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Abstract

When an individual performs several tasks simultaneously, processing resources must be

allocated to different brain systems to produce energy for neurons to fire. Following the

evidence from neuroscience, we model the brain as an organization in which a coordinator

allocates limited resources to the brain systems responsible for the different tasks. Systems

are privately informed about the amount of resources necessary to perform their task and

compete to obtain the resources. The coordinator arbitrates the demands while satisfying

the resource constraint. We show that the optimal mechanism is to impose to each system

with privately known needs a cap in resources that depends negatively on the amount of

resources requested by the other system. This allocation can be implemented using a phys-

iologically plausible mechanism. Finally, we provide some implications of our theory: (i)

performance is inversely related to the difficulty of the task and can be flawless for suffi-

ciently simple tasks, (ii) the dynamic allocation rule exhibits inertia (current allocations

are increasing in past needs), and (iii) different cognitive tasks are performed by different

systems only if the tasks are sufficiently important.
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1 Introduction

Our ability to handle multiple tasks simultaneously depends on the coordination of various

brain mechanisms. Research in the brain sciences has established that individual decision

making requires the allocation of scarce processing resources to the brain systems involved

in understanding tasks, planning responses, and implementing actions. The objective of

this paper is to study the relationship between the mechanisms for allocating resources in

the brain and the quality of the resulting decisions.

To this purpose, we develop a parsimonious theory of constrained optimal behavior

based on resource allocation under neurophysiological limitations. This approach affords a

new perspective on decision-making which is different from traditional bounded rationality

models, as it provides foundations for “mistakes” and “biases” in decision-making that

do not rely on the ad-hoc imposition of imperfections. It also sets a benchmark for

determining the environments in which second-best choices are most likely to arise. The

fundamental features of brain processes that will constitute the building blocks of our

theory are briefly introduced here (in section 1.1 we review the evidence more thoroughly

and provide references to the existing literature).1 First, there is brain specialization.

Different brain systems are recruited to perform different tasks and neurons in a given

system respond exclusively to features of that particular task. These neurons remain

active as long as they receive resources and the task is not completed. The behavior of

neurons in a system is therefore consistent with the maximization of task performance.2

Second, there is “communication” of needs. The consumption of resources in a brain

system triggers a signal which results in more resources being allocated to that system.

Third, the resource allocation process is centralized. Some areas of the lateral prefrontal

cortex (LPFC) play an active role when attention is divided, for instance when two tasks

have to be completed at the same time. This points to the existence of what has been

called a ‘Central Executive System’ (CES) whose role is to coordinate the systems involved

in the different tasks. Fourth, resources are scarce. The brain has a limited capacity to

deal with concurrent tasks and, as a result, it must allocate resources efficiently.

In section 2, we build an agency model based on these four fundamental principles

1Notice that the paper takes the brain architecture as given. It does not address important questions
related to its evolutionary rationale. We refer the reader to Robson (2001b) and Robson and Samuelson
(2009) for formal models of the biological basis of economic behavior and to Robson (2001a) for a survey
of the literature. These papers, however, consider fitness of the individual rather than fitness of neuronal
groups as the evolutionary selection criterion.

2Although this is sometimes surprising for economists, there are strong physiological and evolutionary
arguments supporting the idea that brain systems compete for resources (see section 6 for a review and
discussion).
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of the brain architecture. In our model, CES (the principal) is responsible for allocating

resources to systems with privately known needs (the agents) given a resource constraint.

More precisely, we consider the case of an individual who must perform three tasks (0, 1, 2)

at the same time, each carried out by a different system (0, 1, 2). The amount of resources

necessary to perform a task is a function of its complexity, and performance decreases

with the difference between resources needed and resources obtained. Total resources are

available in a fixed amount. CES seeks to maximize the sum of performances in the three

tasks; it knows the complexity of task 0 and extracts information from systems 1 and 2

about the complexity of tasks 1 and 2 v́ıa a communication mechanism.

We first conduct a normative analysis where we assume that CES can resort to any

communication mechanism. This allows us to restrict attention to incentive compatible

direct revelation mechanisms. We characterize the optimal mechanism and show that the

allocation is such that each system is guaranteed a minimum level of resources. A system

can obtain resources above that minimum if and only if at least one of the other systems

chooses not to exhaust its guaranteed level of resources (Proposition 1). We then perform

some comparative statics and find that a resource monotonicity principle holds under fairly

general conditions: (i) if one system becomes less important (from the viewpoint of CES)

then it receives fewer resources whereas all other systems receive (weakly) more resources,

and (ii) if the total amount of resources available increases then all systems benefit to

some extent (Proposition 2).

The normative analysis is important in that it sets an upper bound on the attainable

performance. Our second result is to show that the optimal mechanism can be imple-

mented using a simple and physiologically plausible process: systems receive resources at

different rates, they choose whether to deplete them and, if they do, CES decides whether

to provide more resources (Proposition 3). This finding is critical because it establishes

that observing a simple allocation rule does not necessarily imply that individuals are

subject to ad-hoc limitations. Instead, it reflects that, for our problem, the constrained

optimal choice can be implemented with a simple ‘grab until satiated’ procedure.

Next, we derive behavioral implications of our mechanism and confront them with

the experimental results obtained in neuroscience studies. Most notably, our theory pre-

dicts that performance will be inversely related to the difficulty of the cognitive task and

flawless for sufficiently simple ones (Implications 1 and 2). It also predicts performance

improvements over time and task-inertia: if needs at every date are independently drawn

from the same (unknown) distribution, the allocation of resources at a certain date will

depend positively on the needs experienced in the past (Proposition 4 and Implications

3 and 4). These results match the experimental neuroscience evidence and arise in our
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framework only under private information of needs.3 Also, we show that in a biologically

plausible mechanism, the time required to complete an easy task is shorter the more dif-

ficult that same task was in the past (Implication 5). Finally, we propose a novel testable

implication regarding the architecture of the brain: from an informational viewpoint it

is efficient to concentrate cognitive tasks in one system whenever the importance of the

tasks is relatively low and to separate them into different systems otherwise (Proposition

5 and Implication 6).

1.1 Evidence from neuroscience

This section briefly reviews the neuroscience evidence underlying our theory.4 We will

refer to it when we introduce the formal elements of our model. We are interested in the

brain mechanisms governing decision-making when an individual is presented with two

tasks to be performed concurrently.

