
A Hard-ability “Theorem” on Measuring Advertising Effectiveness∗

Randall A. Lewis
Yahoo! Research

ralewis@yahoo-inc.com

Justin M. Rao
Yahoo! Research

jmrao@yahoo-inc.com

October 7, 2011

Abstract

Twenty-�ve display advertising �eld experiments run at Yahoo!, amounting to over $2.8M
worth of impressions, give insight into the volume of data needed to form reliable conclusions
concerning advertising e�ectiveness. Relatively speaking, individual-level sales are typically
volatile, and only \small" impacts from advertising are required for a positive ROI. Using data
from major U.S. retailers, we present a statistical argument to show the required sample size
for a randomized experiment to generate su�ciently informative con�dence intervals for a given
campaign is typically millions of individual users exposed to hundreds of thousands of dollars
of advertising. The argument also shows that sources of heterogeneity bias unaccounted for by
observational methods only need to explain a tiny fraction of the variation in sales to severely bias
estimates. Measuring advertising e�ectiveness is thus a situation with low-powered experiments
and faulty observational methods | precisely where we would expect poorly calibrated beliefs
in the market.
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1 Introduction

Whether we like to admit it or not, economists often operate under the assumption that \markets

generally get it right," sometimes without regard for how di�cult \getting it right" is. When a

lot of money is at stake, the reasoning goes, it is natural that beliefs in the market are fairly well

calibrated. Yet in some cases forming accurate beliefs is fundamentally di�cult. In this paper

we argue that measuring advertising e�ectiveness (adfx) falls in this category. Perhaps tellingly,

papers in this literature often a starting point of \Do ads have any e�ect?" For example, in their

important paper on adfx, Abraham et. al (1990) open with the line, \Until recently, believing in

the e�ectiveness of advertising and promotion was largely a matter of faith" | a �rst sentence

that might otherwise seem a bit peculiar given that before they penned it, approximately 4 trillion

dollars had been spent on advertising.1

This paper uses 25 advertising �eld experiments run at Yahoo!, which amount to over $2.8M

in spending, to provide insight into the size of data needed to form reliable conclusions concerning

the return on ad spending using randomized �eld experiments and to show that only tiny amount

of omitted selection or heterogeneity is required to generate severe bias in observational methods.

Let’s start with a simple observation: the e�ect of ads should be \small" in equilibrium. Ads are

relatively cheap, consumers see many ads each day, and only a small fraction of people need to be

converted for a campaign to be pro�table. As an example, one of the best known (and expensive)

advertising venues in the United States is the Super Bowl. A 30-second Super Bowl television

commercial costs between 1.5{2.5 cents per viewer.2 So if a Super Bowl spot has an impact of 7

cents per viewer in pro�t, it is wildly cost-e�ective, while if it has an impact of 1 cent per viewer, it

loses the company approximately $1M. The line between boom and bust is narrow, and we show in

this paper that matters are further complicated by the fact that the standard deviation of sales, on

the individual level, is typically 10 times the mean, making it di�cult to reliably estimate per-capita

e�ects of a small magnitude even with a large amount of data.

With this in mind, we make a second observation: ads are not delivered at random because

firms do not pay marketing executives to randomly distribute ads. So the true e�ects should be

relatively small while selection e�ects due to timing (advertising when it is most e�ective based on

product launches and demand seasonality) and consumer targeting (advertising to consumers most

prone to respond) can be quite large, especially if marketers are doing their jobs. So we have a

case of a relatively small true e�ect in a sea of relatively large selection and heterogeneity biases,

which is unfortunate because the observational techniques of the standard economics toolkit were

1This figure ($4.6 trillion) encompasses total ad spending from 1919 through 1990 and is denominated in real 2005
US dollars. The ad data was taken from the Coen Structured Advertising Dataset, and GDP figures were taken from
the US Bureau of Economic Analysis.

2This figure is not perfectly precise, but definitely in the ballpark. See for instance:
http://money.cnn.com/2007/01/03/news/funny/superbowl ads/index.htm. A 30-second Super Bowl TV spot
is priced at $2.5M reaching an estimated audience approximately 90 million viewers according to Nielsen TV ratings.
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designed for precisely the converse circumstance.

The 25 �eld experiments used in this study involved large campaigns (all had over 500,000

unique users, most had well over 1,000,000) in which we randomly held out eligible users from

receiving an advertiser’s online display ad.3 Sales tracking (both online and o�ine, through data

sharing agreements) allow us to estimate the underlying variability and trends in sales. Power

calculations show that even an experiment that has test and control groups of over 500,000 people

still cannot reliably detect any impact of advertising. Nine of the 25 experiments fall into this

category. They do not possess that statistical power to reliably evaluate the (rather extreme) null

hypothesis of a -100% ROI (no impact) of the campaign.

The remaining 16 experiments were powerful enough to reject the null hypothesis of -100%

ROI with 90% power. However, even though it is di�cult to do statistically, rejecting -100% ROI

is hardly the goal of a marketing executive. Thus, we examine a more realistic set of hypotheses.

Supposing the campaign was very e�ective (+50% ROI), we ask how big the experiment would have

to be to reject 0% ROI (one could similarly think of this as assuming 0% ROI and rejecting -50%).

Only 3 of the 25 campaigns could reliably distinguish between these two disparate hypotheses

(break-even vs. wildly successful). The median campaign would have to be nine times larger to

have adequate power to evaluate this hypothesis set, which is perhaps surprising, since many of

these underpowered campaigns already reached millions of users and cost hundreds of thousands

of dollars. In fact, certain retailers with relatively high average sales and high standard deviation

would have to run a campaign more than 100 times larger to have adequate power | in which

case, the population of the United States would literally be a binding constraint. Other retailers

would have bene�ted from more modest increases in campaign size. Five campaign experiments

would have had adequate power to test this hypothesis set had they been 2.3 times as large.

The power calculations that use an alternative hypothesis of a very successful campaign present

an arti�cially favorable view of the inference problem. Just as a marketing executive does not want

to simply reject -100% ROI, she would not want to repeatedly run campaigns that have otherwise

extraordinary returns of 50%. To optimize, the expected ROI of the last dollar spent should be

set somewhere in the 5-10% range. The median standard error on ROI for the 25 campaigns is

a staggering 51%. The median sales campaign would have to be 62 times larger (mean 421x) to

reliably distuinguish beween 10% and 0% ROI, two values that are considered vastly di�erent when

discussing a typical �nancial investment, like returns to an asset on an exchange. For campaigns

designed to acquire new account sign-ups, the situation is even worse; the median campaign would

have 1241 times as large. For most sales campaigns, it would take a long-term, concerted e�ort by

the �rm to ever hope to answer this sort of question; for account sign-ups, the problem goes even

3An example display ad is shown in the appendix. Unlike search ads, these involve creatives that are larger and
include picture and potentially motion (Adobe Flash animation). They are typically paid per impression, as opposed
to per click, to incentivize producing a high quality creative. In search advertising, link-based ads are text based, so
the problem is lessened significantly and further mitigated by using “clickability” in adjusting the effective bid. For
a more detailed exposition on price search adveritising, see Edelman, Ostrovsky and Schwarz (2007).
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deeper, due to the \winner-take-all" feature of client aquisition for subscription services.

