Decentralized Matching with Aligned Preferences

Muriel Niederle Leeat Yariv

May 7, 2011

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.

Example: Suppose all prefer to be matched over unmatched, $u_{ij}^w = u_{ij}^f$.

p :
$$U_1 = \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix}$$
, **1-p** : $U_2 = \begin{bmatrix} 3 & 6 \\ 4 & 5 \end{bmatrix}$.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.

Example: Suppose all prefer to be matched over unmatched, $u_{ij}^w = u_{ij}^f$.

p :
$$U_1 = \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix}$$
, **1-p** : $U_2 = \begin{bmatrix} 3 & 6 \\ 4 & 5 \end{bmatrix}$.

• Firm 1 and Worker 1 cannot tell U_1 and U_2 apart.

Incentive Issues with Alignment

In general, 'DA' may not constitute an equilibrium, and no equilibrium may implement the stable match.

Example: Suppose all prefer to be matched over unmatched, $u_{ij}^w = u_{ij}^f$.

$$\mathbf{p}$$
 : $U_1 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ 4 & \mathbf{7} \end{bmatrix}$, $\mathbf{1}$ - \mathbf{p} : $U_2 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ \mathbf{4} & \mathbf{5} \end{bmatrix}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Firm 1 and Worker 1 cannot tell U_1 and U_2 apart.
- Suppose all follow 'DA'

p :
$$U_1 = \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix}$$
, **1-p** : $U_2 = \begin{bmatrix} 3 & 6 \\ 4 & 5 \end{bmatrix}$.

• Firm 1 makes an offer to Worker 2, then Worker 1

p :
$$U_1 = \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix}$$
, **1**-p : $U_2 = \begin{bmatrix} 3 & 6 \\ 4 & 5 \end{bmatrix}$.

- Firm 1 makes an offer to Worker 2, then Worker 1
- Firm 2 makes an offer to Worker 2 in U_1 , to Worker 1 in U_2

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

p :
$$U_1 = \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix}$$
, **1**-p : $U_2 = \begin{bmatrix} 3 & 6 \\ 4 & 5 \end{bmatrix}$.

- Firm 1 makes an offer to Worker 2, then Worker 1
- Firm 2 makes an offer to Worker 2 in U_1 , to Worker 1 in U_2
- Firm 1 can try to speed up the process by making an offer to Worker 1 in period 1

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

p :
$$U_1 = \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix}$$
, **1**-p : $U_2 = \begin{bmatrix} 3 & 6 \\ 4 & 5 \end{bmatrix}$.

- Firm 1 makes an offer to Worker 2, then Worker 1
- Firm 2 makes an offer to Worker 2 in U_1 , to Worker 1 in U_2
- Firm 1 can try to speed up the process by making an offer to Worker 1 in period 1

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Will Worker 1 accept?

$$U_1 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ \mathbf{4} & \mathbf{7} \end{bmatrix}, \quad U_2 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ \mathbf{4} & \mathbf{5} \end{bmatrix}, \quad U_3 = \begin{bmatrix} \mathbf{3} & 2 \\ \mathbf{4} & \mathbf{8} \end{bmatrix}, \quad U_4 = \begin{bmatrix} \mathbf{3} & 2 \\ \mathbf{1} & \mathbf{7} \end{bmatrix}$$

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$U_1 = \begin{bmatrix} \mathbf{3} & 6 \\ 4 & \mathbf{7} \end{bmatrix}, \quad U_2 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ \mathbf{4} & 5 \end{bmatrix}, \quad U_3 = \begin{bmatrix} \mathbf{3} & 2 \\ 4 & \mathbf{8} \end{bmatrix}, \quad U_4 = \begin{bmatrix} \mathbf{3} & 2 \\ 1 & \mathbf{7} \end{bmatrix}$$

 U₃ and U₄ ⇒ F1 makes an offer to W1 immediately when W1's match utilities are (3, 4) and F1 is her stable match (under 'DA').

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$U_1 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ 4 & \mathbf{7} \end{bmatrix}, \quad U_2 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ \mathbf{4} & \mathbf{5} \end{bmatrix}, \quad U_3 = \begin{bmatrix} \mathbf{3} & 2 \\ 4 & \mathbf{8} \end{bmatrix}, \quad U_4 = \begin{bmatrix} \mathbf{3} & 2 \\ 1 & \mathbf{7} \end{bmatrix}$$

- U₃ and U₄ ⇒ F1 makes an offer to W1 immediately when W1's match utilities are (3, 4) and F1 is her stable match (under 'DA').
- ⇒Worker 1 accepts offer from Firm 1 in t = 1 if 'DA' is an eq.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

$$U_1 = \begin{bmatrix} \mathbf{3} & 6 \\ 4 & \mathbf{7} \end{bmatrix}, \quad U_2 = \begin{bmatrix} \mathbf{3} & \mathbf{6} \\ \mathbf{4} & 5 \end{bmatrix}, \quad U_3 = \begin{bmatrix} \mathbf{3} & 2 \\ 4 & \mathbf{8} \end{bmatrix}, \quad U_4 = \begin{bmatrix} \mathbf{3} & 2 \\ 1 & \mathbf{7} \end{bmatrix}$$

