Decentralized Matching with Aligned Preferences

Muriel Niederle Leeat Yariv

May 7, 2011

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.
Example: Suppose all prefer to be matched over unmatched, $u_{i j}^{w}=u_{i j}^{f}$.

$$
\mathrm{p}: U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7} \\
\hline
\end{array}, \quad 1-\mathrm{p}: U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array} .
$$

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.
Example: Suppose all prefer to be matched over unmatched, $u_{i j}^{w}=u_{i j}^{f}$.

$$
\mathrm{p}: U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7} \\
\hline
\end{array}, \quad 1-\mathrm{p}: U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array} .
$$

- Firm 1 and Worker 1 cannot tell U_{1} and U_{2} apart.

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.
Example: Suppose all prefer to be matched over unmatched, $u_{i j}^{w}=u_{i j}^{f}$.

$$
\mathrm{p}: U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7} \\
\hline
\end{array}, \quad 1-\mathrm{p}: U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array} .
$$

- Firm 1 and Worker 1 cannot tell U_{1} and U_{2} apart.
- Suppose all follow 'DA'

$$
\mathrm{p}: U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7} \\
\hline
\end{array}, \quad 1-\mathrm{p}: U_{2}=\begin{array}{|l|l|}
\hline \mathbf{3} & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array} .
$$

- Firm 1 makes an offer to Worker 2, then Worker 1

$$
\mathrm{p}: U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad 1-\mathrm{p}: U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array} .
$$

- Firm 1 makes an offer to Worker 2, then Worker 1
- Firm 2 makes an offer to Worker 2 in U_{1}, to Worker 1 in U_{2}

$$
\mathrm{p}: U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad 1-\mathrm{p}: U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array} .
$$

- Firm 1 makes an offer to Worker 2, then Worker 1
- Firm 2 makes an offer to Worker 2 in U_{1}, to Worker 1 in U_{2}
- Firm 1 can try to speed up the process by making an offer to Worker 1 in period 1

$$
\mathrm{p}: U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad 1-\mathrm{p}: U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array} .
$$

- Firm 1 makes an offer to Worker 2, then Worker 1
- Firm 2 makes an offer to Worker 2 in U_{1}, to Worker 1 in U_{2}
- Firm 1 can try to speed up the process by making an offer to Worker 1 in period 1
- Will Worker 1 accept?

$$
U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array}, \quad U_{3}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 4 & \mathbf{8} \\
\hline
\end{array}, \quad U_{4}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 1 & \mathbf{7} \\
\hline
\end{array}
$$

$$
U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array}, \quad U_{3}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 4 & \mathbf{8} \\
\hline
\end{array}, \quad U_{4}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 1 & \mathbf{7} \\
\hline
\end{array}
$$

- U_{3} and $U_{4} \Rightarrow F 1$ makes an offer to $W 1$ immediately when $W 1$'s match utilities are $(3,4)$ and $F 1$ is her stable match (under 'DA').

$$
U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array}, \quad U_{3}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 4 & \mathbf{8} \\
\hline
\end{array}, \quad U_{4}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 1 & \mathbf{7} \\
\hline
\end{array}
$$

- U_{3} and $U_{4} \Rightarrow F 1$ makes an offer to $W 1$ immediately when $W 1$'s match utilities are $(3,4)$ and $F 1$ is her stable match (under 'DA').
- \Rightarrow Worker 1 accepts offer from Firm 1 in $t=1$ if 'DA' is an eq.

$$
U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline
\end{array}, \quad U_{3}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 4 & \mathbf{8} \\
\hline
\end{array}, \quad U_{4}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 1 & \mathbf{7} \\
\hline
\end{array}
$$

- U_{3} and $U_{4} \Rightarrow F 1$ makes an offer to $W 1$ immediately when $W 1$'s match utilities are $(3,4)$ and $F 1$ is her stable match (under 'DA').
- \Rightarrow Worker 1 accepts offer from Firm 1 in $t=1$ if 'DA' is an eq.
- When Firm 1 observes $(3,6)$,
- Follows MDA \Rightarrow payoff: $6(1-p)+3 p \delta$
- Deviate to an immediate offer to $W 1 \Rightarrow$ payoff: $6(1-p) \delta+3 p$
- If $p>2 / 3$ the deviation is profitable.

$$
\begin{aligned}
& U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline \mathbf{3} & 2 \\
\hline 4 & \mathbf{8} \\
\hline
\end{array}, \quad U_{4}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline \mathbf{1} & \mathbf{7} \\
\hline
\end{array}, \quad U_{5}=\begin{array}{|l|l|}
\hline \mathbf{9} & 6 \\
\hline 8 & \mathbf{5} \\
\hline
\end{array}, \quad U_{6}=\begin{array}{|l|l|}
\hline 7 & \mathbf{3} \\
\hline \mathbf{8} & 5 \\
\hline
\end{array} \\
& U_{3}=\begin{array}{|l|}
\hline \mathbf{3}
\end{array}
\end{aligned}
$$

- No equilibrium (mixed or pure) generates the stable match always.

$$
\begin{aligned}
& U_{1}=\begin{array}{|l|l|}
\hline \mathbf{3} & 6 \\
\hline 4 & \mathbf{7}
\end{array}, \quad U_{2}=\begin{array}{|l|l|}
\hline 3 & \mathbf{6} \\
\hline \mathbf{4} & 5 \\
\hline \hline \mathbf{3} & 2 \\
\hline 4 & \mathbf{8} \\
\hline
\end{array}, \quad U_{4}=\begin{array}{|l|l|}
\hline \mathbf{3} & 2 \\
\hline 1 & \mathbf{7} \\
\hline
\end{array}, \quad U_{5}=\begin{array}{|l|l|}
\hline \mathbf{9} & 6 \\
\hline 8 & \mathbf{5} \\
\hline
\end{array}, \quad U_{6}=\begin{array}{|l|l|}
\hline 7 & \mathbf{3} \\
\hline \mathbf{8} & 5 \\
\hline
\end{array} \\
& U_{3}=\begin{array}{|l|}
\hline \mathbf{4}
\end{array}
\end{aligned}
$$

- No equilibrium (mixed or pure) generates the stable match always.