Tasks and systems. When a decision-maker is facing a task, populations of neurons

specialized in different features relevant for that task are recruited. These constitute a

system. To understand the ‘objective’ of a system, it is useful to look at its components:

the neurons. Neurons fire in response to certain inputs. For instance, the spiking activity

of a neuron in the visual system represents a small part of the visual environment, as

the neuron is sensitive to the presence of a few specific features only.5 As such, neurons

are only concerned about transmitting information regarding the features they are tuned

to detect. Given such a construct, a system only transmits information detected by its

components, that is, information relevant for that task. Neurons keep firing as long as

they detect relevant information. A system can therefore be represented as an entity that

cares exclusively about transmitting information to perform its own task.6

Processing resources. A task is performed through a communication process between

neurons used to detect features of the environment (in the sensory system), make choices

and send orders to act accordingly (in the motor system). Neurons use electrical impulses

3In other words, if CES knew the needs of all three systems, performance would never be flawless, it
would be identical for easy and difficult tasks and the allocation would not exhibit dynamic improvements
or inertia.

4It can be skipped by readers who either have a background in neuroscience or are not interested in
the details of the brain architecture. Readers interested in a yet more detailed introduction to these
physiological processes are referred to Brocas (2009).

5However, neurons respond not only to the presence or absence of features but also to their values by
producing graded responses. They do so by controlling the number of spikes they fire.

6A system is related to a task. That is, neurons active in one task are part of the system performing
that task, but they can also be active in a different task involving a different system. In other words, two
systems do not need to be two physically different areas of the brain.
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and chemical signals to transmit information which requires energy delivered by the oxida-

tion of glucose extracted from arterial blood. This energy is used for propagating signals

and returning the membrane to its resting potential after firing (Attwell and Laughlin,

2001). Firing therefore relies on metabolic resources (oxygen and glucose) carried by

the bloodstream. Enhanced firing in a system indicates the system is active. Given the

relationship between firing and metabolic resources, the latter are commonly used as a

proxy for neural activity7 in a series of methods that record differentials in consumption of

metabolic resources (Fox et al. (1988), Hyder et al. (2002)) or differentials in blood flow.8

This body of evidence suggests that task performance is related to the consumption of

metabolic resources9 which are, in principle, available in the bloodstream to be grabbed

by neurons.10 However, the availability of metabolic resources is only a necessary con-

dition for task performance. The metabolic cost of brain activity is high, which may be

the limiting factor for both the number of neurons that can be active at any given point

in time as well as the maximum frequency of firing of individual neurons (Lennie (2003),

Attwell and Gibb (2005)). This evidence suggests that the metabolic resources that can

be used at any given point in time are limited. Recent studies have also shown that en-

hanced firing is correlated with increased attention to a stimulus, and several processes

involving working memory have been found to be fundamental to attention (see Knudsen

(2007) for a review). Those mechanisms are believed to modulate the signals sent along

communication channels. In particular only some signals gain access to working memory

(competitive selection, see Desimone and Duncan (1995)) and the strengths of the compet-

ing signals is regulated (top down sensitivity control, see Egeth and Yantis (1997)). This

literature indicates that firing rates in a system result from a controlled usage of metabolic

resources. Synaptic plasticity is thought to be the mechanism through which such reg-

ulation occurs. We will refer to the resources that can be used to transmit information

efficiently as processing resources, but the reader may keep in mind their relationship to

7The literature studying cerebral blood flow has established the existence of a functional coupling
between neural activity and brain metabolism. Cerebral activation processes are accompanied by a dynamic
adjustment of cerebral blood flow. Blood flow is correlated with oxygen delivery to the brain. The increase
in blood flow following the presentation of a task is positively related to the performance in that task
(Duschek and Schandry (2004, 2006)).

8In particular, PET monitors detect changes in blood flow, glucose usage or oxygen consumption. fMRI
signals reflect the degree of blood oxygenation and flow, and measure the blood-oxygen-level dependent
(BOLD) response.

9The joint observation that one system receives more oxygen when a certain task is performed and that
subjects with a lesion in that system are unable to perform the task provides yet another indirect support
for the idea that the system utilizes resources to perform the task.

10Some medical conditions are characterized by the inability to regulate the amount of resources in the
brain. For instance, too much or too little glucose in insulin-dependent diabetes patients have detrimental
effects on cognitive functions (Cox et al., 2005).
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other terminologies such as attentional resources or computational resources. Processing

resources are scarce and their allocation is constrained.

Asymmetric information. Typically, neurons in a system detect information contained

in a stimulus before neurons in other systems, creating a time lag during which only

part of the brain possesses relevant information about the stimulus. This information

becomes available to other interested brain areas if and when it is transmitted. Besides,

most brain areas are typically either unconnected or unidirectionally connected to other

areas. This feature of the brain anatomy is the result of evolution, which optimizes the

number and location of the highly scarce and energetically demanding neural connections.

Delayed transmission and limited neural connectivity immediately implies a restricted flow

of information or, in the economics language, asymmetric information.

Centralization of the resource allocation process. A number of fMRI studies have found

that certain regions of the LPFC exhibit enhanced activation when two tasks are performed

simultaneously. These regions do not exhibit such enhanced activation (i) when only one

task is presented to the subject, (ii) when both tasks are presented but the subject is

instructed to selectively focus on only one of them, or (iii) when both tasks are presented

and performed sequentially (D’Esposito et al. (1995), Herath et al. (2001), Szameitat et

al. (2002), Jiang (2004)). The same phenomenon is observed for branching, that is, when

subjects must keep in mind a main goal while performing concurrent subgoals (Koechlin

et al. (1999)). In parallel, the literature on task switching has found that several regions

of the PFC are activated when a switch occurs (Monsell (2003)). The results point to the

existence of a Central Executive System (CES) whose role is to “coordinate the concurrent

processing of the different streams of information” (Szameitat et al. (2002, p. 1184)).

Studies using other techniques also support this idea: patients with brain lesions in the

left DLPFC have problems switching between the attributes they are instructed to attend

to (Rogers et al. (1998), Keele and Rafal (2000)) and subjects in a TMS study whose

DLPFC has been disrupted exhibit an impaired ability to divide attention between tasks

(Johnson et al. (2007)).

Behavioral interferences and neural activity patterns. Single- vs. dual-task experiments

have established some interesting results on neural activation and behavioral patterns.

Studies have shown that the volume of activation is smaller in the dual-task condition

than in the sum of the two related single-task conditions (Just et al. (2001), Loose et al.

