Genes and Choice

Andrew Caplin, David Cesarini, Magnus Johannesson and Kevin Thom

May 1 2012

Andrew Caplin, David Cesarini, Magnus Johannesson and Kevin Genes and Choice

- Caffeine metabolized by CYP1A2 enzyme.
- Encoded by CYP1A2 gene.
- Genetic variation determines rapid vs. slow metabolizer
- 0.2 cups coffee/day per allele (Sulem *et al.*, 2011, Cornelis et al., 2011, *CYP1A2*):
- CYP1A linked to blood pressure (Levy et al., 2009).
- Possible link to heart attack (Cornelis, 2006)

- Cigarettes (The Tobacco and Genetics Consortium, 2010, *CHRNA3*): nicotinic receptor gene
 - 1.03 cigarettes/day per allele.
- Alcohol (Li et al., 2011, ADH1B): alcohol metabolism
- BMI (Frayling et al., FTO)

- Subjective Biological Production Function: $F: X \rightarrow \Delta(B)$
 - Commodity space X dynamic consumption path
 - B holistic) subjective state (incl. biology)
 - Mapping biological/neurological/belief-based
 - Taste immediate, predictable
 - Future production uncertain
 - health effects & addiction lagged, uncertain
 - knowledge/ beliefs matter: diet
 - signals valuable

• Biological Types: $\gamma \in \Gamma$ informs $F^{\gamma} : X \to \Delta(B)$:

- Genes!
- Taste: bitterness
- Body: caffeine, alcohol, nicotine metabolism
- Health state: vulnerabilities
- Drug interactions
- Habit build up/ extinction (dopaminergic)
- Subjective differences vs. expert knowledge

- Expected Utility $U: B \to \mathbb{R}$
 - Preferences over dynamic holistic lotteries
 - Taste: Bitter
 - Health: lotteries
 - Mental states:
 - stimulated not caffeinated
 - anxious not subjected to trauma
 - Habit: dynamic
- Choice reveals only composition $U \circ F^{\gamma}$
 - Hypothesis: U independent of biological type

- Coffee: Genes and Choice
 - Life cycle approach
 - Genetic product design (pharmaceuticals)
 - Possible health connection
- Alcohol and Tobacco: Don't Start if you Can't Stop
 - Early information on cessation genes
 - Learning model for identification
 - Highly policy relevant

- *n*=9,617 Swedish twins born 1926- 1958.
- Illumina HumanOmniExpress BeadChip ~600,000 genetic markers.
- SALT survey in 2000: coffee, alcohol, smoking, BMI, health
- Roughly half similar survey in 1973.
- Potential for directed re-survey/ field test
- SNP not gene unit of observation

- Each additional T-allele on rs2472297
 - Located near CYP1A2
 - 0.38 more cups of coffee per day ($p = 10^{-18}$).
 - Increase of 0.2 cups per day ($p = 10^{-4}$) more growth 1973 2000.
 - Life cycle perspective
- Cups per day in table

rs2472297	0	1	2		
Q73	3.68 (2.50)	3.97 (2.67)	4.12 (2.96)		
Ν	2500	2015	385		
SALT	3.62 (2.41)	4.02 (2.60)	4.35 (2.94)		
Ν	4962	3956	758		
Δ	06 (2.54)	0.09 (2.81)	0.37 (2.79)		
Ν	2487	2008	384		
Noto: All highly significant					

Note: All highly significant

æ

• In spirit of Becker and Murphy (1988). Period utility:

$$U_t(C_t, A_t, \epsilon_t, H_t) = (\alpha_1 + \epsilon_t) \left(\frac{C_t}{1 + A_t}\right) + \alpha_2 \left(\frac{C_t}{1 + A_t}\right)^2 - H_t$$

Addiction stock evolves according to:

$$A_{t+1} = (1 - \delta_1)A_t + \delta_2 C_t$$

- Health shock: H_t takes the value h with probability $\frac{\exp(\phi_1 + \phi_2 C_t)}{1 + \exp(\phi_1 + \phi_2 C_t)}$, and the value 0 otherwise
- Taste shocks: ϵ_t may be serially correlated.
- Addiction formation / extinction: δ_1 governs depreciation, δ_2 affects formation
- No pricing special to coffee

- Standard estimation of gene-dependent parameters from consumption data
 - Incorporate health data: beliefs?
- Interpretations:
 - Taste: *α*₁, *α*₂
 - Consumption/health risk interaction: h, ϕ_2
 - Growth of addiction: δ_2
 - Difficulty with cessation: δ_2 : add asymmetry to model?
 - May be general: dopamine

- Reminder: Cessation/health important many cases
- Potentially coffee
- Cigarettes (The Tobacco and Genetics Consortium, 2010, *CHRNA3*): nicotinic receptor gene
 - 1.03 cigarettes/day per allele.
- Alcohol (Li et al., 2011, ADH1B): alcohol metabolism
- BMI (Frayling et al., FTO)

- Health interaction requires structural model
- Traditional regression:

$$Y = eta_0 + eta_1 \cdot SNP_S + PC \cdot eta_2 + X \cdot eta_3 + arepsilon,$$

- Limitations:
 - Ignores endogenous response to genotype
 - Ignores other moments
 - Specific functional form
 - Silent on mechanisms
 - Counter-factuals and policy

- If high risk gene more likely to get prior risk signal...
 - Can have impact on variance as much as expected value
- Let $G \in \{0, 1\}$ represent an individual's genetic type.
- Genotype-specific habituation: $\delta_2 = \underline{\delta_2}$ if G = 0, and $\delta_2 = \overline{\delta_2}$ if G = 1.
- Individuals receive informative signal (belief about the probability of being type G = 1):
- Simple parametrization.

• If the signal is correlated with type:

	G=1	G=0	Diff or Ratio
Mean	0.65	0.62	0.03
Variance	0.36	0.29	1.27**
Simulations	1000	1000	

э

-

Andrew Caplin, David Cesarini, Magnus Johannesson and Kevin Genes and Choice

• But if the signal is not correlated with type:

	G=1	G=0	Diff or Ratio
Mean	0.67	0.62	0.05*
Variance	0.37	0.29	1.26**
Simulations	1000	1000	

э

Andrew Caplin, David Cesarini, Magnus Johannesson and Kevin Genes and Choice

- Excellent data for dynamic structural model in SALT
- Understanding of cessation
 - Change in smoking
 - Information on need to stop (direct health/pregnancy etc)
 - Efforts to stop
 - Twins for information flow
 - Snuff/chewing tobacco substitution

- Promise in identifying biological cessation pathway
 - One SNP in gene DBH significantly associated with smoking cessation (The Tobacco and Genetics Consortium, 2010).
 - DBH catalyzes conversion of dopamine to norepinephrine,
 - Across addictive goods given dopamine?
 - Many other hints in literature

- Policy impact
 - Genetic elasticity of demand
 - Early warning to change demand
 - Gene specific cessation treatments
- Alcohol identical path