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Abstract

Agents in two-sided matching games are heterogeneous in characteristics that are both observ-
able and unobservable in typical data on matching markets. We investigate the identification
of distributions of unobserved agent characteristics, unobserved agent preferences and related
complementarity functions using data on who matches with whom. We impose the equilibrium
concept of pairwise stability and show that the distribution of unobservables can be recovered.
We explore both one-to-one and many-to-many matching games.
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1 Introduction

Matching games model the sorting of agents to each other. Men sort to women in marriage based on
characteristics such as income, schooling, personality and physical appearance, with more desirable
men typically matching to more desirable women. Upstream firms sort to downstream firms based on
the product qualities and capacities of each of the firms. Matching games are distinct from demand
models because agents on both sides of the market can be rivals to match with the most attractive
partners on the other side of the market. Men compete with other men to marry the most desirable
women, and women compete for men. Electronics manufacturers compete for the scarce supplies of
newly released components.

There has been recent interest in the structural estimation of two-sided matching games (Dagsvik,
2000; Boyd et al., 2003; Choo and Siow, 2006; Sørensen, 2007; Fox, 2010a; Gordon and Knight, 2009;
Chen, 2009; Park, 2008; Yang et al., 2009; Levine, 2009; Echenique et al., 2010), among others. The
papers we cite are unified in estimating some aspect of the preferences of agents in a matching game
from data on who matched with whom as well as the observed characteristics of agents or of matches.
The sorting pattern in the data combined with assumptions about equilibrium inform the researcher
about the structural primitives in the market, namely some function that transforms an agent’s own
characteristics and his potential partner’s characteristics into some notion of utility or output. These
papers are related to but not special cases of papers estimating noncooperative (Nash) games, like the
entry literature in industrial organization (Bresnahan and Reiss, 1991; Berry, 1992). Matching games
typically use the cooperative equilibrium concept of pairwise stability.

The empirical literature cited previously has naturally focused on how the preferences of both sides
of the market (say men and women) are functions of the characteristics of men and women observed
in the data. For example, Choo and Siow (2006) study the marriage market in the United States
and estimate how the preferences of men for women vary by the age of the man and woman, and
likewise for the preferences of women. Fox (2010a) studies matching between automotive assemblers
(downstream firms) and car parts suppliers (upstream firms) and asks how observed specialization
measures in the portfolios of car parts sourced or supplied contribute to firm payoffs.

Most of the above papers have a relatively limited set of agent characteristics. In Choo and Siow,
personality and physical attractiveness are not measured, even if those characteristics are important in
real-life marriages. In Fox, each firm’s product quality is not directly measured and is only indirectly
inferred. If matching based on observed characteristics is found to be important, it is a reasonable
conjecture that matching based on unobserved characteristics is also important. Ackerberg and Bot-
ticini (2002) do not formally estimate a matching game, but they provide empirical evidence that
farmers and landlords sort on unobservables such as risk aversion and monitoring ability.

Motivated by the empirical applications cited above, there is a pressing need to estimate matching
games with richly specified distributions of unobserved agent heterogeneity. Consider Sørensen (2007),
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who studies the matching of venture capitalists to entrepreneurs. The rhetoric in the paper is that
better venture capitalists may sort to better entrepreneurs, so that the success of a venture capitalist
may be from getting access to better investment opportunities and not from adding value to a startup
firm. However, the error terms in the estimated matching game do not capture venture capitalist
ability or entrepreneur quality. The errors are modeled at the match and not the agent level, and
are assumed to be distributed independently across potential matches. A model of unobserved en-
trepreneur quality, say, would require that all matches involving the same entrepreneur (with different
venture capitalists) have positively correlated unobservables. The same assumption of i.i.d. errors at
the match level permeates the above literature.

One should not overly criticize a new literature for focusing on sorting on observables instead
of unobservables. Indeed, it is not even clear that data on only who matches with whom will be
enough to identify distributions of unobserved agent characteristics. This paper investigates whether
data on the sorting patterns between agents in matching markets can tell us about the distributions
of unobserved agent characteristics relevant for sorting. Thus, this paper is on the nonparametric
identification of distributions of unobserved agent heterogeneity in two-sided matching games. If the
payoff to a marriage is

schoolingman · schoolingwoman + looksmanlookswoman

and schooling is recorded in the data while looks is not, this paper in part seeks to identify the joint
distribution of male and female looks, conditional on the values of male and female schooling, across
matching markets (say cities), up to location and scale normalizations as looks is unmeasured. With
the distribution of looks, the researcher can make predictions about the sorting based on looks in the
data and construct accurate counterfactual predictions about market equilibria if the distributions of
schooling and looks shift (say the returns to schooling increase because of technological change).

A related limitation of the existing literature is the focus on preferences that are identical up
to observed agent characteristics. In Echenique, Lee and Shum (2010), the authors study aggregate
matchings, where all agents with the same observed type (say men with college degrees) are assumed
to have the same preferences. Other studies allow preferences to vary with only i.i.d. errors at the
match level, reflecting some idiosyncratic attraction between two people but not always idiosyncratic
preferences over characteristics such as schooling. No previous paper allows agents to have flexible,
unobservably heterogeneous preferences over the observed characteristics of partners. For example,
one man with a college degree may value the schooling of his future spouse while an observably
identical man may value his spouse’s religion more. Indeed, Hitsch, Hortaçsu and Ariely (2010) use
special data from online dating on acceptable and rejected profiles on potential dates to document
the extremely heterogeneous preferences of men for women and women for men. This paper allows
for this empirically relevant heterogeneity in partner preferences but uses data on only who matches
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with whom, not data from an online site on rejected profiles.
This paper is motivated primarily by applications in industrial organization, such as the matching

of upstream firms to downstream firms. Downstream firms typically pay upstream firms money and
it is reasonable to model these transfers as arising in a matching equilibrium, so transferable utility is
the reasonable benchmark model. For this reason, we work with transferable utility matching games
(Koopmans and Beckmann, 1957; Becker, 1973; Shapley and Shubik, 1972; Ostrovsky, 2008; Hatfield
et al., 2011). Much but not all of the literature on marriage also uses transferable utility (Becker,
1973). This paper will not work with data on transfers even though the matching game uses transfers
as part of the equilibrium. The reason is data availability: in the marriage study of Choo and Siow
(2006), the venture capitalist study of Sørensen (2007) (which did not use transferable utility), and
the car parts supplier study of Fox (2010a), the data do not contain the equilibrium transfers between
matched parties. For example, in Fox, the monies paid by automobile assemblers to car parts suppliers
are private contractual details, even if the suppliers of car parts can be publicly seen by opening the
hood of one’s car.

The ability to identify a distribution of unobserved agent characteristics is mathematically related
to identifying a random effect, random coefficient or mixture distribution (all synonyms here) in other
types of economic models. Here, the restrictions from the equilibrium concept in a matching game
(pairwise stability) will be used, with the goal being to learn about a distribution unobserved of agent
characteristics.

As the key object of empirical interest is a distribution of unobservables, this paper uses as a
building block techniques for showing the identification of such distributions of heterogeneity in sim-
pler, single-agent choice models. In particular, our identification proofs work by verifying a sufficient
(but not necessary) condition for identification known as separability, which is introduced in Fox and
Gandhi (2010). Separability is a property of the economic model and the variation in the indepen-
dent variables and dependent variables, in matching variation in the observed agent characteristics
and the observed matches. In Fox and Gandhi, the main technical assumption motivating the result
that separability of an economic model is sufficient for the identification of the distribution of un-
observables is that the true distribution must take on at most a finite number of support points on
a potentially infinite-dimensional master space of unobservables. The analysis does not assume that
the number of support points or their locations are known to the researcher; these objects are learned
in identification. Thus, the distribution to be identified lies in an infinite-dimensional space. The
results in Fox and Gandhi and in many related papers on identification of qualitative outcome models
rely on regressors with large support to ensure that observables will make all unobservable types take
all actions. This is not identification at infinity, merely a realization that large values of observables
are necessary to get agents with large values of unobservables to shift actions. We use at least one
regressor with large support in all of our results for the same reason: a match is a qualitative outcome
and large regressor values may be necessary for matches with otherwise low output to occur.
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Unlike much of the literature on random effects, we explore the identification of conditional distri-
butions, where the distribution of unobservable characteristics and preferences varies with the realized
values of observable characteristics. Thus, we identify a distribution of, say, looks conditional on
schooling, which is more analogous to a fixed effects problem. We exploit recent results on discrete
mixtures to allow the frequencies of unobservables to depend on observables. Therefore, our iden-
tification approach does not suffer from omitted variable bias if observables and unobservables are
correlated.

The only other paper to formally explore identification in matching games is Fox (2010b), who
investigates the nonparametric identification of features of production functions, which take as argu-
ments the observed characteristics of agents. It is unclear what economic primitives one can learn
about with data on who matches with whom, because the researcher has data on only equilibrium
matches and not on the choice sets of all agents in equilibrium. As the researcher does not have data
on choice sets, standard Nash identification arguments based on the individual rationality premise
that each agent maximizes profits subject to actions sets are not applicable. In Fox, the focus is
not on primitively modeling error distributions. He models the error terms using a maximum score
framework, which, as in single agent maximum score, does not seek to identify the distribution of
unobservables (Manski, 1975). Thus, this paper’s focus on unobservable heterogeneity complements
Fox’s identification results on observable heterogeneity.

In some sense, this paper is ahead of its literature because no papers have parametrically estimated
distributions of agent-level unobservables. Despite its nonparametric approach, this paper seeks to
blaze new ground and discuss a new topic for economic investigation, rather than to simply loosen
parametric restrictions in an existing empirical literature.

We first specify the data generating process and review how verifying separability of matching
model is a sufficient condition for establishing identification of the distribution of unobservables. Our
unobservables nest both unobserved characteristics and unobserved preferences. We then explore
identification results in a simple setting, one-to-one matching games. This is done for expositional
simplicity. We distinguish two sets of results on one-to-one matching: identification results using in
part data on agents who remain unmatched and identification results where all agents are matched.
This corresponds to different sorts of datasets. Later we extend our results to many-to-many matching.
We do not assume that the payoffs to agents on one side of the market are additively separable across
multiple matches.