(2003), Johnson and Zatorre (2006), Newman et al. (2007)).11 Sub-additivity suggests the

11These studies measure activity in the sensory and association areas that are active in one (and only one)
of the tasks. They are designed to minimize overlapping areas by choosing tasks that are known to recruit
different brain systems (e.g., mental rotation of visually depicted objects and auditory comprehension).
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existence of “biological mechanisms that place an upper bound on the amount of cortical

tissue that can be activated at any given time” (Just et al. (2001, p. 424)).12 Some other

studies highlight a significant behavioral interference when subjects perform the dual-

task. In particular, reaction times (Jiang, 2004)) and error rates (Szameitat et al., 2002)

increase, suggesting that the two tasks compete for attention. Behaviorally, performance

in the dual-task is lower than in the sum of the two single tasks (Just et al., 2001), which is

consistent with the above mentioned activation patterns, and with the scarcity hypothesis

of processing resources.

Combining the evidence just reviewed, we will build a theory in line with the CES

hypothesis and endow it with the ability to allocate scarce processing resources. We will

then derive some behavioral implications. Yet, our theory is abstract; the reader shall

keep in mind that the role of the CES could be performed by a different brain system or

process. As such, any controversy arising over the specific role of CES should not apply

to our theoretical argument.

1.2 Related literature in economics

From a theoretical viewpoint, the problem is related to two strands of the information eco-

nomics literature. First, the research on mechanism design without transfers (Holmström

(1977), Melumad and Shibano (1991), Alonso and Matouschek (2007, 2008)).13 While

the absence of transfers typically requires justification in the literature on organizations,

in our setting the neurobiology evidence indicates that CES can choose how to allocate

resources between systems but does not possess any other means of ‘compensation’. Re-

cent papers on this literature have studied problems with multiple agents (Martimort and

Semenov (2008), Carrasco and Fuchs (2009)) or multiple actions (Koessler and Martimort,

2009). The present paper combines aspects of multiple agents and multiple actions in a

novel setting with capacity constraints. Second the axiomatic social choice literature that

studies rationing problems (Sprumont (1991), Barbera, Jackson and Neme (1997) and

Moulin (2000)). This literature has provided characterizations of rationing mechanisms

that satisfy efficiency, strategy-proofness and certain additional properties. For instance,

Sprumont (1991) shows that the uniform rule is the unique mechanism that guarantees

efficiency, strategy-proofness and symmetry, while Barbera, Jackson and Neme (1997)

12A puzzling result in Just et al. (2001) is that, contrary to the other papers reviewed above, LPFC
activation does not change between the single- and dual-task treatments. A possible explanation is that
subjects are requested to perform high-level cognitive tasks so that the single-task treatment may already
be producing significant activation in the LPFC.

13Mechanism design problems with transfers and quasi-linear utilities are generally simpler to solve, since
it is possible to use standard Lagrangian techniques (see e.g. Fudenberg and Tirole (1991, ch. 7)).
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allow for asymmetric rules and characterize those that additionally satisfy replacement-

monotonicity. In contrast to this literature, our focus is on the mechanisms that are

efficient, strategy-proof and that maximize the expected performance of systems.

From a conceptual viewpoint, the paper is related to the behavioral economics litera-

ture that studies decision-making when individuals have imperfect self-knowledge. Recent

papers have emphasized the gains from ignorance under decreasing impatience (Carrillo

and Mariotti (2000), Bénabou and Tirole (2002, 2004), Brocas and Carrillo (2005), Ali

(2009)) and the strategic choice of actions as self-signaling devices (Bodner and Prelec

(2003), Bénabou and Tirole (2006), Dal Bo and Terviö (2007)). Our model focuses on a

different set of issues, namely performance in a multi-tasking environment. It also departs

significantly in the methodological approach: rather than building a model of boundedly

rational behavior based either on introspection or on empirical / experimental data, we

take the neuroscience findings about the brain architecture as inputs for modeling the

constraints in the optimization problem.14

2 The model

2.1 Systems and objectives

Based on the evidence described in section 1.1, we build the following resource allocation

model. First, there is a set of systems. Each system is responsible for a task, which

can be as simple as a basic motor skill action or as complex as a high order reasoning.

Systems are composed of neurons. They demand resources in an amount that depends

on the complexity of the task to be performed. Resource deficits imply a decrease in

performance. Second, there is a Central Executive System (CES) which is responsible for

the optimal allocation of the scarce resources between systems and whose objective is to

maximize overall performance in the tasks.

Formally, we assume there are three tasks, and system l (∈ L = {0, 1, 2}) is responsible

for task l. As reviewed in section 1.1, system l can be formally represented as a selfish

entity focused exclusively on the performance in its own task. Let Θl = [0, θl] be the set of

possible resources task l may require. If, in a given instance, θl ∈ Θl is the actual amount

of resources necessary to carry out task l flawlessly and xl are the resources allocated to

system l, the system seeks xl = θl resources. Without loss of generality, a system can be

endowed with a performance function Πl(xl; θl) that is maximized at xl = θl. There is a

loss whenever xl < θl because the task cannot be completed with perfect accuracy. The

14In that respect, the paper is closer to Brocas and Carrillo (2008) which studies the dynamic choices of
an individual when brain systems have different mental representations of current vs. distant prospects.
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effect of too many resources is ambiguous. Indeed, the system may be able to costlessly

discard resources above θl, which would formally mean that Πl(xl; θl) = Πl(θl; θl) for all

xl ≥ θl. Alternatively, too many resources may have counter effects on performance or,

formally, Πl(xl; θl) < Πl(x
′
l; θl) for all xl > x′l ≥ θl (for example, excessive attentional

resources may cause choking). In any case, the performance function should be increasing

in xl up to θl and non-increasing above it. To simplify the exposition, we assume a simple

quadratic expression:15

Πl(xl; θl) = − 1

βl
(xl − θl)2, βl > 0 (1)

As the absolute difference between needs and resources granted |θl − xl| increases, perfor-

mance deteriorates. Also, a more complex task requires more resources.16

Finally, a decrease in βl raises the marginal cost of unfulfilled needs for any level of

needs and resources.