Experiments have the virtue of being unbiased, but as our arguments show, the data landscape

is such that they can be underpowered in this setting, especially when taken in isolation. The

temptation is to turn to observational methods, which can be applied to scores of historical cam-

paigns. Using our estimates of sales volatility, we dispatch this approach with a concise statistical

argument. We show that a tiny degree of model misspeci�cation or heterogeneity/selection bias

(ex. omitted variables in a correctly speci�ed model) totally swamps the ability to accurately es-

timate adfx using observational methods. For example, consider a regression of sales volume per

individual ($) on whether or not she saw advertising. The R2 for a campaign with a positive rate

of return is on the order of 0.000002 (this is not a typo, we are trying to estimate a 15-20 cent

e�ect on a variable with a mean of around $8 and a standard deviation about $80).4 If we use

an observational method to estimate this e�ect, we have to make sure we have not omitted any

variables that would generate an R2 of this order or more. Since ads are, by design, not delivered

randomly, this seems to be an impossible feat to accomplish. The very same features of the data

that make experimental estimates noisy, render observational estimates unreliable.

Given the di�culty in employing observational methods, adfx may be fundamentally di�cult to

measure for media that cannot accommodate experimentation, because it is di�cult to randomize

exposure on the individual level. Examples of such media include out-of-home (billboards) and event

sponsorship.5 The alternative is to use geo-based randomization, as in Eastlack Jr. and Rao (1989),

but this approach is hampered by e�ectively small samples. But it’s not all bad news. Individual-

level experiments using formats such as internet, and to a lesser extent television, are not only

possible, but getting easier. In addition, our statistical analysis implicitly imposes uniform priors.

If a �rm conducted a series of experiments, new campaigns could be evaluated with informative

priors, which could tremendously improve estimate con�dence. Overall, we argue strongly for

the use of experiments to become the industry standard in measuring adfx and encourage the

development of technology and methods to improve their statistical power. While experiments are

not a magic bullet, our estimates indicate that reliable information would accumulate over time

about the general e�ectiveness of the advertising spend. Retrospective analysis of experiments, as

done by Abraham et al. (1995) for TV commercials, can also be used to isolate (broadly) what

works and what does not. Measuring adfx is not impossible, it is just hard; it is thus rather hopeful

and perhaps naive to expect the advertising market to have well calibrated or precise beliefs on the

e�ectiveness of advertising campaigns.

In the discussion section, we use data from other industries to show that the �rms we study are

fairly representative of advertisers generally. We also address the concern that the our campaign

4R2 � .202·.5(1−.5)

802
� .00000156

5For example digital billboard could be changed often, but it would be (nearly) impossible to link differential
exposure to the individual. Technological breakthroughs could help, such as linking automated toll RFID chips in
cars to billboards.

4



experiments were too small. Our \Super Bowl ‘Impossibility’ Theorem" bounds the set �rms, by

annual revenue, that can both a�ord a Super Bowl ad and reliably detect ROI even if individual-

level randomization for a Super Bowl ad was possible. These bands are tight to vanishing for

realistic hypothesis sets such as 10% vs. 0% ROI. We also discuss the importance of incentives in

an industry with (potentially) low evidentiary standards and examine an industry with a similar

inference challenge facing market participants (vitamins and supplements).

The paper proceeds as follows. In Section 2 we present an overview of the statistical inference

problem facing the advertiser and calibrate it with data from multiple experiments run at Yahoo!,

in Section 3 we present a discussion of what these �ndings mean for the advertising market, and in

Section 4 we conclude.

2 The Statistical Problem

In this section we �rst brie
y discuss the magnitudes of campaign in
uence that are needed for

the campaign to be cost-e�ective (note: throughout we will use the term \in
uence" to refer to

exerting a causal in
uence on sales (exceeding zero sales impact, -100% ROI) and \cost-e�ective"

to refer to achieving a speci�ed ROI target). We then present a simple statistical argument to

show how detecting such magnitudes is di�cult, even with a large amount of data, and relatedly,

how a tiny degree of endogeneity or model misspeci�cation in an observational method can lead

to serious bias. Summary statistics from 25 large-scale advertising �eld experiments run at Yahoo!

allow us to calibrate the statistical argument using real-world data. These �gures include sales

volatility, advertising spend and intensity, required in
uence for ROI=0% based on margin, size

of experiment, and an estimate of the standard error on the ROI from the advertising spend. We

use this information to conduct a power analysis of the campaigns and set out what one could

reasonably expect to learn from an experiment of a given size.

2.1 Influence and Profitability

Advertising is ubiquitous in Western society. On a daily basis, the average American sees 25{45

minutes of television commercials (Wilbur, 2008), many billboards, and internet ads. Industry

reports place annual media advertising revenue in the U.S. in the range of $173B,6 or about $500

per American per year. So to break even, the universe of advertisers needs to net about $1.35 in

pro�ts per-person per-day. Given the margins of �rms that advertise, our educated guess is that

this roughly corresponds to about $4-6 in sales. It is an interesting exercise to think to oneself,

6This figure, while not perfect, is consistent with published market reports. We obtained it from
http://www.plunkettresearch.com/ which aggregates a few reputable sources. In Appendix Figure 2, we use a another
data source, the Coen Structured Advertising Dataset, to plot advertising spending since World War 1. During this
period spending as a percent of GDP was fairly stable, 1.5–2%
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\Do ads in
uence me $5 per day?" Intuitively: ads are cheap, so the impact of each should small.

We see many ads per day and \know" a only minority are relevant to us and impact our behavior.

When an advertiser enters this fray, it must compete with many �rms for consumers’ attention.

As mentioned in the introduction, the cost per person of a typical campaign is quite low. A Super

Bowl ad has a high price tag, but per person, the cost is only 1{2 cents. Online display ad campaigns

with less reach still cost 1{2 cents per person per day, but typically run over a period of about two

weeks, cumulating to a cost between 15 and 40 cents (supportive evidence can be found in Table

1).7 The high-side estimate would be that an intense campaign captures about 2% of a targeted

person’s total attention to advertising in the campaign window. The relatively modest spend per

person, in turn, makes it di�cult to assess cost-e�ectiveness. Further complicating matters is that

individual-level sales are quite volatile for many advertisers. An extreme example is automobiles

| the impact is either tens of thousands of dollars, or it is $0. While not as extreme, many

other heavily advertised categories including consumer electronics, clothing and apparel, jewelry,

and air travel also have volatile consumption patterns. Homogeneous food stu�s have more stable

expenditure, but their very homogeneity likely reduces own-�rm returns to and equilibrium levels

of advertising within industry as a result of positive advertising spillovers to competitor �rms

(Hummel et al., 2011).

In the following two subsections, we quantify how individual expenditure volatility impacts the

power of adfx experiments and show that, in general, the signal-to-noise ratio is much lower than

we typically encounter in economics.