2 Matching Games and Identification

We first introduce the specification of preferences in a matching game for two-sided, one-to-one match-
ing with transferable utility (Becker, 1973; Roth and Sotomayor, 1990, Chapter 8). We generalize this
to many-to-many matching in Section 4. Because of the later generalization to many-to-many match-

5



ing, we work with the example of upstream and downstream firms, instead of men and women and
marriage. We second define the equilibrium concept, pairwise stability, and then discuss the data
generating process. We also define identification and review separability as a sufficient condition for
proving identification. We finally discuss two technical concepts: analytic functions as well as minimal
and maximal vectors.

2.1 Preferences for Matches

For each upstream firm u, there is a vector of observed (in the data) characteristics xupu . Likewise, for
each downstream firm d there is a vector of observed characteristics xdown

d . In addition, sometimes
we will refer to characteristics specific to a physical match 〈u, d〉, or x〈u,d〉. If u and d match as
part of a matching outcome, they form a full match

〈
u, d, t〈u,d〉

〉
, where t〈u,d〉 is the real-valued and

possibly negative transfer that d pays u in the outcome. The total profit of upstream firm m for this
full match

〈
m,w, t〈m,w〉

〉
is, for one case we will study,

vup〈u,d〉
(
xupu , x

down
d , x〈u,d〉

)
+ γupz〈u,d〉 + t〈u,d〉, (1)

where vup〈u,d〉 is a random (heterogeneous) function specific to upstream firm u and its physical match
〈u, d〉 giving the part of u’s payoff from its characteristics xupu , d’s characteristics xdown

d , and the char-
acteristics specific to their match, x〈u,d〉, as well as the scalar z〈u,d〉, which has a scalar homogeneous
coefficient γup. In the literal context of an upstream firm selling components to a downstream firm,
vup〈u,d〉

(
xupu , x

down
d , x〈u,d〉

)
+ γup〈u,d〉z〈u,d〉 might represent the negative manufacturing costs and t〈u,d〉

would represent the revenue from sales. The additively separable way transfers enter total profits
makes this a transferable utility matching game. The additively separable way z〈u,d〉 enters profits is
required because of the qualitative nature of the dependent variable. It will be discussed below.

In what follows we will drop the superscripts in terms such as xupu and xdown
d , writing instead xu

and xd, where the subscripts convey the meaning of upstream firm and downstream firm. Downstream
firm d has a total profit of vdown

〈u,d〉
(
xu, xd, x〈u,d〉

)
+ γdownz〈u,d〉 − t〈u,d〉 for the full match

〈
u, d, t〈u,d〉

〉
.

We normalize the non-t payoff of being unmatched to be 0 for all upstream firms and all downstream
firms. A physical match when upstream firm u is unmatched is 〈u, 0〉 and a downstream firm being
unmatched is 〈0, d〉. An unmatched full match is 〈u, 0, 0〉 or 〈0, d, 0〉.

The rich unobserved heterogeneity this paper seeks to identify is wrapped up in the heterogeneous
functions vup〈u,d〉 . Indeed, the v

up
〈u,d〉 are random functions: they vary across upstream firms and across

matches involving the same upstream firm and different downstream firms.
In one-to-one matching, it is not possible to separably identify the payoffs of upstream firms and

downstream firms. References such as Roth and Sotomayor (1990, Chapter 8) show that the set of
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matches that occur is a function of the production from a match, or

vup〈u,d〉
(
xupu , x

down
d , x〈u,d〉

)
+ vdown
〈u,d〉

(
xu, xd, x〈u,d〉

)
+
(
γup + γdown

)
z〈u,d〉.

As the production of matches in monetary units cannot be learned without using data on the equilib-
rium transfers, which we do not use, we will need location and scale normalizations for identification.
When data on unmatched agents are used, the production of a singleton match will be normalized
to 0 (there are no z〈u,d〉’s for singleton matches). This will serve as the location normalization. For
the scale normalization, we set

(
γup + γdown

)
= 1 for the homogeneous coefficients on z〈u,d〉. We

could also set
(
γup + γdown

)
= −1 or actually even learn the sign of

(
γup + γdown

)
in identification.1

Therefore, the production of a match will be in units of z〈u,d〉.
In new notation, the production function for match 〈u, d〉 is

f〈u,d〉
(
xu, xd, x〈u,d〉

)
+ z〈u,d〉, (2)

where
f〈u,d〉

(
xu, xd, x〈u,d〉

)
= vup〈u,d〉

(
xupu , x

down
d , x〈u,d〉

)
+ vdown
〈u,d〉

(
xu, xd, x〈u,d〉

)
is the non-z production function. For one-to-one matching, we will seek to learn the joint distri-
bution of the match-specific production functions f〈u,d〉 across all matches 〈u, d〉.

The general notation f〈u,d〉 nests many important examples. One special case of (2) is

f〈u,d〉
(
xu, xd, x〈u,d〉

)
+ z〈u,d〉 = (xu · xd)′ β〈u,d〉,1 + x′〈u,d〉β〈u,d〉,2 + e〈u,d〉 + z〈u,d〉, (3)

where xu · xd includes all non-interacted terms and all forms all pairwise interactions between one
element of the upstream firm vector xu and one element of the downstream firm vector xd, β〈u,d〉,1
is a vector of random coefficients specific to the match 〈u, d〉 on these interactions, β〈u,d〉,2 is a vec-
tor of random coefficients for the characteristics x〈u,d〉 that vary at the level of the physical match
〈u, d〉, and e〈u,d〉 is an additive unobservable in the payoff of match 〈u, d〉. The heterogeneous values(
β〈u,d〉,1, β〈u,d〉,2

)
give the marginal contribution of each regressor or regressor combination to match

〈u, d〉’s utility and are the analogs to the random coefficients in discrete choice estimation, like the
random coefficient logit (Boyd and Mellman, 1980; Cardell and Dunbar, 1980). We do not assume
that e〈u,d〉 has mean 0, so e〈u,d〉 plays the role of an additive intercept specific to match 〈u, d〉.

A particular case of the special case (3) is when

(
β〈u,d〉,1, β〈u,d〉,2

)
= (βu,1, βu,2) + (βd,1, βd,2) ,

1It is trivial to see if raising z〈u;d〉 for some match increases the probability of observing assignments containing that
match.
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or the random coefficients in the production function for match 〈u, d〉 are decomposed into the random
preferences in upstream firm u’s profits and the random preferences in downstream firm d’s profits.
As we do not restrict the functions f〈u,d〉 to be independently distributed across matches, we allow
the important case where upstream firms have heterogeneous preferences for downstream firm and
match characteristics and downstream firms have heterogeneous preferences for upstream firm and
match characteristics. Turning to marriage and dating for a minute, heterogeneous preferences fit the
empirical findings Hitsch et al. (2010), where agents with the same characteristics have been found to
have quite different preferences.

Also in (3), we can decompose e〈u,d〉 = eu ·ed, where eu is an unobserved characteristic of upstream
firm u such as its product quality and ed is such an unobserved characteristic for downstream firm d.
Thus, a special case of our analysis is the unobserved characteristics such as firm quality missing in
Fox (2010a) and Sørensen (2007).

Finally, the special case of (3), itself a special case, that is the most obvious extension of the
past literature along the lines of the discussion about adding unobserved agent characteristics but not
unobserved preferences in the introduction is

f〈u,d〉
(
xu, xd, x〈u,d〉

)
+ z〈u,d〉 = (xu · xd)′ β1 + x′〈u,d〉β2 + eu · ed + z〈u,d〉, (4)

where now the marginal values (β1, β2) of the observed characteristics are homogeneous, and where,
as before, eu is an unobserved upstream firm characteristic and ed is an unobserved downstream firm
characteristic.

2.2 Equilibrium: Pairwise Stability

An outcome O to this type of transferable utility matching game is a set of full matches
〈
u, d, t〈u,d〉

〉
such that each firm is matched at most once. The most common equilibrium concept in a matching
game is pairwise stability (Roth and Sotomayor, 1990, Chapter 8). Loosely speaking, a pairwise
stable outcome is one where no pair of firms that are not matched to each other at O prefers to deviate
and become matched to each other, no individual firm that is matched wants to become unmatched,
and no two unmatched firms want to become matched. Because of the equilibrium transfers, pairwise
stability can also be expressed in terms of price taking behavior. In part, an upstream firm u not
matched to downstream firm d will not want to match with d and receive the transfer that equalizes
d’s total profit from u and the profit d gets from d’s full match in O. The set of physical matches
corresponding to an outcome O will be called an assignment A (O) or just A. The assignment
portion of a pairwise stable outcome will be called, informally, a pairwise stable assignment. An
assignment must be feasible: each firm must be matched at most once. For an assignment A, we
denote the downstream firm matched to upstream firm u as the value of the mapping A(u).

Any outcome to a one-to-one matching game that is pairwise stable is also fully stable (Roth
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and Sotomayor, 1990, Chapter 8). A fully stable outcome is robust to deviation by any coalition of
agents. One such coalition is the coalition of all agents, so a pairwise stable assignment A (O) must
maximize the total production in the economy∑

〈u,d〉∈A(O)

{
f〈u,d〉

(
xu, xd, x〈u,d〉

)
+ z〈u,d〉

}
. (5)

While transfers enter an outcome O, they do not enter the production of matches. Therefore, in one-
to-one matching one can compute a pairwise stable assignment by maximizing (5) over all assignments
A. In other words, we can solve a social planner’s multinomial choice problem over assignments. In
principle there can be multiple assignments A that maximize (5). The observed regressors xu, xd,
x〈u,d〉 and z〈u,d〉 will be assumed to have continuous and product supports. Discrete regressors are
mentioned below. If the observed regressors enter nontrivially into production, ties will occur with
probability 0 and there will be a unique pairwise stable assignment with probability 1.