2.2 Optimization under full information

The optimization problem of CES consists in distributing a fixed amount of resources k

among the three systems so as to maximize the sum of performances on the tasks given

their respective needs. We can formally represent it as:

max
{x0,x1,x2}

Π0(x0; θ0) + Π1(x1; θ1) + Π2(x2; θ2)

s.t. x0 + x1 + x2 ≤ k (R)

x0 ≥ 0, x1 ≥ 0, x2 ≥ 0 (F)

The resource constraint (R) reflects the maximum resources k available to perform the

three tasks. The feasibility constraint (F) captures the minimum resources that can be

allocated to each system (the analysis can be trivially extended to a positive minimum

amount of resources necessary for a system to operate). Notice that CES is ‘utilitarian’

in the sense that each system carries equal weight.17

15Because we will assume scarcity of resources it will always be the case that, in equilibrium, xl ≤ �l.
Hence, identical results would be obtained if we assumed instead Πl(xl; �l) = Πl(�l; �l) for all xl ≥ �l.

16Note that the comparison over levels of complexity is defined within tasks not between tasks. So, for
example, we argue that spelling an 8 letter word is more complex (and hence necessitates more resources)
than spelling a 3 letter word.

17A formally equivalent interpretation would be to say that performance of system l is given by
Π̃l(xl; �l) = −(xl − �l)2 and that CES maximizes a weighted sum of performances

∑
l Π̃l(xl; �l)=�l, where

1=�l measures the relative importance of system l. These weights could be related to a system of rewards
imposed externally to complete these tasks.
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The problem is interesting when θ0 + θ1 + θ2 > k, as it implies that (R) binds at

the optimum and systems are rationed. Given (1) and assuming an interior solution for

all systems (xFl > 0), the first-best outcome to this problem is (corner solutions are also

straightforward to analyze):

xFl = θl −
βl∑

l′∈L
βl′

(∑
l′∈L

θl′ − k

)
(2)

Equation (2) simply means that, at equilibrium, no system receives its needs. More

precisely, system l obtains its desired amount minus a fraction of the excess resource

demand. This fraction depends on the cost for system l to receive less than θl relative to

the cost for the other systems (or on the relative importance of system l for CES in the

alternative interpretation). For instance, if β1 = β2, the shortage is the same for systems

1 and 2: xF1 − θ1 = xF2 − θ2. Under first-best rationing, the performance of system l is:

Πl(x
F
l ; θl) = − βl

(
∑
βl′)

2 (
∑
θl′ − k)2 (3)

From this equation, notice that the performance of a system depends on the aggregate

needs (
∑
θl′) but not on the relative needs of each of them. For instance, if β1 = β2,

performance of systems 1 and 2 is the same (Π1(xF1 ; θ1) = Π2(xF2 ; θ2)) independently of

whether θ1 ≷ θ2. More importantly, (3) implies that if the actual resources required to

complete tasks are known, the individual should under-perform in all tasks whenever the

resource constraint is hit (xl < θl for all l).

3 Imperfect knowledge of needs

The more realistic and interesting situation arises when CES does not know how many

resources are required by some of the systems. As motivated in section 1.1, information

asymmetry matches the physiological evidence on brain connectivity. It introduces an

endogenous cost of resource allocation and information processing.

In the rest of the paper, we will consider two classes of systems. System 0 is responsible

for a basic motor skill task 0 which corresponds, for example, to lifting an object or looking

in a certain direction. The needs to perform this task, θ0, are known. Systems 1 and 2

are responsible for higher order cognitive tasks. These include vision, audition, abstract

projection and language, among others. We use subscripts i and j for systems 1 and 2

with i 6= j. The needs of system i, θi, are unknown to CES, and depend crucially on

the type and difficulty of the cognitive task to be performed (face identification, auditory
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comprehension, mental representation of shapes, word recognition, etc.). CES only knows

that θ1 and θ2 are independently drawn from continuous distributions with c.d.f. F 1(θ1)

and F 2(θ2) and densities f1(θ1) and f2(θ2).18 Let hi(θi) = f i(θi)
1−F i(θi) be the hazard rate

of θi. We assume that the distribution of needs of system i has an increasing hazard rate

(IHR). This condition has no meaningful interpretation in our context. It is imposed only

to facilitate the technical resolution of the problem and ensure some regularity properties

of the solution.

Assumption 1 (IHR) hi(θ
′
i) ≥ hi(θi) for all θ′i ≥ θi.

Our objective is to find the resource allocation mechanism which is optimal from the

viewpoint of CES given its imperfect knowledge of needs.

The first step of our analysis consists in adopting a normative approach and determine

the optimal allocation when CES can use any conceivable communication mechanism:

each system sends a message requesting resources and CES responds with an allocation as

a function of the messages received. The obvious advantage of this approach is that we can

apply the revelation principle. However, is it realistic to think in these terms? The answer

is yes and no. On the one hand, our entire research rests on the fact that the brain has

some specific, well-documented physiological limitations in the availability, transmission

and processing of information, so putting no restrictions on the type of communication

allowed contradicts that view. On the other hand, we show in Appendix A1 that a pseudo-

dynamic mechanism where CES allocates some initial resources, systems choose whether

to consume them and, as a function of their choice, CES decides whether to grant more

resources is formally equivalent to a static incentive compatible mechanism where systems

(truthfully) report their needs. Either way, a crucial advantage of the normative analysis

is that it provides an upper bound on the attainable performance of CES. A contribution

of the paper will rest on the subsequent positive approach (section 3.5), where we do

investigate if the optimal allocation described in the normative analysis can indeed be

implemented using a simple and physiologically plausible mechanism. Lastly, we restrict

attention to mechanisms that are ex-post efficient and can be implemented in dominant

strategies. From a neuroeconomic viewpoint, implementation in dominant strategies seems

most natural as it ensures that a system does not have to ‘form beliefs’ about the objectives,

needs, demands or even the ‘existence’ of other systems.19 Ex-post efficiency rules out the

18The results can be trivially extended to more than one system (and therefore more than one task)
with known needs. By contrast, extensions to three or more systems with unknown needs are challenging.

19From a theory viewpoint it would be interesting (but also difficult) to determine the optimal mechanism
in Bayesian strategies, as Carrasco and Fuchs (2009) do in a somewhat related theoretical setting. However,
we would have a hard time interpreting this type of mechanisms in our context.
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possibility that once the needs are reported both the CES and the systems agree to a

change in the allocation.