2.2 Power, Data Size, and Endogeneity

Consider an outcome variable y (sales), an indicator variable x equal to 1 if the person was exposed,

and an estimate β̂, which gives the average di�erence between the exposed (E) and unexposed (U)

groups. In an experiment, exposure is exogenous. In an observational study, one would also

condition on covariates W , which could include individual �xed e�ects, and the following notation

would use y‖W . All the following results go through with the usual \conditional upon" caveat (see

the appendix for this more general representation).

tβ =
��y

S.E.(��y)
(1)

where ��y ≡ �yE − �yU , �yE =
∑

i∈E yi and S.E.(��y) ≡
√

ŝ2E
NE

+
ŝ2U
NU

. Assuming balanced exposed and

unexposed samples, NE = NU = N , we obtain

7In terms of statistical power, the Super Bowl ads reach a much larger population–perhaps 15x the typical display
ad campaign in our sample–but the longer-lived display ad campaign is analogous to running a lower-reach TV ad
once a day over two weeks.
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R2 =

∑
i

(
1
2��y

)2∑
i (yi − �y)2

=
1
4N · (��y)2

2N · ŝ2
=

1

2N

(
��y√

2ŝ/
√
N

)2

=
t2

2N
. (2)

(1) is the standard formula for the t statistic. By substituting this into relationship (2), we get:

R2 ≈
(

��y

ŝ

)2

× 1

2
·
(

1− 1

2

)
(3)

which links the change in the dependent variable due to exposure and its variance to R2.

A natural application of this formula is to let ��y equal the expected impact of a campaign. We

do so in the following example, which uses (approximate) median values from the 19 retail sales

campaigns summarized in Tables 1 and 2. The hypothetical campaign goal, again calibrated from

the experiments in Table 1, is a 5% increase in sales in the two weeks following the campaign.

Based on data-sharing arrangements, we measure the weekly standard deviation in sales to be $75

and average sales are a little more than $7 during the 14 day campaign period. Spanning the range

of discount to high-end multibrand retailers, the standard deviation of sales is about 10 times the

mean on average, for the campaign period. Customers purchase goods relatively infrequently, but

when they do, the purchases tend to be quite large relative to the mean. The campaign costs

$0.14 per customer, which amounted to delivering 20{100 display ads at $1-$5 CPM,8and the gross

margin is assumed to be about 50%.9 Five percent of sales amounts to $0.35 per person. Hence,

the goal was for the campaign to deliver a 25% ROI:

$0.35 ∗ 50%− $0.14

$0.14
= 25%.

The estimation challenge facing the advertiser is to detect a $0.35 di�erence in sales between

the treatment and control groups amid the noise of a $75 standard deviation in sales. We can apply

relationship (3):

R2 =
$0.352

$752
× 1

2
·
(

1− 1

2

)
= 0.0000054 (4)

to show that the implied R2 is 0.0000054 for a successful campaign | certainly not the material

for scatterplots! A campaign with a relatively large internal rate of return, has an exceedingly small

R2, and thus requires a large N to identify any in
uence at all, let alone the campaign’s target level

with any meaningful statistical signi�cance. In this case, 2M unique users, evenly split between

test and control in a fully randomized experiment would generate an expected t-stat of 3.30 (from

relationship (2)). This corresponds to a test with power of about 95% at the 10% (5% one-sided)

8CPM is the standard for impression-based pricing for online display advertising. It stands for “cost per mille” or
“cost per thousand” (M is the roman numeral for 1000).

9We base this on our conversations with retailers in the industry and our knowledge of the industry. It is not
meant to be an exact figure. Note that if we set ROI=0%, this implies a gross margin of 40%.
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signi�cance level, as about 5% of the time, the t-stat will be less than 1.65. With 200,000 unique

customers, the expected t-stat is 1.04, indicating the test is hopelessly underpowered to reliably

detect any impact at all, failing to reject 74% of the time.

The true R2 = 0.0000054 implied by the treatment variable x in a randomized trial implies

that a small amount of endogeneity in an observational method, such as regression with controls,

di�erence-in-di�erences, and propensity score matching, would severely bias estimates of adfx. Any

omitted variable, misspeci�ed functional form, or slight amount of endogenous exposure that would

generate R2 on the order of 0.00001 is a full order of magnitude larger than the true treatment

e�ect. Compare this to a classic economic example such as the Mincer wage/schooling regression,

in which the endogeneity is on the order of 1/8 the treatment e�ect (Card, 1999). For observational

studies, it is always important to ask, \What is the partial R2 of the treatment variable?" If it is

very small, as in the case of adfx, clean identi�cation becomes more important, as a small amount

of bias has a relatively large impact on the coe�cient estimates. In Appendix Figure 3, we show

a scatterplot for the above example; its resemblance to complete noise explains why you never see

scatterplots in adfx papers.

The example shows that minute amounts of endogeneity can seriously bias estimates; even

in the ideal experimental case, the volatility of sales necessitates large samples. Table 1 gives an

overview of 25 experiments and shows that this example is representative of large display advertising

campaigns. We augment the information in Table 1 with detailed estimation statistics in Table 2.

Tables 1 and 2 are the centerpiece of the contribution of this paper. The individual experiments are

taken from a number of papers from Yahoo! Labs: Lewis and Reiley (2010); Lewis and Schreiner

(2010); Johnson, Lewis, and Reiley (2011); and Lewis, Rao, and Reiley (2011). We express sincere

gratitude to the non-overlapping authors and encourage readers to examine these papers in more

detail.
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There is simply too much information in the tables to go through each column in detail, but we

will try our best to walk the reader through the important features. Columns 1{3 of Table 1 give

basic descriptors of the experiment. Based on our con�dentiality agreements with advertisers, we

are unable to reveal the names of each advertiser. We instead employ a naming convention that

gives the sector and an advertiser number. Columns 4{7 outline the outcome measures. The �rms

in Panel 1 are retailers, such as large department stores. Based on these �rms’ objectives, sales is

the key dependent measure. Column 4 gives the dependent measures and the unit of observation

(\3" indicates daily observation, \4" indicates weekly). Panel 2 gives campaigns for online �nancial

service �rms aiming to acquire online account sign-ups. Column 7 gives the control variables we

have to reduce noise in the experimental estimates. In column 8, we see that the experiments ranged

from 2 to 135 days, with a median of 14 days, which is typical of display campaigns. Column 9

shows the campaign cost varied from relatively small ($9,964) to quite large ($612,693). The mean

was $114,083 and the median was a healthy $75,000. Overall, the campaigns represent over $2.8M

in advertising spend.

Columns 8{11 show that the median campaign reached over 1M individuals, and all campaigns

had hundreds of thousands of individuals in both the test and control cells. The per customer

information in the 2nd and 3rd columns from the right show that the average sales per customer

varied widely. This is driven by the popularity of the retailer and the targeting level of the campaign

(some campaigns targeted existing customers, for instance). The median level of sales per person

is $8.48 for the test period. The �nal column gives the standard deviation of sales on an individual

level. On average, the standard deviation is 9.83 times the mean | one of the two de�ning features

of the data that makes inference very di�cult (the other is the relatively small in
uence necessary

for pro�tability). Examining longer campaigns, we see the standard-deviation-to-mean ratio falls,

which is due to negative serial correlation in sales (\if I bought last week, I am less likely to buy

next week").
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In Table 2, we delve into this statistical problem more deeply. Column 3 gives the standard

error associated with the estimate of β, the test-control sales di�erence (in dollars for Panel 1,

sign-ups for Panel 2). β is estimated by conditioning upon the control variables outlined in Column

7 of Table 1 in order to get the most precise estimate possible. In column 4, we convert this into

the implied radius (+/- window) of the 95% con�dence interval for the sales impact, in percentage

terms. Column 5 gives the spend per person. These �gures can be compared to the standard errors

given in column 3 to get an idea for the relative level of noise in estimation. Even in these large

experiments, the standard error of in
uence exceeds the per-person spend in 12 of the 19 cases

given in Panel 1. Using our estimates of gross margins given in column 6, which are based on

our conversations with advertisers and SEC �lings, we calculate the standard error of the return

on investment in column 7. The median standard error for ROI is a staggering 26.1%, and the

mean is a rather haunting 61.8% | estimating ROI is far from precise, even with relatively large

randomized experiments as the median con�dence interval is about 100% wide.