2.3 Data Generating Process and Identification

Proving identification shows that one can learn about the objects of interest. Here we will use variation
in observed agent characteristics across markets. Indeed, we will observe data on a continuum of
matching markets. Consider a matching market. Let U be the set of upstream firms as well as the
number of such firms. Likewise, let D be the number and set of downstream firms. Let X be the
non-z set of observed characteristics of agents and matches

X =
(

(xu)u∈U , (xd)d∈D ,
(
x〈u,d〉

)
u∈U,d∈D ,U ,D

)
and let Z =

(
Z〈u,d〉

)
u∈U,d∈D. We have included U and D in X to conserve notation. Let θ comprise

all unobservables in a market,
θ =

((
f〈u,d〉

)
u∈U,d∈D

)
. (6)

The so-called market-level type θ is a realization of U ·D functions f〈u,d〉 of three vectors, xm, xw and
x〈m,w〉. If instead the specification is (3), the definition of θ is

θ =
((
β〈u,d〉,1, β〈u,d〉,2, e〈u,d〉

)
u∈U,d∈D

)
. (7)

Now θ is comprised of 2 ·U ·D vectors of real numbers such as β〈u,d〉,1 and U ·D scalars e〈u,d〉. This type
θ lies in real space and the more general (6) lies in a function space. We will consider other examples
of market-level types, corresponding to the types of objects that can be identified with different types
of matching data.

The researcher is assumed to have data on (A,X,Z) from an independent and identically dis-

9



tributed set of markets. In other words, in each matching market we observe who matches with
whom A and the characteristics X and Z of the agents and the realized and potential matches. The
probability of assignment A occurring given the observables X and Z is

Pr (A | X,Z; G) =

ˆ
θ

1 [A pairwise stable assignment | X,Z, θ] dG (θ | X,Z) , (8)

where 1 [Apairwise stable assignment | X,Z, θ] is equal to 1 when A is a pairwise stable assignment
for the market (X,Z, θ) and G (θ | X,Z) is the distribution of market-level unobservables θ condi-
tional on market-level observables (X,Z). We do not impose the assumption that (X,Z) and θ are
independently distributed. We allow the distribution of a firm’s unobservables to be a function of its
observable characteristics.

The goal of this paper is to learn the distribution G (θ | X,Z). Knowledge of G tells us the
conditional distribution of unobserved agent characteristics and unobserved agent preferences in a
matching game. Some of these agent characteristics and characteristics may not be additively sep-
arable terms; indeed they may be functions. The conditional probability Pr (A | X,Z) is identi-
fied from data on (A,X,Z), so we can informally see whether the model’s predictions for a given
G match these data. The distribution G is said to be identified whenever, for two G1 6= G2,
Pr
(
A | X,Z; G1

)
6= Pr

(
A | X,Z; G2

)
for some tuple (A,X,Z). In other words, G1 and G2 give a

different implication for the conditional probability of at least one assignment A given the observable
agent and match characteristics in X and Z. By continuity of the model and the to-be-assumed
continuity of G (θ | X,Z) in (X,Z), the existence of one such pair (A,X,Z) implies that a continuum
of (X,Z), a set with positive measure, satisfies Pr

(
A | X,Z; G1

)
6= Pr

(
A | X,Z; G2

)
.

2.4 The Sufficient Condition of Separability

Verifying directly that (8) has a unique G (θ | X,Z) that rationalizes it is difficult for other, simpler
examples, such as the single-agent multinomial choice model. Fox and Gandhi (2010) address this
concern for examples like the multinomial choice model by developing a sufficient condition for proving
thatG is identified in economic choice models. Fox and Gandhi do not consider games but the sufficient
condition extends to matching games. The sufficient condition is called separability. The definition
in matching notation follows.

Definition 2.1. A two-sided, one-to-one matching game satisfies separability if, for any set T of
a finite number of market-level unobservable types θ, we can find an assignment A and observable
characteristics (X,Z) such that only one market unobservable θ in T makes A a pairwise stable
assignment at (X,Z).

Note also that the set T in the definition of separability is an arbitrary finite set (of vectors of
functions) and is not the support of the true G (θ | X,Z). This paper will investigate the identifica-
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tion of the distribution G (θ | X,Z) of unobserved characteristics by verifying separability for several
versions of matching games. To verify separability, one starts with an arbitrary, finite set T of market-
level unobservables θ’s and then searches for one particular tuple (A,X,Z) where we can isolate one
particular θ ∈ T and show it alone will make A a pairwise stable assignment with observables (X,Z).
Note that this verification of separability is non-trivial in matching games, as the proofs will show.
Still, the tool of separability puts the focus on aspects of identification that are specific to matching
games rather than on general issues about solving integral equations (8).

Separability leads to identification when the distribution G (θ | X,Z) of θ has finite support inde-
pendent of (X,Z). In full generality, each market-level type θ lies in an infinite-dimensional functional
space Θ. The assumption of finite support means that at most a finite number of vectors of functions
takes on positive support for each possible G.

Assumption 2.2.

1. The distribution G lies in a class G of distributions on the finite or infinite-dimensional space
Θ, where each element of G has at most a finite number of support points.

2. Further, each weight pn (X,Z) on type n in the distribution G is an analytic function of (X,Z).

Analytic functions are discussed below. With this assumption, the G corresponding to (6) can be
written as

G =
(
N, (θn)n∈N , (pn (X,Z))n∈N

)
=

(
N,
((
f〈u,d〉,n

)
u∈U,d∈D

)
n∈N

, (pn (X,Z))n∈N

)
, (9)

where N is the number of support points, θn is the nth support point in function space, and again
pn (X,Z) is the weight on type θn. Weights depend on X and Z because we do not assume indepen-
dence of X and Z from θ. If U and D are fixed across markets, we identify U ·D ·N non-z production
functions f〈u,d〉 and N weighting functions pn (X,Z), where N is also learned in identification. In
other notation, we learn the number of support points N , their locations θn and the weights pn in
identification. G is an infinite-dimensional class of distribution functions in part because each G takes
on support on a function space Θ and the weights pn (X,Z) are also functions of (X,Z).

Proposition 2.3. Let Assumption 2.2 hold. Then the distribution of unobserved heterogeneity G is
identified within the class G if the model is separable.

The theorem, without conditioning G on (X,Z), is also found in Fox and Gandhi. A proof is
included in the Appendix.

Under (9), the data generating process (8) becomes

Pr (A | X,Z; G) =

N∑
n=1

1 [Apairwise stable assignment | X,Z, θn] pn (X,Z) . (10)
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Even if we assumed θ is distributed independently of (X,Z), we cannot simply run a linear regression to
estimate the now constant pn’s as the number N of support points (market-level vectors of functions)
and their locations θn also need to be learned.

2.5 Support Conditions and Analytic Functions

Throughout the paper, the definition of X and Z may change as the available matching data change.
Regardless of the exact definitions, we will always maintain the following support condition.

Assumption 2.4. The support of Z is the product space R × . . . × R and the support of X is an
arbitrarily small open set in R× . . .× R.

We need large support on the elements of Z in order to induce agents to undertake certain matches
or assignments. This is similar to the need for large support in models of multinomial choice, where
large support in one regressor per choice (say charging a high price for a product) is needed to induce
agents with a high value for that product to purchase another product instead, so we can identify
their preference (Ichimura and Thompson, 1998; Berry and Haile, 2010b; Fox and Gandhi, 2010).

We do not need large support on X because we will restrict the production functions to be analytic
functions.

Assumption 2.5. All heterogeneous functions in each θ, such as the non-z production functions, are
analytic functions.

More properly, they are multivariate real analytic functions.2 Two analytic functions take on
different values on an arbitrarily small open set, which is why we do not need large support on the
elements of X that enter each f〈u,d〉 in θ. More generally, there exists a point X in any open set where
any finite number of analytic functions will all take on different values (Fox and Gandhi, 2010). This
property is also used for P (Z,X). Instead of explicitly assuming the functions are analytic, one could
instead assume that “for any finite set T of market level observables θ and for θ1, θ2 ∈ T , there exists a
point X in any open set where f1〈u,d〉

(
xu, xd, x〈u,d〉

)
6= f2〈u,d〉

(
xu, xd, x〈u,d〉

)
for one match production

function 〈u, d〉, and f1〈u,d〉 is the production function for realization θ1, as is f2〈u,d〉 for θ2.” Analytic
functions would be a sufficient condition for this “no-ties” property.

Distributions of analytic functions, as in (2), provide important generalities over distributions of
finite-dimensional vectors, as in (3). Over a space of functions, a researcher does not have to take a
stand on functional form, like whether a regressor enters linearly as in x, as an interaction as in x1x2,
as a power such as x2, as a real power x2.23, as a logarithm log (x), or in more unusual ways such
as sin

(
log
(
22x1 + x2.332

))
. Restricting attention to one of either discrete distributions over functions

or, if the results were extended, continuous distributions over a vector of finite-dimensional, real
2An analytic function is always locally equal to a power series.
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parameters may be important as Ackerberg, Hahn and Ridder (2010) present a related production
function example where continuous distributions of functions are not identified but where Fox and
Gandhi (2010) would be able to show countable distributions of functions are identified.

We do not identify heterogeneous functions of discrete covariates, as in the literature on multi-
nomial choice, which cannot in fully generality identify distributions of heterogeneous coefficients or
heterogeneous functions on discrete covariates. We can condition all arguments on discrete covariates,
so that we can identify a distribution G (θ | X,Z,D), where D is the vector of observable discrete
characteristics for all agents and matches and the entire set of vectors of functions θ that take on
positive support can shift with D. We suppress discrete characteristics for convenience in what fol-
lows. Unlike the work of Berry and Haile (2010b,a) on identification in multinomial choice models, we
identify distributions over functions of continuous characteristics, not just utility values conditional
on continuous characteristics.

2.6 Minimal and Maximal Vectors

In our proofs of separability and hence identification of G (θ | X,Z) for various specifications, we
often work with what we call a minimal or maximal vector. Given a finite set B of vectors b, a
minimal vector b1 ∈ B is one such that every b ∈ B\ {b1} has at least one element greater than the
corresponding element of b1. In other words, b1 ≯ b for all b ∈ B\ {b1} by the usual partial product
order on vectors. Given the set B, there may be multiple minimal vectors, but there always exists
one by finiteness. Likewise, a maximal vector b1 is such that b1 ≮ b for all b ∈ B\ {b1} by the usual
product order on vectors.

