In
two companion papers, we use the model to tackle open questions. In Azevedo
and Leshno (2010), we apply the continuum framework to study how deferred
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acceptance mechanisms compare with student-optimal stable mechanisms, in
equilibrium. Azevedo (2010) applies the framework to understand equilibrium
behavior in stable mechanisms, and the equilibrium of imperfectly competitive
matching markets. In future research, it would be interesting to explore further
applications of the model, and use it to derive results which, although not
feasible in the discrete model, help us understand real-life matching markets.
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Guide to the Appendix
Ommited proofs and additional results are included in the Appendix, avail-

able at:
http://www.people.fas.harvard.edu/~azevedo/papers.html and
http://www.people.fas.harvard.edu/~jleshno/papers.html.
The Appendix is organized as follows. Appendix A extends some results

of classic matching theory to the continuum model. It provides a proof of the
continuum cutoff lemma 1, and of Theorem 1. Appendix B derives results on
the continuity of the stable matching correspondence, and on the convergence
of stable matchings of discrete economies. It provides proofs of Theorem 2
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and Corollary 1. Appendix C then discusses how to use the model to obtain
results on the asymptotics of the RSD mechanism, and of some school choice
mechanisms. Appendix D extends the model to matching with contracts.
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