In the �nal 8 columns in Table 2, we present various sets of hypotheses the advertiser might be

interested in evaluating. We colloquially refer to these as going from \hard" (estimating in
uence

to be signi�cantly greater than 0) to \crazy" (reliably estimating the ROI to be near the cost

of capital for the �rm). For each hypothesis set, we give the expected t-stat relative to the null

hypothesis given that the alternative hypothesis is true. We also give \data multiplier" (how much

larger would N have to be) required to expect a t-stat of 3. As we noted earlier, an expected t-stat

of 3 provides power of 91% with a one-sided test size of 5% (to see this, note that with an expected

t-stat of 3, the distribution is symmetric around 3, meaning that about 9% of the distribution’s

mass will fall below 1.65 in the left tail). Put another way, the multiplier gives the multiple of N

(and advertising expenditure) needed for each experiment to serve as a powerful test of the null

hypothesis against the alternative.

We start at the \hard" level. Most papers on adfx end at this level as well, in that the main

goal is to measure whether in
uence can be measured to signi�cantly exceed 0 (Bagwell, 2005).

Column 9 gives the expected t for the null hypothesis that the ad had zero e�ect (ROI=-100%),

assuming that alternative hypothesis holds (the ad broke even, ROI=0%), given margins the break-

even sales in
uence is 2{7 times the the cost given in column 6 . We see that 9 of 25 experiments

lacked su�cient power to detect any in
uence at all (E[t]<1.65). As an aside, we note that these

experiments are not meant to represent optimal experimental design. Often the advertisers came

to us looking to understand how much can be learned via experimentation, given a number of

budgetary and campaign-objective constraints. Nearly half (10 of 25) of the experiments had

E[t]>3, meaning they possessed more than enough power reliably evaluate if the ads had any

in
uence. These tests are performed in the multiple papers cited earlier and generally reveal a

statistically signi�cant impact of advertising (the papers also discuss features of advertising such

as the impact of local targeting, interested readers are encouraged to consult these papers) (Lewis
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and Reiley, 2010; Johnson et al., 2010; Lewis and Schreiner, 2010). Reliably rejecting zero in
uence

is certainly possible.

While interesting to the psychologist and economist, documenting a non-zero impact of a cam-

paign is not the goal of a marketing executive. For instance, a -50% impact is grossly unacceptable.

In the \harder" column we ask a more appropriate question from a business perspective, \Are the

ads worth it?" Here we set the null hypothesis as ROI=0% and the alternative to a �gure that

sometimes comes up in conversations with marketing executives, 50%. By using ROI=50% we are

imagining a case in which the ads are expected to be highly e�ective. Intuitively, it is easier to do

statistical estimation in this case, as compared to one in which the e�ects are hypothesized to be

more modest. Column 11 shows that only 3 of 25 campaigns have E[t]>3 in this case. In fact, half

have E[t]<1, which is consistent with the large standard errors on ROI shown in column 8.

The multipliers show that many retailers have sales su�ciently noisy that the experiment would

have to be almost impossibly large to reliably answer the \worth the money" question. We �nd

this startling, but it is not universal. Retailer 5’s 2nd campaign cost $180,000 and reached 457,968

people. The σ
µ ratio was the standard 9.6. The campaign achieved statistical precision by having

a very large control group, 3,505,971 people. This level of precision could be achieved for smaller

campaigns by using new \ghost ad" technology, which allows advertisers to run experiments with-

out the need to pay for control impressions. Lewis (2011) presents this technology and related

experiments in more detail . We also note that the large experiments run by Retailer 4 and the

experiment by Retailer 2 also had nice power. This is largely due the relatively small standard devi-

ation of sales, which in turn is driven by having lower mean sales. In other words, a smaller retailer

gets more statistical bang for their buck. Overall, 12 of 25 had E[t]<1 (severely underpowered), 4

had E[t]∈[1,2], 5 had E[t]∈[2,3] (90%>power>50%) and only 3 had E[t]>3. Therefore, of the 25

campaigns, only 3 had su�cient power to reliably conclude that a very cost-effective campaign was

worth it, and an additional 5 could reach this mark by increasing the size of the experiment by a

factor of about two (those with E[t]∈[2,3])

Using an alternative hypothesis of a 50% ROI makes the power calculations arti�cially strong,

or put another way, hypothesis testing is made easier by the stark alternative hypothesis. The

\harder" analysis shows that if it were indeed the case that a �rm’s campaigns had a 50% ROI,

it would still be di�cult to reject 0% ROI. Running a 0% ROI campaign is not optimal for the

�rm, because it has a non-zero cost of capital. Similarly, repeatedly running 50% ROI campaigns

is not optimal, as the �rm ought to advertise more in equilibrium, given the substantial pro�ts it is

reaping. In the 3rd and 4th columns from the right, we use an alternative hypothesis closer to that

of an optimizing �rm, 10% ROI. Strikingly, every experiment is severely underpowered to reject

0% ROI in favor of 10%. E[t]<0.5 for 21 of 25 campaigns and even the most powerful experiment

(Retailer 3, Experiment 7) would have to be 7 times larger to have su�cent power to distuinguish

this di�erence. Indeed, the median sales experiment would have to be a daunting 61 times larger to
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reliably detect the di�erence between an investment that, using conventional standards, would be

considered a strong performer (10% ROI) and one that would be considered a dud (0% ROI). For

new account sign-ups, the median multiplier is an almost comical 1241x. The statistical properties

of sales and sti� competition for attention due to the large quantity of advertising a consumer faces

conspire to make it near-impossible for a �rm to reliably optimize its advertising spend, at least in

the medium-run. In comparison to the noise in the returns to advertising, even the riskiest �nancial

asset looks like a sure-thing.

In the �nal two columns of Table 2 we push the envelope further, setting the alternative hy-

pothesis roughly to the pro�t maximizing level of the cost of capital, 5%. The E[t]’s and multipliers

for E[t]=3 demonstrate that this is not a question an advertiser could reasonably hope to answer

for a speci�c campaign or in the medium-run across campaigns | in a literal sense, the world’s

total population and the advertiser’s annual advertising budget would be binding constraints for

many cases! We think it is important to note that \hardest" and \crazy" are not straw men. These

are the real standards we use in textbooks, teach our undergrads/MBA’s, and employ for many

investment decisions. The fact that it is nearly impossible to apply them here with any precision

is one of the key contributions of the paper.

3 Discussion

In this section we discuss the practical implications and extensions of our �ndings, and comment

on the general features of an industry in which mistaken and/or imprecise beliefs (priors) can easily

persist.