3 Identifying Heterogeneity for One-to-One Matching

This section examines the identification of distributions of heterogeneity in the relatively simple one-
to-one matching games outlined in Section 2. Identification intuitively occurs by observing differ-
ent markets with different characteristics (X,Z) and seeing how matching assignment probabilities
Pr (A | X,Z) vary. In other words, the sorting pattern variability across markets as a function of
observable characteristics tells us about the importance of unobservables.

The arguments work by verifying separability. Thus we find some (X,Z) at which one vector of
market unobservable functions or random coefficients θ will give a different assignment A than any
other of a finite set of alternative θ’s. Intuitively, verifying separability is about showing that matching
markets with different values of the unobservables have different assignments, meaning different sorting
patterns.

We will consider four cases with positive identification results. First, each case is distinguished by
whether the elements of Z are the match-specific z〈u,d〉 or whether we instead work with firm-specific
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characteristics zu and zd that enter into production multiplicatively, meaning zu ·zd. Second, each case
is distinguished by whether the analysis allows firms to be unmatched and uses data on unmatched
firms. In marriage, having data on single people is common, but not all empirical work on business
to business matching has data on potential entrants, a name for firms unmatched in a pairwise stable
outcome. The four cases we study identification for are combinations of the two dimensions of 1)
match-specific or firm-specific elements of Z and 2) whether agents can be unmatched or all agents
are required to be matched.

3.1 Identification Using Data on Unmatched Agents

We start with an upstream-downstream market where the researcher observes various geographically
(or temporally, or industrially) separated matching markets. In this section, in each matching market
the researcher observes both the identities of the firms that are unmatched (say potential entrants)
and the match partners of firms that are matched.

Let the production to a match be given by (2) and so θ is given by (6). This is the case where each
match has a covariate z〈u,d〉. Recall that this case allows for the most heterogeneity and nests unob-
served agent preferences and unobserved agent characteristics. The proof is simple and identification
relies heavily on the decision to be unmatched instead of matched.

Theorem 3.1. The distribution G (θ | X,Z) is identified in the one-to-one matching game with un-
matched agents and match-specific unobservable production functions.

Proof. We prove separability. We are given an arbitrary T , which is comprised of a finite number of
market-level unobservables θ’s. For any θ and X, let w (θ,X) be

w (θ,X) =
(
f〈1,1〉

(
xup1 , xdown

1 , x〈1,1〉
)
, . . . , f〈U,D〉

(
xU , xD, x〈U,D〉

))
,

the list of non-z production functions in θ, as functions of the elements of X. The vector w (θ,X) is
itself a vector of analytic functions and each θ1 has at least one function different in w (θ1, X) than
one function in w (θ2, X), by the notion that two types θ1 and θ2 are different. By the properties
of analytic functions, there exists some X in its support such that the values w (θ1, X) 6= w (θ2, X),
for any θ1 6= θ2. Then there exists a minimal vector w (θ1, X) at that X. For each match, set
z〈u,d〉 = −f〈u,d〉

(
xu, xd, x〈u,d〉

)
for θ1. Then for θ1, the production of each match is 0 and for any

other θ ∈ T at least one match has positive production. Under θ1 and this (X,Z), every agent will
be single. Under any other θ ∈ T, θ 6= θ1, at least one non-single match will occur. Thus, the model
is separable.
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3.2 Agent-Specific Unobservables and Unmatched Agents

Many datasets may not have a match-specific regressor z〈u,d〉 with large support. In this section,
we instead assume that regressors with large support varies at the agent level, which may be more
common in certain datasets.

Let the production to a match involving upstream firm u and downstream firm d be

gu (xu) · gd (xd) + zu · zd, (11)

where gu is a heterogeneous index function, for lack of a better label, for u and gd is such an index
function for d. The index functions for u and d combine to make a non-z production function for that
match. The idea is that u’s index function gu is an index that captures the total contribution of its
observed and unobserved characteristics to production. A special case of an index function is

gu (xm) = x′uβu + eu,

where βu is a heterogeneous vector of random coefficients governing the importance of upstream firm
u’s non-z observed characteristics in production and eu is an additive unobserved characteristic for
upstream firm u. The key idea is that the non-z observed characteristics of a u are combined into a
single index that interacts with the non-z characteristics of downstream firms. The weight βu on xu
is heterogeneous across firms.

We impose the additional scale normalization that g1 (xup1 ) ≡ 1 for all values of xup1 , for upstream
firm u = 1. The market-level unobservable is therefore

θ =
(

(gu)
U
u=2 , (gd)d∈D

)
.

Our goal is to identify a distribution G (θ | X,Z) over market-level types comprised of U − 1 + D
functions. Without the scale normalization g1 (xup1 ) ≡ 1, we could multiply all downstream firm gd’s
by a constant and divide all gu’s by the same constant, leaving the production (11) of all matches the
same. We also continue to maintain the location normalization that the value of being unmatched is
0.

Theorem 3.2. The distribution G (θ) is identified in the one-to-one matching game with unmatched
agents and agent-specific index functions.

Proof. We prove separability. We are given an arbitrary T , which is comprised of a finite number of
θ’s. Let w (θ,X) be the long vector of production from each match, other than from zu · zd, meaning

w (θ,X) = (1 · g1 (x1) , · · · , gU (xU ) · gD (xD)) .
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First we prove that if θ1 6= θ2, then w (θ1, X) 6= w (θ2, X) as functions of X. Because θ1 6= θ2, at least
one gu or gd is different between θ1 and θ2. Let gd differ between θ1 and θ2. Then the match 〈1, d〉 has
a different production function 1 · gd (xd). Now say the gd for all d ∈ D are the same between θ1 and
θ2 and at least one gu is different. Then the match 〈u, d〉 has a different non-z production function
gu (xu) · gd (xd), as again gu is different and gd is the same between θ1 and θ2.

As w (θ1, X) 6= w (θ2, X) as functions of X and as the product of analytic functions are analytic,
there exists an X in its support such that w (θ1, X) 6= w (θ2, X) for all θ1, θ2 ∈ T at that X. Then
there exists a minimal vector w (θ1, X). Let zu = −gu (xu) and zd = gd (xd) for all u and d and the
g’s being elements of θ1. Then at θ1 and this X, the production from all individual matches is 0. So
all agents will be unmatched at this θ1. All other θ ∈ T will have some matches with strictly positive
production, so that the agents in one or more of those matches will not be unmatched. Thus, only θ1
gives the assignment of all agents being unmatched and the model is separable.

3.3 Unmatched Agents: Non-Identification Results

Return to the specification (2), where the covariates in Z are of the match-specific z〈u,d〉 nature. The
identification results in the previous section rely heavily on the individual rationality decision to be
unmatched. As the results and their relatively simple proofs show, data on unmatched agents are a
powerful source of identification. However, data on matching markets often lack data on unmatched
agents. For example, in the automotive application of Fox (2010a) there are no data on potential
but not actual entrants to supplying car parts or assembling cars. One would like to proceed with
identification without relying on the individual rationality decision to be unmatched. In what follows,
we work with matching markets where agents are unable to be unmatched. We rely only on the sorting
pattens of matched agents to each other for identification.

To avoid unmatched agents because of market imbalance, we set the number of upstream firms
to be equal to the number of downstream firms, or U = D. One-to-one matching markets have
assignments that solve the social planner’s problem (5). Thus, to show that a model is separable and
hence G (θ | X,Z) is identified, we need to, in part, show that there exists some X where two θ’s have
a different sum of non-z production for at least one assignment.

First we argue that the distribution of the types of market-level unobserved characteristics that
we have described is not directly identifiable using matching markets without unmatched agents. For
an example where we will show non-identification, consider a simple model where production is

z〈u,d〉 + e〈u,d〉,

where e〈u,d〉 is unobservable, so that the market level unobservable is

θ =
(
e〈u,d〉

)
u∈U,d∈D .
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Dropping X from the model, an important step of the proof in Section 3.1 is to show, for the long
vector of non-z production for each match

w (θ) =
(
e〈1,1〉, . . . , e〈U,D〉

)
,

that w (θ1) 6= w (θ2) for any θ1 6= θ2. A notable feature of the examples of non-identification here is
that, in the absence of the individual rationality decision to remain single, the intermediate result that
at least one match has different production levels for θ1 and θ2 is not sufficient to show identification
of G (θ).

Example 3.3. Let the matching market involve two upstream firms and two downstream firms. The
vector of the unobservable components of production for each match is therefore

w (θ) =
(
e〈1,1〉, e〈1,2〉, e〈2,1〉, e〈2,2〉

)
.

Denote the production unobservables of two different types θ1, θ2 as e1〈u,d〉 and e
2
〈u,d〉. Now suppose

e1〈1,1〉 + e1〈2,2〉 = e2〈1,1〉 + e2〈2,2〉 = Y1

e1〈1,2〉 + e1〈2,1〉 = e2〈1,2〉 + e2〈2,1〉 = Y2

for two scalars Y1, Y2. This condition does not preclude w(θ1) 6= w(θ2). However, given any scalar
characteristics Z =

(
z〈u,d〉

)
u∈U,d∈D, the stable equilibrium assignment will be the same under θ1 and

θ2. To see this, notice that if

z〈1,1〉 + z〈2,2〉 + Y1 > z〈1,2〉 + z〈2,1〉 + Y2,

the pairwise stable assignment is {〈1, 1〉, 〈2, 2〉} for both θ1 and θ2. When the inequality is reversed,
the outcome is {〈1, 2〉, 〈2, 1〉} for both θ1 and θ2. Therefore there does not exist a set of z〈m,w〉 that
can distinguish θ1 from θ2.

Suppose θ1 and θ2 satisfy the relationship above, and two distributionsGa (θ | X,Z) andGb (θ | X,Z)

take on different positive probabilities on θ1 and θ2, and are 0 everywhere else. Then the resulting
conditional probabilities Pr (A | X,Z; G) are the same for all (A,X,Z), for both Ga and Gb. Hence,
the model that includes Ga and Gb in the distribution space G and types θ1, θ2 in the space of market-
level unobservables Θ is not identified. Also, if the model is not identifiable it cannot be shown to be
separable.