Applying the revelation principle, we can without loss of generality restrict attention

to direct revelation mechanisms where each system i ‘announces’ its needs θ̃i ∈ Θi. Based

on the announcements, CES ‘commits’ to a resource allocation rule:

X (θ̃1, θ̃2) =
{
x0(θ̃1, θ̃2), x1(θ̃1, θ̃2), x2(θ̃1, θ̃2)

}
(θ̃1,θ̃2)∈Θ1×Θ2

The allocation rule is constructed in a way that announcing θ̃i = θi is a dominant strategy

for system i, that is:

Πi(xi(θi, θj); θi) ≥ Πi(xi(θ̃i, θj); θi) ∀ i, θi, θ̃i, θj (DSIC)

Notice that the assumptions imposed on systems are minimal. Following the evidence

reviewed above, the only concern of a system is to obtain the resources necessary to

complete its task. Each system realizes that resources are scarce (simply by observing

that its needs are not always fulfilled) and that their availability may depend on external

factors. However, awareness of the necessities or even the existence of other systems and

other tasks is not required.

3.1 The optimization problem

Given the imperfect knowledge of needs, we will assume that CES maximizes the expected

performance in the tasks. From the work by Sprumont (1991) and Barbera, Jackson and

Neme (1997) on social choice rules it is known that all the direct revelation mechanisms

which are ex-post efficient and incentive compatible in dominant strategies have a resource

cap structure: each system with private needs is granted the resources it requests up to

a cap, and the cap imposed on one system depends on the report of the other system.

In our setup, it means that the set of ex-post efficient, direct revelation mechanisms

D(x̄1(θ2), x̄2(θ1)) ∈ X (θ1, θ2) are of the form:

D(x̄1(θ2), x̄2(θ1)) =


x1(θ1, θ2) = min {θ1, x̄1(θ2)}
x2(θ1, θ2) = min {θ2, x̄2(θ1)}
x0(θ1, θ2) = k − x1(θ1, θ2)− x2(θ1, θ2)

(4)

The problem under asymmetric information reduces to:

max
D(x̄1(θ2),x̄2(θ1))

∫ ∫ [
Π0(x0(θ1, θ2); θ0) + Π1(x1(θ1, θ2); θ1) + Π2(x2(θ1, θ2); θ2)

]
dF 1(θ1) dF 2(θ2)

s.t. x0(θ1, θ2) + x1(θ1, θ2) + x2(θ1, θ2) ≤ k ∀ θ1, θ2 (R)

x0(θ1, θ2) ≥ 0, x1(θ1, θ2) ≥ 0, x2(θ1, θ2) ≥ 0 ∀ θ1, θ2 (F)
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where the dominant strategy incentive compatibility constraint (DSIC) is automatically

satisfied by the mechanism D(x̄1(θ2), x̄2(θ1)) and therefore ignored, and (R) and (F) are

the resource and feasibility constraints introduced previously. The problem presupposes

that CES does not necessitate resources to coordinate the needs of systems. This goes

largely against the evidence presented in section 1.1 but it is imposed only for simplicity.

Indeed, one could trivially extend the model and assume that CES requires k̃ resources for

coordinating activities and that only k− k̃ resources are available for the three systems.20

Next, we assume that θ0 > k, which is sufficient to ensure that (R) always binds at the

optimum. Intuitively, it means that the resources are always exhausted, even when the

individual is not performing any cognitive task.21 The assumption is not necessary, but it

makes the optimization slightly simpler by removing one variable (x0) and one constraint

(R) from the problem. It also makes the comparative statics cleaner by preventing corner

solutions to depend on the realizations of the private information parameters θ1 and θ2.

Finally, notice that the marginal cost of failing short from the needs of the motor skill

system depends on β0. We can then use this parameter to scale down (or even make

arbitrarily small) the importance of task 0 in the problem. Using (R) to express x0 as a

function of x1 and x2, inserting this expression in Π0(·) and using the quadratic formulation

for Πl(·), we can rewrite the problem as:

P : max
D(x̄1(θ2),x̄2(θ1))

∫ ∫
−
[

1

β1

(
x1(θ1, θ2)− θ1

)2
+

1

β2

(
x2(θ1, θ2)− θ2

)2

+
1

β0

(
k − x1(θ1, θ2)− x2(θ1, θ2)− θ0

)2
]
dF 1(θ1)dF 2(θ2)

s.t. x1(θ1, θ2) ≥ 0, x2(θ1, θ2) ≥ 0, x1(θ1, θ2) + x2(θ1, θ2) ≤ k ∀ θ1, θ2 (F)

Notice that our initial problem with three systems (two with private needs, one with public

needs) and free resources up to a fixed capacity constraint k can be formally rewritten

as P, a problem with only two systems (both with private needs) and where the sum of

resources is increasingly costly and bounded above.22 In the next section, we determine

the optimal caps x̄1(θ2) and x̄2(θ1).

20We can even assume that more difficult tasks require more resources for coordination (formally, k̃(�1; �2)
with @k̃=@�i > 0). All that matters is that different allocation mechanisms do not require different amounts
of resources (otherwise, the revelation principle may not hold).

21Recall that system 0 can represent several systems with known needs.
22In other words, our problem would be solved in an identical manner under the (biologically less

probable) assumption that total resources k are unbounded but there is a convex cost c(k) to obtain them.
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3.2 Priority mechanisms

In order to derive the D(x̄1(θ2), x̄2(θ1)) allocation mechanism that solves problem P, it

is instructive to study first a simpler ‘priority mechanism.’ Following Moulin (2000), let

us call priority mechanism Pi a rule that first allocates to system i its desired needs θi
(provided that θi ≤ k), and then divides the remaining resources k− θi optimally between

systems 0 and j.23 Assume the parameters of the model are such that all systems receive

a positive amount of resources.24 We summarize the characteristics of the optimal priority

mechanism Pi in the following lemma.

Lemma 1 The optimal priority mechanism Pi is given by x̄Pii (θj) = k for all θj and

x̄Pij (θi) = yj(θi), where yj(θi) is continuous, non-increasing and such that

1

βj

(
E[θj | θj ≥ yj(θi)]− yj(θi)

)
=

1

β0

(
θ0 − [k − θi − yj(θi)]

)
(5)

Furthermore, under Assumption 1, y′j(θi) ∈ (−1, 0) whenever 0 < yj(θi) < k − θi.

Proof: See Appendix A2. 2

When CES chooses to satisfy all the needs of system i, the only issue left is to decide

on the split of the remaining resources k − θi between 0 and j. Given its restricted set

of tools (and, in particular, its inability to provide some ‘compensation’ in exchange of

truthful revelation of needs), the optimum takes the form of a resource cap yj(θi) granted

to system j. Needs below the cap are fully satisfied, whereas needs above the cap are

constrained. The remaining resources k − θi − min{θj , yj(θi)} are assigned to system 0.