3.1 Are these online campaigns anomalous?

The natural question to pose is, \How representative of advertising in general are the campaigns

we have presented?" Perhaps these retailers and �nancial �rms have abnormally volatile sales

or maybe these campaigns are too small, and so on. To combat the sales volatility criticism,

we use data from an industry that advertises very heavily and for which data is easily available:

American automobile manufacturing (one out of every twelve TV commercial spots advertises pick-

up trucks, accounting for roughly $9 billion annually, source: Kantar Media). Automakers turn out

to face more volatility than the �rms we study. To address the data size objection, we look at the

relatively large advertising venture of running a 30-second Super Bowl commercial. Our \Super

Bowl ‘Impossibility’ Theorem" bounds the set of �rms that could reliably estimate the impact of a

Super Bowl ad even if exposure could be randomized (and sales linked to the randomization) on the

individual level. The intuition is thats many of the �rms large enough to a�ord a Super Bowl ad

have baseline sales so high that making reliable ROI inference is essentially impossible. For small

�rms, inference is easy, but the Super Bowl ad is too expensive.
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3.1.1 Automobile Sales

Advertising is a huge part of the automobile industry. The leading industry trade group10 estimates

that U.S. automakers spend $674 in advertising for each vehicle sold. We’ll try to back-out sales

volatility based on sales data. It is reasonable to suppose the average American purchases a new car

every 5{10 years, but it is hard to get a �rm estimate for this �gure. We will generously assume it

is every 5 years, generous insofar as higher purchase frequency helps the advertiser inference-wise.11

Suppose that the advertiser has market share similar to many major automakers, 15%. Then the

annual probability of purchase is 0.03 (Pr(buy) = .2*.15 = .03). This implies a standard error of√
0.03 ≈ 1

6 .

On the cost side, we’ll assume the national average of a new vehicle, $29,793.12 Mean annual

sales per person are thus µ=$893 and SE(µ)= 1/6*$29,793 = $4,700. This gives a σ
µ ratio of roughly

10, similar to our standard �nding. However, this is yearly, as opposed to the �ner granularity used

in our study. To convert this �gure to monthly we multiply by (1/
√

12)/(1/12) =
√

12 or about

3.5.to get ratio of 20:1, which is double that of our median online display advertising experiment

for retailers. What this means is that an automobile advertiser would have to run a year-long

experiment to gain the same insights, all else equal, that our median advertiser would gain in a

month. We think this example demonstrates that our advertisers have sales volatility well within

the bounds of many major advertisers in the market and are within the proverbial bounds of

\representative."

3.1.2 Super Bowl “Impossibility” Theorem

In this section we address the concern that these experiments are unrepresentative because they are

too small. Our �rst remark is that the average cost was over $100,000, not exactly small potatoes.

Here we bolster our point through a thought experiment concerning one of the most expensive

advertising venues in the U.S., the NFL Super Bowl. First, we imagine the case that a Super

Bowl ad can be randomized on the individual level. Given current television technology, this is

not technically feasible; since many people watch the game at parties, it would be di�cult to link

ad exposure to individuals even if television sets were a viable unit of randomization.13 Current

technology would allow geographic randomization, so one can think of our approximation as the

\best case geo-randomization" in which cross-geo correlation is zero and advertisers do not pay for

control ads.

10The National Automobile Dealers Association (NADA).
11Average mileage is approximately 12,000 miles per year–making a reasonable estimate of the expected lifespan

of a vehicle 10-15 years; a growing population and increasing wealth will cause the average sales rate of new vehicles
to exceed the mortality rate of old cars.

12Source: http://www.nada.org/Publications/NADADATA/2011/default
13Technology that gets around these issues does not, to our knowledge, currently exist. But it is conceivable that

there will be a point in time where the television recognizes viewers because a smart phone is near the TV and records
who was exposed to what commercial.
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The formal argument we present bounds the set of advertisers that can both a�ord a Super Bowl

ad, which we call the a�ordability constraint, and detect the return on investment, which we call

the detectability constraint. The a�ordability constraint is a straightforward accounting exercise

to determine the �rm size necessary to have the advertising budget for such a large expenditure.

To build intuition on the detectability constraint, recall that ROI is the percentage return on the

ad cost ; speci�cally it is the the sales lift times the margin minus the cost, all divided by the

cost. Notice this does not depend on the level of sales. Since Super Bowl ads cost roughly the

same amount for all advertisers, this means that for a small �rm, the sales level lift that nets

a positive ROI is a much larger percentage lift than it is for larger �rms. The smaller �rm will

have an easier time identifying the sales change because it represents a much larger percentage of

revenue. This is intuitive and can also be seen from the cost perspective. For a small �rm, the

Super Bowl ad represents a very large expenditure relative to revenue | as we have seen, this gives

them more statistical bang for the buck. The detectability constraint gives the largest �rm that

can meaningfully evaluate a given ROI hypothesis set.

We will now present the formal argument and calibrate it with data from our experiments and

publicly available information on Super Bowl advertising. We need to de�ne some terms. Let

NTotal be the total adult population, N is the total adult audience and we de�ne ρ = N
NTotal

as

the reach of the Super Bowl. NE gives the number of reached (exposed) individuals, which we set

equal to N/2 to maximize power. On the cost side, C the total cost of the ad, with ~c the cost per

exposed person. Let µ equal the mean purchase amount for all customers during the campaign

window and σ be the standard deviation of purchases for customers during the campaign window.

We will use σ
µ , the coe�cient of variation, which we have noted is typically 10 for advertisers in our

sample and greater than 10 in other industries, to calibrate the argument. m is the gross margin

for the advertiser’s business

We also need to de�ne a few terms to describe the advertiser’s budget. Let w be the number

of weeks covered by the campaign’s analysis (and the advertising expense), b gives the fraction of

revenue devoted to advertising (% advertising budget) and R the total annual revenue. To get the

a�ordability bound, we de�ne γC as the fraction of the ad budget in the campaign window devoted

to the Super Bowl ad. For instance, if γC = 1, this means the �rm spends all advertising dollars

for the period in question on the Super Bowl.

We now present the argument, which an algebraic exercise with the one key step, substituting

for the coe�cient of variation and solving for the revenue bounds.

First let’s construct the a�ordability bound. To a�ord the ad, it must be the case that it costs

less than the ad budget, which is the revenue for the time period in question, R · w52 , times b, the

percentage of the revenue devoted to advertising, times γc, the fraction of the budget that can be

devoted to one media outlet:
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C ≤ (R · w
52

) · b · γc

Solving this equation for revenue we get the a�ordability limit:

R ≥ C

γCb · w52
(5)

For the detectability limit, let r and r0 be the target ROI and null hypothesis ROI respectively.

The t statistic is given by:

tROI ≤
r − r0√
2
N × σROI

tROI ≤
(r − r0)√

2
N

(
mσ
c̃

)
tROI ≤

(r − r0)√
2
N

(
σ
µ

)
/ c̃
mµ

The �rst equation is just the de�nition of the test statistic. The second equation follows from

substituting in the standard deviation of ROI, which is a linear function of the sales standard

deviation, per-capita cost and gross margin. The �nal equation simply multiplies the denominator

by µ
µ . We do this so we can substitute in a constant for the coe�cient of variation, σ

µ and solve for

µ, as given below:

µ ≤ (r − r0) ~c√
2
N

(
σ
µ

)
m · tROI

= �µ

The right-most equality is for notational purposes. We can also relate mean sales during the

campaign period to total revenue.