We can generalize the results above to the wider class of one-to-one matching markets involving
U upstream firms and D = U downstream firms. Because all agents are matched, the production for
a matched pair is not restricted to be nonnegative. Instead, we normalize the unobserved component
of the production of matches involving an upstream firm and a downstream of equal index (u = d)
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to be 0: e〈u,u〉 = 0,∀u = 1, . . . ,U . This location normalization does not affect the pairwise stable
assignments given θ and Z: we can add or subtract a constant to the production of each match
involving upstream firm u and the sum of production of every assignment will change by an equal
amount, as u is matched exactly once in each assignment. Therefore, the assignment that maximizes
the total production does not change.

Example 3.4. For convenience, we write each θ as a matrix in this simple production function
structure. Again, let D = U and let rows index upstream firms and columns downstream firms:

θ1 =


0 e〈1,2〉 ... e〈1,U〉

e〈2,1〉 0 ... ε〈2,U〉
...

...
. . .

...
e〈U,1〉 e〈U,2〉 ... 0

 , θ2 =


0 e〈1,2〉 + 1 ... e〈1,U〉

e〈2,1〉 − 1 0 ... ε〈2,U〉 − 1
...

...
. . .

...
e〈U,1〉 e〈U,2〉 + 1 ... 0

 .

To form θ2 from θ1, we add 1 to all matches involving downstream firm 2 and subtract 1 from
all matches involving upstream firm 2. Clearly, w(θ1) 6= w(θ2): some matches have different non-z
production levels under θ1 and θ2. However, the two types θ1 and θ2 have the same sums of production
for all assignments. To see this, notice that any assignment involves either the match 〈2, 2〉 or two
matches of the form (〈2, d〉, 〈u, 2〉). In the first case, e〈2,2〉 = 0 in both θ1 and θ2; in the second case,
the sum of the production levels for any assignment is still the same for θ1 and θ2, as +1− 1 = 0. By
an argument similar to the previous example, we can show that the distribution over the two types is
not identifiable and therefore is not separable.

3.4 Matched Agents: Identification of the Distribution of Complementar-
ity Functions

The examples in the previous section show that it is not always possible to identify the distribution of
the most primitive unobserved heterogeneity in matching games. Remaining with the same underlying
model, here we focus on identifying the distribution of, for lack of a more precise label, complemen-
tarity functions. The complementarity function involving upstream firms u1, u2 and woman d1, d2
is defined to be

c (u1, u2, d1, d2, X) = f〈u1,d1〉
(
xu1

, xd1 , x〈u1,d1〉
)

+ f〈u2,d2〉
(
xu2

, xd2 , x〈u2,d2〉
)

−
(
f〈u1,d2〉

(
xu1 , xd2 , x〈u1,d2〉

)
+ f〈u2,d1〉

(
xu2

, xd1 , x〈u2,d1〉
))
, (12)

where a non-z production function is in (2). The arguments of a complementarity function are

(
xu1

, xd1 , xu2
, xd2 , x〈u1,d1〉, x〈u1,d2〉, x〈u2,d1〉, x〈u2,d2〉

)
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and the function varies heterogeneously across pairs of two upstream firms and two downstream firms.
Notationally, we instead write the arguments of c (u1, u2, d1, d2, X) as the agent indices and the master
list of non-z observables X in order to reduce the list of arguments. In a one-to-one matching game
and given X, the complementarity function c tells us which outcome is more desirable in a two-by-two
submarket, ignoring the characteristics Z =

(
z〈u,d〉

)
u∈U,d∈D. The complementarity function captures

the non-z production increase from matches 〈u1, d1〉 and 〈u2, d2〉 from the baseline of the matches that
arise when these two matched pairs exchange partners and the matches 〈u1, d2〉 and 〈u2, d1〉 arise.

Let a market-level type θ of complementarity functions be

θ = (c (u1, u2, d1, d2, X) , . . . , c (uU−1,mU , wU−1, wU , X)) (13)

as functions of X, where again D = U . Each market will have its own set of U2 (U − 1)
2
/4 heteroge-

neous complementarity functions. We will identify a distribution G (θ | X,Z) over complementarity
functions formed by valid non-z production functions at the match level. We use the location normal-
ization introduced in Section 3.3, where we set the non-z production of matches involving an upstream
firm and a downstream firm with the same index to be 0, or

f〈u,u〉
(
xupu , x

down
u , x〈u,u〉

)
= 0,∀u = 1, . . . ,U .

The results that we will prove indicate that complementarity functions entirely characterize the
outcome of the matching game and that the distribution G(θ | X,Z) of complementarity functions is
identified. Therefore, the object being identified is sharp in the sense that it can be used to construct
counterfactual matching probabilities, if say the elements of X change. As an intuitive check, notice
that the examples of non-identification in Section 3.3 have the same values for complementarity
functions for θ1 and θ2.

Lemma 3.5. In a one-to-one matching game that allows only matched agents, the sum of non-
z production functions in any assignment A can be expressed as a sum of non-z complementarity
functions.

Proof. Inside the proof, we suppress the arguments
(
xu, xd, x〈u,d〉

)
of the non-z part of a production

function (2). We prove the lemma by mathematical induction on U , the number of upstream firms,
which is equal to D, the number of downstream firms. When U = 2, the total non-z production in
assignment {〈1, 1〉, 〈2, 2〉} is 0 by our location normalization, and the total non-z production in the
other assignment {〈1, 2〉, 〈2, 1〉} is

f〈1,2〉 + f〈2,1〉 = −c (1, 2, 1, 2, X) .

Thus the lemma is true for U = 2. The induction hypothesis is that the lemma is true for U − 1 for
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some arbitrary U . For the case of markets with U upstream firms, there are two different types of
assignments A that can occur. Recall that, in a given assignment A, we denote the downstream firm
matched to upstream firm u as the value of the mapping A(u).

Case 1. A is such that A(U) = U , where again U is the last upstream firm (and hence downstream
firm) index. Then

U∑
u=1

f〈u,A(u)〉 =

U−1∑
u=1

f〈u,A(u)〉 + f〈U,U〉 =

U−1∑
u=1

f〈u,A(u)〉 + 0,

by the location normalization. We can define an assignment A∗ on the (U − 1)-by-(U − 1) submarket
involving the first U − 1 upstream firms and the first U − 1 downstream firms, such that A∗(u) =

A(u),∀u < U , or all upstream firms other than the last upstream firm. Then

U∑
u=1

f〈u,A(u)〉 =

U−1∑
u=1

f〈u,A(u)〉 + 0 =

U−1∑
u=1

f〈u,A∗(u)〉.

By the induction hypothesis, we know that the last sum can be written as a sum of complementarity
functions. Therefore the total non-z production given assignment A can be written as the sum of
complementarity functions.

Case 2. A is such that A(U) = d?, where d? < U as U = D is the last index. Because all agents are
matched, among upstream firms 1, . . . ,U − 1 there exists an upstream firm u? who matches with the
last downstream firm U : A(u?) = U . Therefore

U∑
u=1

f〈u,A(u)〉 =

U−1∑
u = 1,

u 6= u?

f〈u,A(u)〉 + f〈U,A(U)〉 + f〈u?,A(u?))〉

=

U−1∑
u = 1,

u 6= u?

f〈u,A(u)〉 + f〈U,d?〉 + f〈u?,U)〉. (14)

Recall c (U , u?, d?,U , X) = f〈U,d?〉 + f〈u?,U〉 −
(
f〈U,U〉 + f〈u?,d?〉

)
. Because f〈U,U〉 = 0 by the location

normalization, we have

f〈U,d?〉 + f〈u?,U〉 = c (U , u?, d?,U , X) + f〈u?,d?〉.
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Substitute this equation into (14):

U∑
u=1

f〈u,A(u)〉 = f〈1,A(1)〉 + . . .+ f〈u?,d?〉 + . . .+ f〈U−1,A(U−1)〉 + c (U , u?, d?,U , X) .

Notice that the first (U − 1) terms only involve the first (U − 1) upstream firms and the first (U − 1)

downstream firms. We can apply a similar argument to the one we used before to re-write the sum of
these terms as the sum of non-z production from an assignment on a (U − 1)-by-(U − 1) submarket.
By the induction hypothesis, this is a sum of complementarity functions. Therefore

∑U
u=1 f〈u,A(u)〉 is

a sum of complementarity functions.

Thus the induction is complete, and the lemma is true for all U .

We have shown that the sums of production for assignments can be decomposed into the sums of
complementarity functions. We next argue that two different vectors θ of complementarity functions,
or the types of market-level unobservables, give a unique sum of non-z production for at least one
assignment. For any vector θ of complementarity functions, we let f be a possibly non-unique vector
of production functions that give the complementarity functions in θ.

Lemma 3.6. Let θ1 and θ2 be two vectors of complementarity functions. θ1 and θ2 are equal if and
only if the sums of non-z production functions of every assignment are the same across θ1 and θ2.

Proof. Inside the proof, we suppress the arguments
(
xu, xd, x〈u,d〉

)
of the non-z part of a production

function (2). We prove the “if” part first. Denote the non-z complementarity functions and production
functions for θ1 as c1, f1 and for type θ2 as c2, f2. Given any upstream firms u1, u2 and downstream
firms d1, d2, we want to show that c1 (u1, u2, d1, d2, X) = c2 (u1, u2, d1, d2, X) as functions of X.
Consider assignment A1 such that A1(u1) = d1, A1(u2) = d2, and the assignment A2 such that
A2(u1) = d2, A2(u2) = d1, where A1 (u) = A2 (u) for all other upstream firms u. By the assumption
that the sum of non-z production functions for each assignment is the same for both θ1 and θ2, we
have by the hypothesis in the lemma that the sums of non-z production functions for the two types
are equal for all assignments,

∑
u6=u1,u2

f1〈u,A1(u)〉 + f1〈u1,A1(u1)〉 + f1〈u2,A1(u2)〉 =
∑

u6=u1,u2

f2〈u,A1(u)〉 + f2〈u1,A1(u1)〉 + f2〈u2,A1(u2)〉∑
u 6=u1,u2

f1〈u,A2(u)〉 + f1〈u1,A2(u1)〉 + f1〈u2,A2(u2)〉 =
∑

u6=u1,u2

f2〈u,A2(u)〉 + f2〈u1,A2(u1)〉 + f2〈u2,A2(u2)〉.