As reflected by (5), the cap is uniquely determined using an intuitive marginal analysis

argument. Conditional on system j being effectively constrained (θj > yj), the marginal

benefit of allocating resources to system 0 (right-hand side of the equation, where needs

are θ0 and resources granted are k − θi − yj) must be equal to the expected marginal

benefit of allocating resources to system j (left-hand side of the equation, where expected

needs are E[θj | θj ≥ yj ] and resources granted are yj). Last, a simple resource cap is

actually the optimal priority mechanism even if we consider priority mechanisms that are

not necessarily ex-post efficient (the formal argument can be found in the proof of Lemma

1).

23Therefore, a Pi-priority mechanism is equivalent to %-priority mechanism in Moulin (2000) where
systems j and 0 are in the same priority class and system i has priority over both of them.

24For all the mechanisms described in the paper, the appendix provides necessary and sufficient condi-
tions for interior solutions to exist. It also characterizes the mechanisms when those conditions are not
satisfied.
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Under mild technical conditions (Assumption 1), if the needs of system i increase,

the amount of resources allocated both to system 0 and to system j decrease (formally,

y′j(θi) ∈ (−1, 0)). This property means, in particular, that both non-priority systems 0

and j are always better-off if the priority system i requests fewer resources. Finally, notice

that the priority mechanism Pi will be particularly inefficient from the viewpoint of CES

when θi is large (since fewer resources will be available for the other systems independently

of their needs) and when βi is large (since it would be relatively inexpensive to constrain

system i to an allocation below its needs).

3.3 Optimal resource allocation with unknown needs

With these premises in mind, we can now characterize the optimal allocation mechanism.

Let us denote by M the D(x̄1(θ2), x̄2(θ1)) mechanism that solves problem P. Proposition

1 provides a characterization of M.

Proposition 1 (Characterization) The optimal mechanism M is:

x̄∗1(θ2) =

{
y1(θ2) if θ2 < k2

k1 if θ2 ≥ k2
and x̄∗2(θ1) =

{
y2(θ1) if θ1 < k1

k2 if θ1 ≥ k1

where yj(θi) is given by (5), and k1 and k2 are such that:

1

β1

(
E[θ1 | θ1 ≥ k1]− k1

)
=

1

β2

(
E[θ2 | θ2 ≥ k2]− k2

)
=

1

β0

(
θ0 − k0

)
(6)

with k0 ≡ k− k1 − k2. In other words, M follows P1 when θ1 < k1 and P2 when θ2 < k2.

It allocates fixed amounts (k0, k1, k2) to systems 0, 1 and 2 when θ1 ≥ k1 and θ2 ≥ k2.

Proof: See Appendix A3. 2

In what follows, we denote the equilibrium allocation by x∗1(θ1, θ2) and x∗2(θ1, θ2). The

optimal mechanism M divides the space into four regions determined by the constants k1

and k2. If both cognitive systems request ‘few’ resources (θ1 < k1 and θ2 < k2) they each

receive their desired amounts (x∗1(θ1, θ2) = θ1 and x∗2(θ1, θ2) = θ2). If system i requests

‘few’ resources and system j requests ‘many’ resources (θi < ki and θj ≥ kj), system i

receives full priority and system j is constrained according to Pi (see (5)) (x∗i (θi, θj) = θi
and x∗j (θi, θj) = min{θj , yj(θi)}). If both systems require ‘many’ resources (θ1 ≥ k1 and

θ2 ≥ k2), they both receive fixed amounts (x∗1(θ1, θ2) = k1 and x∗2(θ1, θ2) = k2). In all

cases, the remaining resources (if any) are allocated to system 0. The values k1 and k2 are

given by the intersection of the cap functions y2(θ1) and y1(θ2). As reflected by (6), they

correspond to the amounts where the marginal benefit of allocating resources to system

14



0 equals the expected marginal benefit of allocating them to either of the constrained

systems 1 and 2. Naturally, k1 = k2 when the cognitive tasks are symmetric from the

CES viewpoint (that is, when F 1(·) = F 2(·) and β1 = β2). Figure 1 provides a graphical

representation of the resources (x∗1(θ1, θ2), x∗2(θ1, θ2)) allocated to systems 1 and 2 under

M for every pair of needs (θ1, θ2). Since k1 + k2 < k, the resources x∗0(θ1, θ2) = k −
x∗1(θ1, θ2)− x∗2(θ1, θ2) > 0 are going to system 0.
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Figure 1. Allocation (x∗1, x
∗
2) as a function of needs (θ1, θ2) in the optimal mechanism M.

x̄∗2(θ1)

x̄∗1(θ2)

��	

θ1 + θ2 = k

The intuition for the optimality of M is as follows. By the very definition of a “priority

mechanism”, the cap on the resources granted to system j in the optimal mechanism M

has to be at least as high as the cap in the mechanism Pi that gives priority to the

other system (formally, x̄∗j (θi) ≥ x̄Pij (θi) = yj(θi) for all θi). Suppose now that, following

P2, x̄∗1(θ2) = y1(θ2) for all θ2 < k2. It means that system 2 can be unconstrained in

that interval or, equivalently, that x̄∗2(θ1) = k2 (> y2(θ1)) is achievable for all θ2 < k2.

Using a symmetric reasoning for x̄∗2(θ1) when θ1 < k1, we conclude that M is a feasible

mechanism. However, it does not prove its optimality. One could think that for some

θ2 < k2 improvements could be made by setting a cap x̃1(θ2) > y1(θ2) at the expense of

x̃2(θ1) < k2. This, however, is not possible. Indeed, whenever the constraint of system

1 is binding (x̃1(θ2) < θ1), its allocation x∗1(θ1, θ2) cannot depend on its needs θ1. But

then, using the first order condition of system 2, it implies that the allocation of system 2

cannot depend on θ1 either, which contradicts the possibility of a cap x̃2(θ1) < k2.
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Notice that under mechanism M, system l ∈ {0, 1, 2} has a minimum amount of

guaranteed resources kl. If the needs of a system exceed the amount allocated, extra

resources can be obtained, but only if one of the other systems does not exhaust its quota.

The optimal mechanism M has two important properties that we describe below.

Implication 1 If needs are public, the individual will always under-perform in the cogni-

tive tasks. If needs are private, the individual will perform flawlessly in simple cognitive

tasks and severely under-perform in difficult cognitive tasks.