- U₃ and U₄ ⇒ F1 makes an offer to W1 immediately when W1's match utilities are (3, 4) and F1 is her stable match (under 'DA').
- \Rightarrow Worker 1 accepts offer from Firm 1 in t = 1 if 'DA' is an eq.
- When Firm 1 observes (3, 6),
 - Follows MDA \Rightarrow payoff: $6(1-p) + 3p\delta$
 - Deviate to an immediate offer to $W1 \Rightarrow$ payoff: $6(1-p)\delta + 3p$
 - If p > 2/3 the deviation is profitable.

• No equilibrium (mixed or pure) generates the stable match always.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽へ⊙

 No equilibrium (mixed or pure) generates the stable match always.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Main Issue: The timing of offers in and of itself is informative

Example: Assume labels of workers and firms are fully randomized:

F1:
$$W3 \succ W1 \succ W2$$
 W1: **F1** \succ *F*2 \succ *F*3

$$F2: W1 \succ W2 \succ W3$$
, $W2: F2 \succ F3 \succ F1$

F3:
$$W1 \succ W3 \succ W2$$
 W3: **F3** \succ *F*1 \succ *F*2

Example: Assume labels of workers and firms are fully randomized:

F1 :	$W3 \succ W1 \succ W2$	W1 :	$F1 \succ F2 \succ F3$
F2 :	$W1 \succ \mathbf{W2} \succ W3$,	W2 :	F2 ≻ <i>F</i> 3 ≻ <i>F</i> 1
F3 :	$W1 \succ W3 \succ W2$	W3 :	F3 ≻ <i>F</i> 1 ≻ <i>F</i> 2

• Suppose F2 gets much higher match utility for W1 than from W2, W3.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

• F2 can benefit from delaying offer till period 2.

Similarly, need to know that the offer made to a new worker.

On Market Design

• Offer structure: open (as here) or exploding

On Market Design

- Offer structure: open (as here) or exploding
- Crucial difference in information transmission:
 - Open offers: upon an offer, accept, reject, or hold

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - のの⊙

• Exploding offers: upon an offer, accept or reject

On Market Design

- Offer structure: open (as here) or exploding
- Crucial difference in information transmission:
 - Open offers: upon an offer, accept, reject, or hold
 - Exploding offers: upon an offer, accept or reject
- Stable outcome may not be achievable with conditions analogous to above

Example: Suppose there are the following two preference realizations, with identities randomized.

$W1 \succ W2 \succ W3$	W1 :	$F3 \succ F1 \succ F2$
$W1 \succ \mathbf{W2} \succ W3$,	W2 :	$F1 \succ F2 \succ F3$
$W3 \succ W2 \succ W1$	W3 :	<i>F</i> 1 ≻ F 3 ≻ <i>F</i> 2
$W1 \succ W2 \succ W3$	W1 :	F3 ≻ <i>F</i> 1 ≻ <i>F</i> 2
$W1 \succ \mathbf{W3} \succ W2$,	W2 :	F1 \succ <i>F</i> 2 \succ <i>F</i> 3
$1/2 \leq 1/1 \leq 1/2$	14/2 .	F2 ≻ <i>F</i> 3 ≻ <i>F</i> 1
	$W3 \succ W2 \succ W1$ $W1 \succ W2 \succ W3$ $W1 \succ W3 \succ W2 ,$	$ \begin{array}{ll} W1 \succ W2 \succ W3 \\ W3 \succ W2 \succ W1 \end{array}, \qquad \begin{array}{ll} W2 : \\ W3 : \end{array} \\ \end{array} \\ \begin{array}{ll} W1 \succ W2 \succ W3 \\ W1 \succ W3 \succ W2 \end{array}, \qquad \begin{array}{ll} W1 : \\ W2 : \end{array} \\ \end{array} $

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Example: Suppose there are the following two preference realizations, with identities randomized.

F1 :	$W1 \succ W2 \succ W3$	W1 :	F3 ≻ F1 ≻F2
M_1 F2 :	$W1 \succ W2 \succ W3$,	W2 :	$F1 \succ F2 \succ F3$
F3 :	$W3 \succ W2 \succ W1$	W3 :	<i>F</i> 1 ≻ F 3≻ <i>F</i> 2
F1 :	W1≻ W2 ≻ <i>W</i> 3	W1 :	F3 ≻ F 1≻ F 2
<i>M</i> ₂ F2 :	$W1 \succ W3 \succ W2$,	W2 :	F1 \succ <i>F</i> 2 \succ <i>F</i> 3
F3 :	W3≻ W1 ≻ <i>W</i> 2	W3 :	F2 ≻ F3 ≻ <i>F</i> 1

In M_1 and M_2 , W1 receives offers from F1 and F2, and W3 receives an offer from his second choice firm \implies **no information transmitted**.

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>