Substitute in the values for A1 and A2, and subtract the equations:

f1〈u1,d1〉 + f1〈u2,d2〉 −
(
f1〈u1,d2〉 + f1〈u2,d1〉

)
= f2〈u1,d1〉 + f2〈u2,d2〉 −

(
f2〈u1,d2〉 + f2〈u2,d1〉

)
,
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which is precisely c1 (u1, u2, d1, d2, X) = c2 (u1, u2, d1, d2, X).
The “only if” part is a direct result of Lemma 3.5. If the complementarity functions are the same,

the sums of production functions of any assignment, which can be written as a sum of complementarity
functions, must be the same across θ1 and θ2 as well.

We can use the previous lemma to show identification of the distribution of complementarity
functions, which again by Lemma 3.5 is enough to compute assignments under many counterfactuals.

Theorem 3.7. The distribution G(θ | X,Z) of the complementarity functions is identified in the
one-to-one matching model where all agents are matched and the unobservable production functions
are match-specific.

Proof. Let the the vector of complementarity functions be (13) and let the vector of sums of non-z
production of each assignment be

s(θ,X) =

( U∑
u=1

f〈u,Ak(u)〉
(
xu, xAk(u), x〈u,Ak(u)〉

))U !
k=1

,

where a one-to-one matching market with U upstream firms and D = U downstream firms has U !

assignments without any unmatched agents. Recall that the pairwise stable assignment for θ and
(X,Z) maximizes the sum of production.

We show separability. We are given a finite set T of market-level types θ. If θ1 6= θ2, then
by the contrapositive of the “if” part of Lemma 3.6 and the properties of analytic functions, there
exists an X such that s(θ1, X) 6= s(θ2, X) for all types θ1 6= θ2. Therefore, for T and X there
exists a type θ1 that corresponds to a minimal vector s(θ1, X) with non-z production levels denoted
as f . Let z〈u,d〉 = −f〈u,d〉

(
xu, xd, x〈u,d〉

)
. For type θ1, the total sum of production inclusive of z

for each assignment is 0. By the minimal vector property, all other types in T have an assignment
with total production strictly greater than 0, and this assignment is not the “diagonal” assignment
(〈1, 1〉, · · · , 〈U ,U〉), whose non−z production is always 0 by the location normalization. Now let
z〈u,d〉,∀u 6= d decrease by a sufficiently small amount so that the pairwise stable assignment of all
other types θ 6= θ1 does not change. Then the payoff of the diagonal assignment is 0, and all other
assignments has a slight negative payoff. Therefore θ is the only market-level type in T that gives
the pairwise stable assignment {〈1, 1〉, · · · , 〈U ,U〉}. The model is separable and hence G (θ | X,Z) is
identified.

3.5 Matched Agents and Agent-Specific Unobservables

An important case of empirical interest is when the functions capturing primitive heterogeneity are
agent-specific, reflecting agent preferences and unobserved characteristics. For markets with only
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matched agents, this is a special case of the previous section’s analysis. However, the previous section
assumed that each z〈u,d〉 is match-specific and lives in a product space. Many matching datasets will
not have regressors that vary so flexibly at the match level. This section considers the case where zu
and zd vary at the level of the agent and not the level of the match and we use data on only matched
agents.

Let the non-z production function be of the same form as the product of index functions gu and
gd in (11). As our model does not allow unmatched agents, we need additional normalizations. We
first normalize gup1 (x1) = 0 for u = 1 and for all X, by subtracting an equal amount from all gup

u (xu).
This location normalization does not affect the outcome: the sum of non-z production for a given
assignment A is decreased by a constant times the sum of the gd (xd), which is independent of A.
Therefore, the ordering of the total, non-z production for the different assignments does not change.
Similarly, we normalize gdown

1 = 0. For D = U , we define a market-level type to be

θ =
(

(gu)
U
u=2 , (gd)

D
d=2

)
. (15)

In other words, θ is comprised of U + D − 2, again for D = U , functions of xu or xd. We show that
the distribution of θ is identified.

Let θ be a market-level type. We let w(θ,X) be the matrix of non-z production levels

w(θ,X) =


0 0 ... 0

0 f〈2,2〉 (x2, x2) ... f〈2,U〉 (x2, xU )
...

...
. . .

...
0 f〈U,2〉 (xU , x2) ... f〈U,U〉 (xU , xU )

 ,

where we define
f〈u,d〉 (xu, xd) = gu (xu) · gd (xd) .

We first show that if the sums of production for all assignments are the same across θ1 and θ2, then
the non-z production of all matches gu (xu) · gd (xd) must be the same for θ1 and θ2.

Lemma 3.8. Let θ1 and θ2 be two market-level types (15). If the sums of non-z production for all
assignments are the same for θ1 and θ2, then w(θ1, X) = w(θ2, X) as functions of X.

Proof. Again, in terms of the notation we suppress the arguments to a production function. Let f1

index the non-z production functions for type θ1 and let f2 index the non-z production functions for
type θ2. We start on the diagonal elements: for assignment (〈1, 1〉, 〈2, 2〉, · · · , 〈U ,U〉), we have

U∑
u=2

f1〈u,u〉 =

U∑
u=2

f2〈u,u〉, (16)
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as the missing first term in each sum is 0 as gup1 (x1) is normalized to be 0 for all X. For assignment
(〈1, k〉, 〈2, 2〉 · · · , 〈k, 1〉, · · · , 〈U ,U〉), we have

U∑
u = 2

u 6= k

f1〈u,u〉 =

U∑
u = 2

u 6= k

f2〈u.u〉, (17)

again as the matches 〈1, k〉 and 〈k, 1〉 have zero non-z production by the location normalization that
g1 (x1) = 0 for upstream firms and g1 (x1) = 0 for downstream firms. Subtract equation (17) from
equation (16), which gives us f1〈k,k〉 = f2〈k,k〉. The previous argument can be repeated for all k, giving
f1〈k,k〉 = f2〈k,k〉 ∀ k = 1, . . . ,U .

Next we induct on the size of the K × K upper left submatrix of w(θ,X). For the upper left
two-by-two matrix, the only nonzero term is f〈1,1〉, which we just showed was identical between θ1

and θ2. Now assume the (U − 1)-by-(U − 1) upper left submatrix of w(θ,X) is the same between θ1
and θ2. We know the element f〈U,U〉 is the same. For arbitrary elements f〈U,d〉of the last row and
f〈u,U〉 of the last column, we want to show that those elements are identical between θ1 and θ2. If we
can show this for the an element of the last row, a symmetric argument will hold for an element of
the last column. Focusing on f〈U,d〉, consider the assignment

(〈U − 1, 1〉, 〈U − 2, 2〉, · · · , 〈U − d+ 1, d− 1〉, 〈U , d〉, 〈U − d, d+ 1〉, · · · , 〈d,U〉) ,

which has the sum of non-z production

0 + f〈U−2,2〉 + · · ·+ f〈U−d+1,d−1〉 + f〈U,d〉 + f〈U−d,d+1〉 + · · ·+ 0.

All terms in the sum except for f〈U,d〉 are equal across θ1 and θ2 by the induction hypothesis and
the location normalization. Because the sums of non-z production are equal across assignments,
f1〈U,d〉 = f2〈U,d〉,∀d. Thus the induction is complete and w(θ1, X) = w(θ2, X).

The social planner can be seen as a single agent making discrete choices between assignments. It
is easy to see that the difference between the production levels of assignments governs the pairwise
stable assignment that will occur. We now show that different θ’s give varying differences in the
production of assignments.

Lemma 3.9. Let A1 be an assignment. Then given types θ1 and θ2 such that θ1 6= θ2, there exists an
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assignment A2 such that

U∑
u=1

f1〈u,A1(u)〉
(
xu, xA1(u)

)
−
U∑
u=1

f1〈u,A2(u)〉
(
xu, xA2(u)

)
6=

U∑
u=1

f2〈u,A1(u)〉
(
xu, xA1(u)

)
−
U∑

,u=1

f2〈u,A2(u)〉
(
xu, xA2(u)

)
(18)

as functions of X.

Proof. We drop the arguments of non-z production functions inside the proof. We prove the lemma
by contradiction. Assume (18) is always an equality for all A2 and X. Then by re-arranging terms,
we have

U∑
u=1

f1〈u,A2(u〉) −
U∑
u=1

f2〈u,A2(y)〉 =
U∑
u=1

f1〈u,A1(u)〉 −
U∑
u=1

f2〈u,A1(u)〉

as functions ofX. We can defineD (X) to be equal to the value of the right side, which is not a function
of A2. Consider the assignment A2 = (〈1, 1〉, 〈2, 2〉 · · · , 〈k, k〉, · · · , 〈U ,U〉). Given the implication of
the location normalizations that f〈1,1〉 = 0, we have

U∑
u=2

f1〈u,u〉 −
U∑
u=2

f2〈u,u〉 = D (X) .

Consider the assignment A3 = (〈1, k〉, 〈2, 2〉 · · · , 〈k, 1〉, · · · , 〈U ,U〉). Under the implication of the
location normalizations that f〈1,k〉 = 0, we have

U∑
u = 2

u 6= k

f1〈u,u〉 −
U∑

u = 2

u 6= k

f2〈u,u〉 = D (X) .

Comparing the equations for A2 and A3 and then varying the argument for each k, we have that
f1〈k,k〉 = f2〈k,k〉∀k as functions of X. Therefore

∑U
u=2 f

1
〈u,u〉 =

∑U
u=2 f

2
〈u,u〉 and D (X) = 0. Therefore

the sums of non-z production for each assignment are the same across the two types for each X. By
Lemma 3.8, this implies that θ1 = θ2, and we have a contradiction.

Theorem 3.10. The distribution G(θ | X,Z) is identified in the one-to-one matching model with
agent-specific characteristics, agent-specific unobservable index functions, and without unmatched
agents.

Proof. We suppress the arguments of production functions and index functions. We prove separability.
We are given a finite set T of different market-level types θ. Fix an assignment A0 as a reference
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assignment. Consider the vector of differences of sums production between the other U !−1 assignments
(there are no unmatched agents) and A0:

d(θ,X) =

( U∑
u=1

fu,A1(u) −
U∑
u=1

fu,A0(u), · · · ,
U∑
u=1

fu,AU!−1(u) −
U∑
u=1

fu,A0(u)

)
.