Recall that under complete information, each system always receives fewer resources

than its actual needs (see (2)). This implies that the individual will always under-perform

in tasks 1 and 2. Under asymmetric information, on the contrary, each system has a chance

to be granted all its needs. Therefore, the individual will perform cognitive tasks flawlessly

as long as they are simple enough. The result is illustrated in Figure 2. It represents the

allocation of resources to system i under complete information (dotted line) and incomplete

information (full line) as a function of its needs θi and for a given announcement θj of

the needs by system j. The result implies in particular that flawless decision-making

is not consistent with the complete information model (except in the uninteresting case

where total resources exceed maximum needs). By contrast, the incomplete information

model captures the possibility that an individual may make correct decisions even under

multi-tasking.

-
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Figure 2. Allocations xFi and x∗i as a function of the needs θi.

We can also see from Figure 2 that, as the needs of system i increase, the allocation

obtained by that system under M is fully responsive up to a level (dx∗i /dθi = 1), and

non-responsive afterwards (dx∗i /dθi = 0). Again, this is to be contrasted with the full

information case in which the allocation increases always. Thus, there exists a cutoff
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value such that, compared to the full information case, a system with private information

will obtain more resources and therefore perform better when its needs are below the

cutoff, that is, when the task is easy. Conversely, it will obtain less resources and therefore

perform worse when its needs are above the cutoff, that is, when the task is difficult. The

testable implication of the asymmetric information model is that, fixing the difficulty of

one task and varying the difficulty of the other, the individual should perform flawlessly

in the latter up to a point and have a decreasing performance afterwards.

According to M, the relative performance across cognitive tasks is also qualitatively

different under incomplete information. To make this point clear, we consider the case

where both cognitive tasks are of equal importance (β1 = β2) and we fix the total amount

of needs θ0 + θ1 + θ2.

Implication 2 Consider a multi-task setting where both cognitive tasks are of equal im-

portance (β1 = β2). If needs are public, the individual will perform equally in simple and

in difficult tasks. If needs are private, the individual will perform better in simple tasks

than in difficult tasks.

When β1 = β2, under full information, the performance of a system depends on total

needs but not on how these needs are distributed across systems. In other words, fixing

a total amount of needs (θ0 + θ1 + θ2), we have θ1 − xF1 = θ2 − xF2 and the relative

performance of systems 1 and 2 is the same (see (3)). Under private information and

again for a given total amount of realized needs, the system with smallest needs (doing

the easy task) will obtain relatively more resources than the system with the highest needs

(doing the difficult task). That is, if θ1 < θ2, θ1 − x∗1(θ1, θ2) < θ2 − x∗2(θ1, θ2). Therefore,

the system performing the easy task will perform better than the system performing the

difficult task. This performance asymmetry between simple and difficult tasks is supported

by the neuroscience evidence (D’Esposito et al. (1995)).25

3.4 Comparative statics

In this section, we study how the allocation mechanism is affected by changes in the

resources available and the relative importance of the systems. Consider the optimal

mechanism M given the parameters (β0, β1, β2, θ0, k). We have the following result.

25Under more general functional forms of Π(·) it may not be the case that performance under full
information is identical in the easy and difficult tasks. However, it will still be true that asymmetric
information exacerbates the difference in performance.
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Proposition 2 (Comparative statics) The resources x∗l (θ1, θ2) allocated to system l (∈
{0, 1, 2}) (weakly) increase if βl decreases or if β−l or k increases. Also, x∗i (θ1, θ2) decreases

and x∗0(θ1, θ2) increases if θ0 increases.

Proof: See Appendix A4. 2

Under fairly general conditions, the comparative statics follow a general resource mono-

tonicity principle which can be summarized as “abundance is shared and relative impor-

tance is compensated.” If a system becomes more valuable for CES (due, for example, to

an increase in the marginal cost of under-performance), it receives more resources at the

expense of both the other systems. Conversely, if new resources become available, then all

systems benefit from this surplus.26

Changes in β0 are particularly illuminating. If shortages in the amount granted to

the motor skill task become less and less costly (β0 increases), systems 1 and 2 receive

more resources (yi(θj) increases for all θj). They also become less sensitive to each other’s

demands (|y′i(θj)| decreases for all θj), because higher needs of system j come more at

the expense of system 0 and less at the expense of system i. Eventually, x∗0 hits the non-

negativity constraint. Once this occurs, system 0 receives no resources and the problem

reduces to allocating a fixed amount k between systems 1 and 2.

The optimal mechanism M and the comparative statics can be illustrated with the

following stylized analytical example.27

Example 1 (Uniform) Suppose that θi ∼ U[0, θi]. Let θ0 = k. Using (5)-(6), we get:

yi(θj) =
β0θi

β0 + 2βi
− 2βi
β0 + 2βi

θj and ki =
β0θi + 2βjθi − 2βiθj
β0 + 2βi + 2βj

where the slope of the cap function is constant: y′i(θj) = −µi ≡ − 2βi
β0+2βi

∈ (−1, 0).

Naturally, one may wonder how much efficiency is lost under the optimal mechanism

M relative to the full information case, and also how much is gained under M relatively to

some simpler priority mechanisms. We address this question with the following analytical

example.

Example 2 (Utility loss) Suppose that θl ∼ U[0, 1], βl = 1 for all l and θ0 − k ≡ r ∈
[0, 1/2]. The expected utility under first best (Full Information), second-best (Mechanism

26As demonstrated in Appendix A2 and A3, Assumption 1 is a sufficient condition so that the cap
in resources for the non-priority system decreases at a rate slower than the increase in the needs of the
priority system (formally, y′j(�i) ∈ (−1; 0)). This immediately implies the resource monotonicity property.
Moreover, it also ensures that y2(�1) and y1(�2) intersect at most once, and therefore that an equilibrium
where every system receives a positive amount of resources is necessarily unique.

27The algebraic details in Examples 1 and 2 are omitted for brevity but are available from the authors.
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Figure 3. Utility loss under full information (light thick line), mechanism M (dashed
line), Priority i-j-0 (dotted line) and Priority 0-i-j (dark thin line).

M), a mechanism that gives priority to i, then j, then 0 (Priority i-j-0) and a mechanism

that gives priority to 0, then i, then j (Priority 0-i-j) as a function of r are given by:28

Full information Mechanism M Priority i-j-0 Priority 0-i-j

−52r+30r2+4r3+5r4+29
72 −5132r+1974r2−592r3+176r4+3191

6750 −496r+312r2+64r3+16r4+277
432 −3r2+2

3

These utility losses are graphically represented in Figure 3.