µ = R ·
w
52

NTotal
(6)

We can solve for revenue in the above equation and substitute in �µ for µ to get the detectability

limit:

R ≤ NTotal · �µ/
w

52
(7)

Examining the detectability limit, referring back to �µ where necessary, we see that it decreases

with σ
µ . This is intuitive, as the noise to signal ratio increases, inference becomes more di�cult. It

also falls with the required t and gross margin. To understand why the bound rises as margin falls,

consider two companies, one with a high margin, one with a low margin. All else equal, the low
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margin �rm is experiencing a larger change in sales for a given ROI change. Naturally the bound

also rises with the gap between the null hypothesis and target ROI.

Putting both limits together, we obtain the interval for detectability and a�ordability:

C

γCb · w52
≤ R ≤ NTotal · �µ

w
52

(8)

.

We use the following parameter set to calibrate the model. We set w = 2 (weeks) to match

most of the analysis of this paper; it is a reasonable window to measure the Super Bowl ad impact.

tROI = 3 to match our standard power requirement and σ
µ = 10 to match the value we see

strong evidence for in our study, even though it will understate volatility for advertisers such as

automakers. We use ρ = .5 to match the empirical viewing share for adults for the Super Bowl.

For the advertising budget we choose what we think is a rather high value of 5% of revenue, in

particular with regards to large companies. We set the fraction of ad spend for the given period

that is devoted to the Super Bowl ad at γc = 1
wρ. It says that a company would be willing to devote

all advertising resources for a given week if the Super Bowl ad reached all potential consumers.

The toughest parameter to pin down is gross margin, as it varies across industry and �rm. We

report bounds for two values of gross margin, 0.25 and 0.50. The \low" margin, 0.25, corresponds to

the gross margin, according to SEC Filings, of automobile companies and electronics retailers. For

instance, Super Bowl advertiser Honda Motor Company reported a gross margin of 0.27 in 2010,

Ford reported 0.18 and Best Buy reported 0.24. Roughly 40% of 2011 Super Bowl ads were in this

category. The \high" margin, 0.50, corresponds to the gross margin of consumer goods such as

beer and processed foods. 2011 Super Bowl advertisers Imbev (Budweiser) and Pepsi Co. reported

2010 margins of 0.55 and 0.51 respectively. This category accounts for roughly 35% of Super Bowl

ads. In general we have tried to choose fair, converative values to calibrate our argument.

The �nal step is to calibrate pricing and audience. We use the following parameters: NE is

50 million (1/2 the viewers), the cost of the ad is 1/2 the market rate, C = $1, 000, 000. As a

reminder, the thought experiment here is for geographic randomization of so that you pay half the

cost, but you only get half the reach.

Table 3 gives the upper and lower bounds on R for both margin values we consider. We �rst

note that a fully randomized Super Bowl ad experiment would be much larger than any of the

campaigns we used, typically about 10 times as large. Recall that if the median campaign in our

study was about 9 times larger, it would posses su�cient power to evaluate the \hard" hypothesis

set. Consistent with this reasoning, we see in Table 3 that a wide range of companies could reliably

test the \hard" hypothesis set using a Super Bowl experiment. Indeed most of our retailers fall

within the (high margin) range of revenue.

Examining row 1, we see that a fairly wide range of companies would be able to reliably measure

if the ad had in
uence. However, high margins companies over $35B in revenue are unable to meet

18



Table 3: Super Bowl \Impossibility" Theorem Bounds
HA: ROI H0: ROI A�ordability Detectability, m=.50 Detectability, m=.25

Annual Rev. Annual Rev. Annual Rev.

Hard 0% -100% $2.08B $34.47B $63.3B
Harder 50% 0% $2.08B $17.33B $34.6B
Hardest 10% 0% $2.08B $3.47B $6.9B
Crazy 5% 0% $2.08B $1.73B $3.4B

even this minimal goal. $35B sounds like a lot, but some �rms operating at these margins exceed

this mark. For instance, Pepsi Co. had annual revenue of $62.4B in 2010. Automakers fall in

the low margin category, meaning the relevant upper bound is $63.3B, which they often soar over.

Honda pulled in $107.8B in 2010, Ford $135.1B. Even when accounting for product category (cars

vs. trucks, say), major automobile manufacturers are often dangerously close to this limit. Recall

as well that we have assumed a σ
µ ratio of 10, which is probably half the true value for car sales,

meaning the correct limit is probably double the one reported (however if the advertiser is able to

advertise speci�cally by model, this pushes back against the problem).

Examining row 2, we see that the upper limits are cut in half for the \hard" hypothesis set.

Still though, medium-sized brands within large �rms, for example \Doritos" within Pepsi Co. or a

new model of automobile, and medium-size �rms fall well within this constraint. For the \hardest"

and \crazy" cases, the bands are tight to vanishing. Very few companies are both large enough

to a�ord the ad, but small enough to reliably detect relatively small di�erences in ROI. The only

example from last year’s Super Bowl of a company (plausibly) in this range is GoDaddy.com (which

is privately held). This means that the vast majority of Super Bowl advertisers would be unable

to tell if the advertising investment netted more or less than the other investments they routinely

make, which typically require 5-10% of well-measured ROI.

The Super Bowl \Impossibility" Theorem illustrates two important points. The �rst is that

even exceedingly large (hypothetical) experiments could be uninformative for many companies that

advertise at such a scale. Indeed many actual Super Bowl advertisers, notably brand ads for car

manufacturers, would be unable to test if the ad had any in
uence on consumer behavior. We

think this is a striking example of inference challenges in the advertising market. The second point

highlights the importance of campaign cost relative to �rm size. Since a Super Bowl ad costs the

same for all advertisers, it is much easier for small �rms to measure ROI changes. The reason is

that for a small �rm the ROI change represents a much larger percentage change in sales. For

example, both GoDaddy.com and Ford need to net a similar change in the level of sales to achieve a

positive return on the ad | estimating this change is far easier for the much smaller GoDaddy.com.
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3.2 Experiments: Reliable but underpowered in isolation

We start with a telling quote from Eastlack Jr. and Rao (1989), who report on multiple experiments

run by the Campbell Soup Company.

The record of implementation of experimental results is mixed, however. For exam-

ple, summer advertising on Condensed Soup was never implemented [estimates indicated

e�ectiveness]. Again, when (as in Experiments 2 and 17) it was found that reductions

in spending [in regions where spend was already heavy] did not adversely impact sales,

the action was not to cut budgets, but rather, to search for alternative and hopefully

better creative.

Campbell devoted serious time and e�ort to run a number of intelligent, geo-randomized ex-

periments. The results were surprisingly underwhelming for �rm managers (who had not read the

paper you are currently reading, which is forgivable since both authors were yet to be born at the

time of their experiments). In aggregate, the evidence indicated that the advertising did stimulate

sales, but for individual campaigns, the estimates were imprecise. The authors had 3 major con-

clusions, two of which seemed to have been ignored. Based on the strength (or lack thereof) of the

statistical evidence, this is rational with even somewhat informative priors.