By a property of analytic functions and Lemma 3.9, there exists X such that d(θ1, X) 6= d(θ2, X), if
θ1 6= θ2. Then there exists a minimal vector of type θ1. Recall f〈u,d〉 = gu · gd . Let zu = −gu and
zd = gd for type θ1. Then the total payoffs of each assignment is 0 for type θ1. For all other types,
there exists at least one assignment different from A0 and whose payoff is strictly greater than that of
A0. Therefore the equilibrium outcomes of all types in T but θ1 are different from A0. Type θ1 has
the same production between all types, and we can trivially move zu and zd to break this indifference
without affecting the outcomes of other types. Thus, there is a singleton type θ1 that has pairwise
stable assignment A0 at (X,Z) and the model is separable and hence identified.

4 Many-to-Many Matching

4.1 Notation for Many-to-Many Matching

Many-to-many matching models of business to business relationships are common in industrial or-
ganization and related fields such as marketing and strategy. Think about the example of upstream
and downstream firms, studied in Fox (2010a). In that case, one upstream firm can supply many
downstream firms and one downstream firm can be supplied by many upstream firms. A match
group centered around the upstream firm u is 〈u,Du〉, where Du = {d1, d2, · · · , dk} is the partner
list of k downstream firms matched with upstream firms u. A set of full matches centered around the
upstream firm u is

{〈
u, d, t〈u,d〉

〉}
d∈Du

, where, as before, t〈u,d〉 is the transfer between u and d. The
transfer is not in the data.

Agents such as u and d in a many-to-many matching game have integer quotas qu and qd, which
can be infinity in some applications. Upstream firm u can only have as many physical matches as qu,
although in a particular assignment u may have less than qu matches. We will assume that quotas are
in the data. Fox (2010b) uses a different identification strategy that allows quotas to not be known.
Let Q collect the quotas for all firms in a market. Q can be a non-trivial random variable or it can
be the same across markets. To avoid repeating the definition of identification, we simply add Q to
the vector of non-z observables X. Concepts such as outcomes, assignments and pairwise stability
generalize straightforwardly to the case of many-to-many matching. The existence and uniqueness
of a pairwise stability assignment is dependent on further assumptions, as not all specifications of
production in a many-to-many matching game make pairwise stability equal to full stability and
hence give existence and uniqueness with probability 1.
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For upstream firms, we generalize the definition of profit in (1) to

vup〈u,Du〉

(
xupu ,

(
xdown
d

)
d∈Du

,
(
x〈u,d〉

)
d∈Du

, x〈u,Du〉

)
+ γupz〈u,Du〉 +

∑
d∈Du

t〈u,d〉,

where the vector x〈u,Du〉 and scalar z〈u,Du〉 are observable characteristics that vary flexibly at the
level of the match group 〈u,Du〉. We also consider the case of using firm characteristics zu and zd in
place of z〈u,d〉 below. We allow the non-z profit of an upstream to not be additively separable across
multiple matches, or that

vup〈u,Du〉

(
xupu ,

(
xdown
d

)
d∈Du

,
(
x〈u,d〉

)
d∈Du

, x〈u,Du〉

)
6=
∑
d∈Du

vup〈u,{d}〉
(
xupu , x

down
d , x〈u,d〉

)
,

although we can allow for additive separability across multiple matches as a special case. In order to
define a production function, we must assume that downstream firm profits are additively separable
across multiple upstream firms, or that the total profit of downstream firm d satisfies

vdown
〈Ud,d〉

(
(xupu )u∈Ud

, xdown
d ,

(
x〈u,d〉

)
u∈Ud

)
+
∑
d∈Du

t〈u,d〉 =
∑
u∈Ud

vdown
〈{u},d〉

(
xupu , x

down
d , x〈u,d〉

)
−
∑
d∈Du

t〈u,d〉.

Because of this additivity, the term z〈u,Du〉 specific to the match group 〈u,Du〉 can only enter upstream
firm u’s profits. With the restriction to additive separability across multiple matches for downstream
firms only, total production from the match group 〈u,Du〉 becomes

vup〈u,Du〉

(
xupu ,

(
xdown
d

)
d∈Du

,
(
x〈u,d〉

)
d∈Du

, x〈u,Du〉

)
+
∑
u∈Ud

vdown
〈{u},d〉

(
xupu , x

down
d , x〈u,d〉

)
+ γupz〈u,Du〉.

There are no covariates of the form x〈u,Du〉. As before, we normalize γup = 1 in order to impose
monotonicity, as in the literature on multinomial choice (Ichimura and Thompson, 1998; Berry and
Haile, 2010b; Fox and Gandhi, 2010). We also define the production function for a given match group
〈u,Du〉 to satisfy

f〈u,Du〉

(
xupu ,

(
xdown
d

)
d∈Du

,
(
x〈u,d〉

)
d∈Du

, x〈u,Du〉

)
+ z〈u,Du〉 =

vup〈u,Du〉

(
xupu ,

(
xdown
d

)
d∈Du

,
(
x〈u,d〉

)
d∈Du

, x〈u,Du〉

)
+
∑
u∈Ud

vdown
〈{u},d〉

(
xupu , x

down
d , x〈u,d〉

)
+ z〈u,Du〉. (19)

We will seek to identify the distribution G (θ | X,Z) of market-level unobservables

θ =
(
f〈u,Du〉

)
u∈U,Du⊆D,|Du|≤qu

, (20)

where quotas again are in X. As we have done with U and D, we will overload notation and let Du
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also be the number |Du| of downstream firms in the set Du.
We could not define a production function without restricting the production of downstream firms

to be additively separable across multiple upstream firm partners. In the future, we will explore
relaxing this and separately identifying aspects of vup〈u,Du〉 and v

down
〈Ud,d〉, which is done parametrically in

Fox (2010a).

4.2 Identification Under a Full Stability Condition

Full stability is a strong equilibrium concept. Hatfield, Kominers, Nichifor, Ostrovsky and Westkamp
(2011) study a relatively general class of matching games that nests many-to-many matching. They in
part prove that any pairwise stable equilibrium will be fully stable whenever the profits of upstream
firms and downstream firms satisfy conditions known as full substitutes. See their paper as well
as Fujishige and Yang (2003) for discussion of this restrictive condition. Under full substitutes, the
properties of existence of a pairwise stable outcome, uniqueness with probability 1 of the pairwise
stable assignment and the ability to compute the assignment using a social planner’s problem arise.

For the purposes of identification, a fully stable assignment is robust to deviations by coalitions of
many firms, so the model imposes many restrictions on the data that help us identify distributions of
functions f〈u,Du〉 that take on the arguments of many firms. We will briefly discuss models that are
pairwise stable but not fully stable below.

The results using full stability for many-to-many matching are extensions of the discussion for
one-to-one matching.

4.3 Unmatched Firms, Match Group Characteristics in Z

Let production be of the form (19) and so the market-level unobservable θ is of the form (20)

Theorem 4.1. (Analog of Theorem 3.1) Consider a many-to-many matching game with un-
matched firms and where z〈u,Du〉 varies at the match group level. The distribution G (θ | X,Z) is
identified if the outcome is fully stable.

We omit the proof as it follows naturally from the proof of Theorem 3.1, which just sets the total
production of all match groups to 0 for one type corresponding to a minimal vector.

4.4 Unmatched Firms, Firm Characteristics in X,Z

The previous result identifies a lot, but at the expenses of flexible variation in the data: z〈u,Du〉 varies
at the match group level. Many datasets will not have this flexible variation, although Fox (2010a)
does. This section considers characteristics zu and zd as well as xu and xd only. Let the production
to a match involving upstream firm u and a set of downstream firms Du = {d1, . . . , dk} be

28



gu(xu)
∏
d∈Du

gd (xd) + zu
∏
d∈Du

zd, (21)

where gu(xu) is a heterogeneous index function for the upstream firm u, and gd is such an index
function for downstream firm d. The consequence of using less flexible variation in z is that the
functional form is much more restrictive. Therefore, a market-level type is

θ =
(
(gu)u∈U , (gd)d∈D

)
.

The proof of Theorem 3.2 only needs slight modification: w (θ,X), the vector of all production
functions consists of multiplications of all index functions of firms in each match, and we set zu = −gu
and zd = gd for all u ∈ U and d ∈ D after locating the minimal vector.

Theorem 4.2. (Analog of Theorem 3.2) Consider a many-to-many matching game with un-
matched firms and where observed characteristics vary at the firm level. The distribution G (θ | X,Z)

is identified if the outcome is fully stable.

4.5 All Quotas Filled, Match Group Characteristics in Z

We return to having data on characteristics specific to the match group, z〈u,Du〉. However, we work
with a matching model where all firms are required to fulfill their quotas. This somewhat extreme
model is the natural extension of the cases in one-to-one matching without unmatched agents. Oth-
erwise, the decision to leave a quota slot unfilled introduces an aspect of individual rationality, which
lets the proof techniques in Theorems 3.1 and 4.1 be used. By requiring that all firms fill their quotas,
we use only the sorting pattern for identification and so work with the hardest possible case. For it
to be physically feasible for all quotas to be filled, we require the sum of quotas of downstream firms
equal the sum of quotas of upstream firms, or

∑
d∈D qd =

∑
u∈U qu.