Main Issue: The timing of offers in and of itself is informative

Example: Assume labels of workers and firms are fully randomized:
F1: $\quad W 3 \succ \mathbf{W} 1 \succ W 2$
W1: $\mathbf{F 1} \succ F 2 \succ F 3$
F2: $\quad W 1 \succ \mathbf{W} 2 \succ W 3$
W2 : $\mathbf{F} 2 \succ F 3 \succ F 1$
F3: $\quad W 1 \succ \mathbf{W} 3 \succ W 2$
W3: $\mathbf{F} 3 \succ F 1 \succ F 2$

Example: Assume labels of workers and firms are fully randomized:

$$
\begin{array}{llll}
\text { F1: } & W 3 \succ \mathbf{W} 1 \succ W 2 & \mathbf{W 1 :}: & \text { F1 } \succ F 2 \succ F 3 \\
\text { F2 }: & W 1 \succ \mathbf{W} 2 \succ W 3, & \mathbf{W 2}: & \text { F2 } \succ F 3 \succ F 1 \\
\text { F3 : } & W 1 \succ \mathbf{W} 3 \succ W 2 & \mathbf{W 3 :} & \text { F3 } \succ F 1 \succ F 2
\end{array}
$$

- Suppose F2 gets much higher match utility for $W 1$ than from W2, W3.
- F2 can benefit from delaying offer till period 2.

Similarly, need to know that the offer made to a new worker.

On Market Design

- Offer structure: open (as here) or exploding

On Market Design

- Offer structure: open (as here) or exploding
- Crucial difference in information transmission:
- Open offers: upon an offer, accept, reject, or hold
- Exploding offers: upon an offer, accept or reject

On Market Design

- Offer structure: open (as here) or exploding
- Crucial difference in information transmission:
- Open offers: upon an offer, accept, reject, or hold
- Exploding offers: upon an offer, accept or reject
- Stable outcome may not be achievable with conditions analogous to above

Example: Suppose there are the following two preference realizations, with identities randomized.

$$
\begin{aligned}
& \mathbf{F 1 : ~ W 1 ~} \succ W 2 \succ W 3 \\
& M_{1} \text { F2: } \quad W 1 \succ \mathbf{W} \mathbf{2} \succ W 3 \\
& \text { F3: W3 } \succ W 2 \succ W 1 \\
& \text { W3 : } F 1 \succ \mathbf{F} 3 \succ F 2 \\
& \text { F1: } \quad W 1 \succ \mathbf{W} \mathbf{2} \succ W 3 \\
& M_{2} \text { F2: } \quad W 1 \succ \mathbf{W} 3 \succ W 2 \\
& \text { F3: } \quad W 3 \succ \mathbf{W} 1 \succ W 2 \\
& \text { W1: } F 3 \succ \mathbf{F} 1 \succ F 2 \\
& \text { W2 : } F 1 \succ \mathbf{F} 2 \succ F 3 \\
& \text { W3: } F 1 \succ \mathbf{F} 3 \succ F 2 \\
& \text { W1: } \mathbf{F} 3 \succ F 1 \succ F 2 \\
& \text { W2: } \mathbf{F 1} \succ F 2 \succ F 3 \\
& \text { W3: } \mathbf{F} 2 \succ F 3 \succ F 1
\end{aligned}
$$

Example: Suppose there are the following two preference realizations, with identities randomized.

	F1:	$\mathrm{W} 1 \succ \mathrm{~W} 2 \succ \mathrm{~W} 3$	W1:	$\mathrm{F} 3 \succ \mathrm{~F} 1 \succ \mathrm{~F} 2$
M_{1}	F2	$\mathrm{W} 1 \succ \mathbf{W} \mathbf{2} \succ$ W3	W2 :	$F 1 \succ \mathbf{F} 2 \succ F 3$
	F3	$\mathrm{W} 3 \succ$ W $2 \succ$ W 1	W3 :	$\mathrm{F} 1 \succ \mathrm{~F} 3 \succ \mathrm{~F} 2$
	F1:	$\mathrm{W} 1 \succ \mathbf{W} \mathbf{2} \succ$ W3	W1:	F3 $\succ \mathrm{F} 1 \succ \mathrm{~F} 2$
M_{2}	F2:	$\mathrm{W} 1 \succ \mathbf{W} \mathbf{3} \succ \mathrm{~W} 2$	W2 :	$\mathbf{F 1} \succ \mathrm{F} 2 \succ \mathrm{~F} 3$
	F3	$\mathrm{W} 3 \succ \mathbf{W} \mathbf{1} \succ$ W2	W3:	F2 $\succ \mathrm{F} 3 \succ \mathrm{~F} 1$

In M_{1} and $M_{2}, W 1$ receives offers from $F 1$ and $F 2$, and $W 3$ receives an offer from his second choice firm \Longrightarrow no information transmitted.