A point we have continually made is that experiments are unbiased, but each experiment needs

a large sample, and the act of experimentation may be costly itself (withholding ads to customers,

for instance, could prove to be costly). The experiments we document demonstrate that through

repeated experimentation a �rm can build knowledge about overall characteristics and e�ectiveness

of its advertising spend, but evaluating a campaign or creative in real-time may be impossible. Even

though this is a far-cry from the stylized textbook example of a �rm advertising until the marginal

dollar spent nets a dollar in pro�ts, knowledge can still be accumulated. As shown in Table 2,

designing an experiment and accompanying analysis that can powerfully reject ROI=-100% (\ad

does something") is a realistic goal. To a lesser extent, so is distuinguishing between a very cost-



Here we’ll abstract from the problem of who the �rm should be advertising to in the �rst place

and instead focus on how targeting can be used to increase experimental power. The idea is that

�rms can perhaps more powerfully assess their advertising stock by performing on experiments on

the particularly susceptible portion of the population. The trade-o� is that targeting reduces the

size of the experiment, which works against power at a rate of
√
N , but increases the in
uence,

making it easier to detect.

Suppose there are N individuals in the population the �rm would consider advertising to. We

assume that the �rm does not know the in
uence of a campaign on these individuals, but can

order them by relative rank. This order is not assumed to be perfect, we only assume that errors

are mean 0, so it is not the case that in expectation someone lower in the ordering has a higher

in
uence. The �rm wants to design an experiment using M of the possible N individuals, split

evenly between test and control. The question is, \When is the �rm better o� choosing M < N?"

Let’s de�ne the following functions µ(M), σ(M), and C(M) as the mean sales, standard deviation

and average cost as a function of advertising to the �rst M people. First let’s look at the t-statistic

against the null hypothesis of -100% ROI.

t =
√
M
µ(M)

σ(M)
(9)

To build some intuition, if the ad has a constant e�ect on the population, then µ(M) and

σ(M) are constants, meaning we get the standard results that t increase at
√
M . More generally,

this function is increasing in M as long as the signal-to-noise ratio decreases at a rate less than
1√
M

. Stated another way, each additional observation added to the average has to add in at least

O(1/
√
M) e�ect to the mean or have a decreasing variance at O(1/

√
M).

Now let’s calculate the σROI .

ROI =
M · µ(M)−M · C(M)

M · C(M)
=
·µ(M)

·C(M)
− 1

σ2ROI = V ar

(
·µ(M)

·C(M)

)
=

·σ2(M)

(M · C(M))2
=

σ2(M)

M · (C(M))2

which implies:

σROI =
σ(M)√
M · C(M)

(10)

Notice that this formula does not rely upon the actual impact of the ads, except that we calibrate

the expected e�ect against the cost (in reality, costs will be correlated with ad impact). It only

incorporates the average volatility of the M observations. The standard error of our estimate of

the ROI is decreasing in M as long as the ratio σ(M)/C(M) does not increase faster than
√
M .
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For the special case of a constant variance, the standard error of the ROI can be more precisely

estimated as long as the average costs do not decline faster than 1√
M

. Note average costs cannot

decline faster than 1
M unless the advertiser is actually paid to take extra impressions, which seems

unlikely. Another special case is constant average cost. Here as long as σ(M) does not increase

faster than
√
M , more precision is gain by expanding reach.

Overall, the question of whether targeting helps or hurts inference is an empirical one. If

in
uence is concentrated on a certain portion of the population, one is better o� sample size

to gain a higher signal-to-noise ratio. Conversely, if in
uence is spread rather evenly across the

population, targeting damages power.

3.4 Average vs. Marginal: The “Right” Interpretation and Reaction to Exper-

imental Findings

In textbooks, the distinction between average and marginal is unambiguous. \Average" is just the

total sales increase divided by total spend (over a given time period, say) and \marginal" is the

impact of that \last little bit" of advertising, divided by its cost. In the interest of simplicity, we

have until now remained agnostic about the average-marginal interpretation. In our experience,

�rms typically have ROI goals by campaign so we focused on the statistical challenges of reliably

measuring ROI in relation to a speci�ed campaign goal. But a deeper problem is identifying which

ads are \marginal" across the various media used by the �rm.

In addition to advertising online, most of our retailers were actively advertising on television,

out-of-home (billboards, etc.), at major sporting events and through direct mailings. Exactly what

part of this spend is marginal, from the perspective of the �rm’s decisions, is entirely unclear. Me-

chanically, the online experiments we report here measure the impact of the \marginal campaign,"

because the experimental randomization holds some users out from seeing a particular online cam-

paign. These users still see the same billboards, television commercials, online ads on other websites

and so forth.

Suppose a �rm runs a series of online experiments and eventually rejects 0% ROI in favor of

the most likely alternative, say -50% ROI. What is the appropriate response? While it’s readily

apparent that doing nothing is dominated by cutting online spend,14 it is not at all obvious what

the right thing to do is. Spending should be cut, yes, but where? Perhaps the �rm saturated

consumers with television ads, so the online campaign had little room for in
uence. Alternatively,

the online ads could have been duds. Or maybe the �rm is advertising too much across the board,

and all spending should be cut equally. In this sense, the online experiment could just signal the

e�ectiveness of marketing levels generally. Suppose instead that the �rm measures the ROI of

online spend to be +50%. Here the problem is even more di�cult. Increasing online spend does

not clearly dominate doing nothing, because the high average might bely a low marginal impact of

14Here we implicitly assume concavity of influence. For supportive evidence see Lewis (2011) .
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extra impressions per user. Expanding reach to previously unexposed consumers seems like a safe

bet, but perhaps the right response is to increase spend on all media evenly or it could be the �rm

should just focus on a particular media, say television.

Even with reliable estimates, producing actionable insights is hampered by these sorts of

average-marginal uncertainty. Ideally the �rm would experiment with all forms of media simulta-

neously, but delivery technology for out-of-home, television and radio makes randomizing exposure

di�cult or impossible. As such, insights gleaned from online experiments must be carefully incor-

porated into the media plan. The science of this cross-media incorporation will likely evolve as

online and television experimentation becomes more common.

3.5 Advertisers in the Dark? Incentives and Statistics

Up until now we have focused on the informational and statistical challenges facing the advertiser by

assuming the �rm processes information rationally. This simpli�cation might gloss over important

features of the market. Given that reliable estimates are hard to come by, it is potentially a

situation where incentive problems can lead to large distortions in �rm behavior. In this subsection

we brie
y discuss the within-�rm incentives to accurately measure the e�ectiveness of advertising.

In large �rms, advertising spend is typically handled by the marketing division. Consider the

plight the head of marketing (CMO). The CMO hires advertising �rms to generate ad copy, media

buyers to negotiate with publishers, and analysts (third party or internal), to monitor and direct

the spend. What are the personal incentives of the CMO and everyone who reports to and conducts

business with her? In the case that the marginal dollar of advertising has a positive ROI (the �rm

is under-advertising), it seems clear that these people are quite happy reporting the truth. More

contracts will be given to the advertising �rm, larger budgets go to the media buyers and smiles

will great the analysts in internal presentations. But in the converse case, these incentives 
ip.

News that a series of campaigns were ine�ective is bad for the agency (business will go elsewhere),

bad for the media buyers (who might be to blame for the poorly performing ad placements they

purchased or face layo�s), bad for the analysts who have to report back on the failed campaign,

which may have been a product of faulty decisions on their behalf and bad for the CMO, although

to a lesser degree, whose organization might face budget cuts.

Starting from the CEO, the further one goes down the organizational chart, the less bene�t

one gets from promoting the correct estimate of adfx (when it is low), and the more bene�t one

gets from erring on the side of interpreting campaigns as cost-e�ective. These mistakes could be

\honest," in that people tend to naturally put more weight on good news versus bad news (Eil

and Rao, 2011), or more cunning. The \honest" mistake version of the story leads to everyone

taking a favorable view of evidence and methods that produce overestimates. We have shown that

observational methods tend to induce positive bias | the incentives help show why 
aws in these

methods can go unnoticed. We view this area as a fertile ground for future research.
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3.6 How Unusual is this Market?