Following the result in Theorem 3.7, we need to extend the definition of a complementarity
function. Consider matches 〈u,Du〉 and 〈ũ, Dũ〉. Also consider d ∈ Du, d̃ ∈ Dũ, such that d 6∈ Dũ

and d̃ 6∈ Du . Let D′u = (Du\ {d})∪
{
d̃
}
and D′ũ =

(
Dũ\

{
d̃
})
∪{d}. The complementarity function

is

c (u,Du, D
′
u, ũ, Dũ, D

′
ũ) = f〈u,Du〉

(
xu, (xd)d∈Du

,
(
x〈u,d〉

)
d∈Du

, x〈u,Du〉

)
+

f〈ũ,Dũ〉

(
xũ, (xd)d∈Dũ

,
(
x〈ũ,d〉

)
d∈Dũ

, x〈ũ,Dũ〉

)
− f〈u,D′u〉

(
xu, (xd)d∈D′u ,

(
x〈u,d〉

)
d∈D′u

, x〈u,D′u〉

)
− f〈ũ,D′ũ〉

(
xũ, (xd)d∈D′ũ

,
(
x〈ũ,d〉

)
d∈D′ũ

, x〈ũ,D′ũ〉
)
.
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As in one-to-one matching, we notationally write the complementarity function as having firm indices
for arguments instead of observed characteristics, for conciseness. The complementarity function is the
difference in the sums of two production functions, when one downstream firm from a partner list Du

switches with a different downstream firm in another partner list Dũ. We normalize f (u,A0 (u)) =

0∀u for some assignment A0, where A (u) returns the partner list Du of upstream firm u under
assignment A. Therefore, a market-level unobservable θ is

θ = (c (u,Du, D
′
u, ũ, Dũ, D

′
ũ)) foru ∈ U , Du ⊆ D, d ∈ Du, ũ ∈ U , Dũ ⊆ D, d̃ ∈ Dũ,

D′u = (Du\ {d}) ∪
{
d̃
}
, D′ũ =

(
Dũ\

{
d̃
})
∪ {d}

In Lemma 3.5 for one-to-one matching, we showed that the sum of production for each assignment
is equal to a sum of complementarity functions. This result also has a many-to-many counterpart.
This means the complementarity functions are sufficient for computing counterfactuals.

Lemma 4.3. (Analog of Lemma 3.5) Total production for an assignment in many-to-many match-
ing games can be written as a sum of complementarity functions, provided that in all assignments the
quotas of all agents are known and filled.

Proof. We drop the arguments of production functions inside the proof. The intuition is that any
given assignment Ã is transformed to the normalized to A0 after a finite steps of exchanges of two
downstream firms between two match groups. Then the sum of production for Ã can be constructed
as the series of complementarity functions associated with the swaps. Focusing on two downstream
firms at a time, suppose d̃ ∈ Ã (u1), d ∈ Ã (u2), d /∈ A0 (u2), and d̃ /∈ A0 (u1). Starting from Ã and
moving to a particular new assignment A2,

C
(
u1, Ã (u1) , A2 (u1) , u2, Ã (u2) , A2 (u2)

)
=

f〈u1,Ã(u1)〉 + f〈u2,Ã(u2)〉 −
(
f〈u1,(Ã(u1)\d̃)∪{d}〉 + f〈u2,(Ã(u2)\d)∪{d̃}〉

)
=

U∑
u=1

f〈u,Ã(u)〉 −
U∑
u=1

f〈u,A2(u)〉,

where A2 is defined to the assignment such that A2 (u1) =
(
Ã (u1) \d̃

)
∪{d}, A2 (u2) =

(
Ã (u2) \d

)
∪{

d̃
}
, and A2 (u) = Ã (u) for other upstream firms. Following this pattern for other pairs of downstream

firms, we can construct A3 from A2 and so forth until all downstream firms matched to different
upstream firms in Ã and A0 are exchanged and AK = A0, the assignment whose production is
normalized to 0, for some K. The sum of production for AK = A0 differs from that of Ã by a sum of
complementarity functions. Because the sum of production for A0 is 0, the sum of production for Ã
is a sum of production functions.
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Note that the proof implicitly uses induction on the number of upstream firms, similarly to Lemma
3.5. The two proofs are similar. We can also extend our result for one-to-one matching that two
market-level types θ, based on complementarity functions, lead to assignments whose sums of produc-
tion vary across θ1 and θ2. Recall this is interesting because the differences in assignment production
govern which assignment is pairwise stable.

Lemma 4.4. (Analog of Lemma 3.6) Let θ1 and θ2 be two vectors of complementarity functions.
θ1 and θ2 are equal if and only if the sums of non-z production functions of every assignment are the
same across θ1 and θ2.

Proof. Inside the proof, we drop the arguments of production functions. First, prove the “if” part by
contradiction, so θ1 6= θ2. As θ1 6= θ2, at least one complementarity function is different, or there
exists u, ũ, . . . such that

f1〈u,Du〉 + f1〈ũ,Dũ〉 − f
1
〈u,D′u〉 − f

1
〈ũ,D′ũ〉

6= f2〈u,Du〉 + f2〈ũ,Dũ〉 − f
2
〈u,D′u〉 − f

2
〈ũ,D′ũ〉

.

Following the argument in Lemma 3.6, simply form assignments A1 and A2 that are identical except
for the exchanges of two downstream firms between u and ũ. This is a contradiction to the sums of
non-z production being the same. The “only if” part is a direct result of Lemma 4.3.

With this lemma, we can show identification.

Theorem 4.5. (Analog of Theorem 3.7) Consider a many-to-many matching game where all
quota slots are filled and where observed characteristics vary at the match group level. The distribution
G (θ | X,Z) of the complementarity functions is identified if the outcome is always fully stable.

Given the lemmas, the proof is analogous to Theorem 3.7 and is therefore omitted.

4.6 All Quotas Filled, Firm Characteristics in X,Z

Lemmas 4.3 and 4.4 do not involve the elements of Z at all and so also cover the agent-specific case
when the production to a match group is given by (21). Therefore, we can identify the distribution
of complementarity functions in the firm-specific Z case as long as we can set the production of all
matches for a given type θ to be zero, which we can under the production function in (21).

Theorem 4.6. (Analog to the case of Theorem 3.10, results differ) Consider a many-to-many
matching game where all quota slots are filled and where observed characteristics vary at the match
group level. The distribution G (θ | X,Z) of the complementarity functions is identified if the outcome
is always fully stable.
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The identification results under full stability nest Theorem 3.1, Theorem 3.2 and Theorem 3.7.
However, we are only able to identify the distribution of complementarity functions in the agent-
specific case in many-to-many matching, whereas the distribution of the agent-specific unobservable
is identified in one-to-one matching.

4.7 Using Pairwise Stability Only

In car parts application in Fox (2010a), the full substitutes condition in Hatfield et al. (2011) is
not satisfied, so pairwise stable outcomes will not be automatically fully stable. Further, there are
hundreds of upstream and downstream firms, and so imposing full stability as a primitive solution
concept requires an unrealistically large volume of communication among firms to form coalitions that
maximize total production. To approximate reality, Fox followed much of the matching literature and
worked with the implications of a weaker solution concept, pairwise stability. A deviation under the
notion of pairwise stability involves at most two firms communicating (hence the name “pairwise”).
Therefore the volume of communication is significantly reduced.

There are two new issues that arise when relying on only pairwise stability, instead of full stability.
First, without the full substitutes condition, a pairwise stable (and hence a fully stable) outcome might
not exist. In other words, for some combination of X, Z and θ, there may exist no pairwise stable
assignments. This is analogous to the non-existence of Nash equilibria when attention is restricted to
pure strategies, for noncooperative games. Second, without full stability, a pairwise stable assignments
will often not be unique. This is analogous to multiplicity of pure strategy Nash equilibria. These
issues are subjects of our ongoing research.

5 Conclusions

Matching models that have been structurally estimated to date have not allowed rich models of
unobservables. It has been an open question whether data on who matches with whom as well as
agent characteristics are enough to identify distributions of unobservables. In this paper, we explore
several sets of conditions that lead to identification.

One lesson is that having regressors that vary at the match and not the agent level helps identify
unobservables that nest both unobserved agent characteristics and unobserved agent preferences for
observed characteristics. Therefore, matching models that have restricted attention to homogeneous
preferences as functions of observable characteristics and additive, match-specific errors that are i.i.d.
across matches are not making full use of the data. One can allow for this richness when working with
matching data. Alternatively, characteristics that vary only at the firm level can help identify distri-
butions of unobserved characteristics, but not unobserved preferences, as unobserved characteristics
are nested in our index functions, while general unobserved preferences for partner characteristics are
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not.
There are important differences in the results using data on both matched and unmatched firms

and the results requiring that all firms be matched. In the former case, relatively simple proofs
show that general primitive distributions of heterogeneity are identified. Using data on only matched
firms, one can identify distributions of what we call complementarity functions. We introduce this
concept and show that complementarity functions determine the sum of production for assignments,
so complementarity functions are enough to calculate assignment probabilities under counterfactuals.

A Proof of Theorem 2.3: Separability Implies Identification

The proof is by contradiction. Say the model is separable but the distribution G (θ | X,Z) is not
identified. Then there exist G1 (θ | X,Z) and G2 (θ | X,Z) such that they both generate the same as-
signment probabilities Pr (A | X,Z). These distributions have finite supports T 1 and T 2, respectively.
Let T 3 = T 1 ∪ T 2 and extend G1 and G2 to T 3 by having say G1give 0 weight to points in T 3 − T 1.
Then based on (8)

Pr
(
A | X,Z; G1

)
− Pr

(
A | X,Z; G2

)
=

N∑
n=1

1 [Apairwise stable assignment | X,Z, θn]
(
p1n (X,Z)− p2n (X,Z)

)
= 0∀A,X,Z,

where p1n (X,Z) is the weight given to θn under G1.
Let T 4 be the types θ ∈ T 3 such that p1n (X,Z) 6= p2n (X,Z) as functions of X,Z. Then

Pr
(
A | X,Z; G1

)
− Pr

(
A | X,Z; G2

)
=∑

θn∈T 4

1 [Apairwise stable assignment | X,Z, θn]
(
p1n (X,Z)− p2n (X,Z)

)
= 0∀A,X,Z. (22)

Apply separability to the finite set of market-level unobservables T 4. Then there exists A?, X? and
Z? such that only type θn? ∈ T 4 gives assignment A? at X? and Z?. So, at these A?, X? and Z?,

Pr
(
A? | X?, Z?; G1

)
− Pr

(
A? | X?, Z?; G2

)
= p1n (X?, Z?)− p2n (X?, Z?) ,

where p1n (X,Z) and p2n (X,Z) are not equal as functions of X and Z, by the definition of T 4. Because
of Assumption 2.2.2, there exists an (X??, Z??) where only type θn? ∈ T 4 gives assignment A? and
p1n (X??, Z??) 6= p2n (X?, Z?). This is a contradiction to (22) and so the distribution G (θ | X,Z) is
identified.
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