The best example of a market that we think shares the property that the information structure

makes it easy for mistaken beliefs to persist is the vitamin and supplement market. In the United

States, the vitamin and supplement market is estimated to gross around $20B annually.15 Based on

this lofty �gure, one might �nd it surprising that it is quite contentious in the medical community

whether supplements do anything for a healthy individual. This is not to say that vitamins are

not important to health | without Vitamin C one will develop scurvy, without Vitamin D rickets,

etc. But supplements are not touted to prevent these types of disease, because manufacturers know

that in the developed world one gets enough of these vitamins through even the unhealthiest of

diets.16 Rather supplements are supposed to improve health for a healthy person, and therein lies

the inference challenge. The e�ect is supposed to be subtle, making it di�cult for an individual

to detect, and across people, medical outcomes that are easily and accurately quanti�able, such as

illness requiring hospitalization, are noisy. Observational methods are insu�cient because people

who take supplements are likely more health conscious than average (selection e�ects) or have

recently experienced poor health, which might rebound naturally (\Ashenfelter dip" e�ects17).

Here a standard-sized randomized medical trial of a few hundred subjects is utterly useless.

Recognizing this, two large, long-running experiments were commissioned 18 years ago to examine

the impact of Vitamin E, selenium, and beta-carotene on disease prevention. The Physicians Health

Study II, results published in Lee et al. (2005), followed 39,876 healthy women over 12 years.18 Half

of the women received Vitamin E through a supplement pill, and the other half took a placebo pill.

The dependent measures were cardiovascular disease and cancer, both of which had a per-person

incidence rate of less than 10% over the span of the study. The authors state their results strongly

in the abstract:

The data from this large trial indicated that 600 IU of natural-source vitamin E

taken every other day provided no overall bene�t for major cardiovascular events or

cancer... These data do not support recommending vitamin E supplementation for

cardiovascular disease or cancer prevention among healthy women.

However, the strength of this statement belies the uncertainty of the author’s estimates. For

example, the 95% con�dence interval on the impact on heart attacks ranged from a 23% risk

15For comparison, according to the Internet Advertising Board’s annual report for 2009, advertisers spent $22.7
billion online in 2009 with display ads accounting for 22% or $5.1 billion.

16In a survey of Canadian pediatricians, researchers estimated that the overall annual incidence rate for vitamin
D deficiency rickets was 2.9 cases per 100,000 people (Ward et al., 2007). In comparison, cancer incidence in Canada
is 410.5 cases per 100,000 people (Marrett et al., 2008).

17We use this term as a nod to the classic finding that observational estimates from job training programs overstate
the true effects because participants often had a negative wage shock prior to training that dissipates in the absence
of training as well (Ashenfelter and Card, 1985).

18To consider the economic magnitude of the test, consider that 300 Costco Multivitamin costs $13.99. The pills
were taken every other day, so we estimate the economic cost of the treatment roughly as 12� 365/2

300
�$13.99�1.05 39,876

2
�

$2.2M , a little less than the cost of the 25 online advertising campaigns we examined.
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reduction to an 18% risk increase (in raw terms, there were 482 myocardial infarctions in the

supplement condition and 517 in the placebo). The total economic cost of a heart attack is in the

neighborhood of $1M, according to recent estimates (Shaw et al., 2006). This �gure places the

con�dence interval of the economic beni�ts/costs in the neighborhood of ±0.20 × 482 × $1M =

±96M against the $2.1M of vitamin expenditure. The con�dence interval is a staggering 50 times

the cost!19 Cancer incidence had a tighter con�dence interval but still ranged from a 7% risk

reduction to an 8% increase. A related large-scale experiment, The Selenium and Vitamin E

Cancer Prevention Trial, followed 35,533 men from 2001{2008, using a similar design. The results,

reported in Lippman et al. (2009), are similar to Lee et al. (2005). No signi�cant bene�ts are

found | the point estimates are close to zero | but the con�dence bounds are wide.

These two experiments were costly and time consuming. If one’s prior was these supplements

provided a 1-5% improvement in health outcomes, medically important magnitudes indeed, then

the data should do little to dissuade. The authors’ strong conclusions are in fact based more on the

lack of power of the experiments than the actual evidence.20 While inconclusive in terms of medical

impact, the studies do conclusively show that the supplement market is such that a new supplement

can enter and make essentially untestable claims, provided it does not contain compounds known

to cause harm.

We draw the comparison to the supplement market to show that it is not \crazy" to suppose that

market beliefs could be severely mistaken for purely statistical inference reasons.21 The example

also illustrates that too often focus is placed on rejecting a null hypothesis or not, rather than the

con�dence interval of the estimate.

4 Conclusion

In this paper we quantitatively assessed the di�culty of the statistical problem facing an advertiser.

The challenge is driven by two key facts. First, since campaigns typically involve a modest spend

per person, especially in comparison to the total amount of advertising the average person sees, the

implied break-even per-capita e�ect of an advertising campaign is small. Second, on the individual

level, the ratio of the standard deviation of sales to the mean is about 10:1 for the majority of

advertisers we study across a variety of industries. These two properties mean that estimating

advertising cost-e�ectiveness is akin to measuring a relatively weak signal in a sea of noise.

Using data from 25 large �eld experiments run at Yahoo!, accounting for $2.8M in advertising

spend, we show that even large experiments can be underpowered, given the noise in sales. A well

19While this is by no means a rigorous estimate of the economic impact of multivitamins, it does inform us regarding
the economic uncertainty of perhaps the best study performed assessing multivitamins.

20For a lay summary, see http://health.usnews.com/health-news/diet-fitness/diet/articles/2008/12/09/vitamins-
and-supplements-do-they-work.

21The supplement market stands in stark contrast to other pharmaceuticals in which the signal-to-noise ratio is
much more favorable, such as antibiotics, where there is little disagreement in what works and what does not.

25



designed experiment can be informative, but is by no means perfect, and some questions, such as \is

my ROI near 10%" are shown to be nearly impossible to answer. Even if true e�ect of the campaign

is hugely successfully, such as ROI=50%, we show it is di�cult, but not impossible, to reliably

reject that the campaign merely broke even. Given the underwhelming power of experiments,

the temptatation is to turn to observational methods. It turns out that the data features that

make experiments underpowered, severely bias observational methods in this setting. Observational

methods that fail to account for sources of endogeneity that only explains a tiny fraction of variation

in sales, R2 on the order of 0.000005, would severely bias estimates, typically upwards.

Our conclusion is twofold. The �rst is that we argue strongly for the use of experiments, given

the severe biases of observational methods. The second is that experiments are not magic bullets.

The information structure of the market means that advertising e�ectiveness is very di�cult to

measure, and thus we should not be surprised if imprecise or mistaken beliefs proliferate.
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5 Appendix

Appendix Figure 1: Example of display ad.
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Appendix Figure 2: U.S. Ad Spending 1919{2007.
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Appendix Figure 3: Visual example of what an e�ective advertisement looks like. Data calibrated

with median values from Table 1. We use a normal distribution for illustration purposes only.
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