When r = 0, M performs substantially better than other simple mechanisms: the

utility loss under M is 20% bigger than under first-best (and it decreases with r), whereas

the utility loss under either priority mechanisms is 60% bigger than under first-best. As

r increases, the inefficienithe7879ithe7879Priorityi-j-0 increases whereas the inefficienithe7859ithe7879Priority

0-i-j



to systems 1 and 2 (i.e., higher r) implies that more resources should be granted to that

system.

3.5 Implementation

The solution described in Proposition 1 represents a normative upper bound on the effi-

ciency of the resource allocation problem. A direct revelation mechanism where each sys-

tem ‘communicates’ its needs truthfully given the ‘commitment’ by CES to split resources

following a pre-specified rule is nothing but an abstract formalization of the problem. In-

deed, although systems may not be able to literally send messages to CES, they can signal

their needs through the usage of the processing resources made available to them.29 As

discussed in Appendix A1, the direct revelation and signal-through-consumption mech-

anisms can be formally equivalent. However, that approach is still fairly abstract. The

purpose of this section is to determine whether the efficient allocation rule can be reached

using a simple and biologically plausible process. Assume that the tasks must be com-

pleted between time 0 and time k, and only one unit of processing resources is delivered

at each instant. We may think of processing resources as metabolic resources that can

be used to efficiently transmit a signal. Such efficient transmission is made possible for

instance if synaptic connections are set such that the signal is emphasized while signals

originating from distractors are suppressed. As such, processing resources may be under-

stood as the combination of metabolic resources used by neurons to fire and plasticity of

synaptic connections. We can also understand an increase in processing resources as an

increase in synaptic plasticity while keeping metabolic resources constant.

Proposition 3 (Implementation) M can be implemented with the following procedure.

(i) CES sends resources to system l at a rate rl = kl/k.

(ii) As long as i and j consume resources, the flow rates (r0, r1, r2) are maintained. If

i stops consuming at time t̃ (where rit̃ = θi), then resources are redirected to j and 0 at

revised rates νj and (1− νj), such that rj t̃+ νj(k − t̃) = yj(rit̃).

(iii) If both i and j stop consuming, all the remaining resources are redirected to 0.

Proof: Trivial to check, thus omitted. 2

The mechanism follows the biological principles highlighted in the introduction. CES

sends resources simultaneously to the systems in charge of performing tasks. The systems

deplete the resources, and depletion is (correctly) interpreted by CES as a signal that more

29Signaling in the brain is not very well understood. Recent studies show that astrocytes also engage in
signal transmission (see Fellin (2009) for a review).
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resources are needed. The process is dynamic but extremely fast. If one system stops

consuming (i.e., neurons stop firing), no further resources are sent to it. This mechanism

is extraordinarily simple for systems: it just requires them to grab any incoming resources

until they are satiated (i.e, until the task is performed at full satisfaction). It means in

particular that, for the optimal mechanism to work, each system’s knowledge about the

existence and needs of other systems is virtually nil. In fact, systems do not even need

to know their own needs at any point in time, only whether an extra resource is valuable

or not. On the other hand, the mechanism requires a certain degree of sophistication by

CES, which must be able to select different flow rates for different systems and be ready

to redirect resources when some needs are satiated. We hypothesize that the activity

measured in the LPFC in the dual-task experiments reviewed in section 1.1 (D’Esposito

et al. (1995), Szameitat et al. (2002) and others) captures precisely this extra top-down

involvement of CES in the coordination and allocation of “attentional resources.”

4 Task inertia and performance improvements

In this section we study the sequential allocation of resources. To this purpose consider the

following extension of the basic model. Suppose that CES has imperfect knowledge of the

distribution F i(·) from which the needs of system i (∈ {1, 2}) are drawn. More precisely,

there is an underlying state si ∈ Si = [si, si] that determines the distribution of needs

for system i. For example, suppose the individual performs an auditory comprehension

task which is often (though not always) complex. Then, the auditory system will often

(though, again, not always) require substantial resources. This is formally captured by an

underlying state si that places high probability on auditory needs being large.

We order the states from highest likelihood of small needs to highest likelihood of large

needs, and assume that a (strict) Monotone Likelihood Ratio Property (MLRP) holds.30

Assumption 2 (MLRP)
d

dθi

(
f isi(θi|si)
f i(θi|si)

)
> 0 ∀ i, θi, si.

According to this assumption, needs increase (in a stochastic sense) as we move towards

a higher state. Stated differently, the state si is a parameter that captures how complex

the task is, and therefore how important the needs are likely to be. When the individual

performs tasks only once, the problem is identical to the one studied previously, as CES

is not interested in states per se but only as a way to identify more accurately the needs

of systems. To see this, suppose the state si is drawn from a known distribution P i(si)

30Subscripts in c.d.f. or density functions denote partial derivatives with respect to that argument.
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with density pi(si), and that states are independent across systems (pi(si|sj) = pi(si) for

all sj).
31 The probability that system i has needs θi is:

gi(θi) =

∫ si

si

f i(θi|si)pi(si)dsi (7)

We can then perform the very same analysis as before where f i(·) is replaced by gi(·).

The problem becomes more interesting when the individual performs the same set of

tasks in consecutive periods. We assume that si remains constant over time to obtain

clear-cut solutions. At each date t, the needs of system i are, conditional on the state si,

drawn independently according to F i(θi|si). The past realization of needs then conveys

information about the state, which itself informs about the distribution of present needs.

Formally and applying Bayes rule, the probability that the needs of system i at date t are

θti given that its needs at date t− 1 were θt−1
i is:

gi(θti |θt−1
i ) =

∫ si

si

f i(θti |si)pi(si|θt−1
i )dsi =

∫ si

si

f i(θti |si)f i(θt−1
i |si)p

i(si)dsi∫ si

si

f i(θt−1
i |si)p

i(si)dsi

(8)

The following lemma is a key step for our subsequent analysis.

Lemma 2 Under Assumption 2,
d

dθti

giθt−1
i

(θti | θ
t−1
i )

gi(θti |θ
t−1
i )

 > 0 ∀ i, θti , θt−1
i .

Proof: See Appendix A5. 2

According to Lemma 2, MLRP begets MLRP : if the individual experiences high needs

at some date, it means that the state is likely to be high (in an MLRP sense), and therefore

that needs are likely to be high also in the future (again, in an MLRP sense).

The dynamic allocation of needs in the framework developed above has some new

features. Suppose that, at the end of the period, CES learns what the needs of each

system were at that date. This occurs for example if the performance Πi(·) of system i is

observed after system i has performed the task: the individual receives feedback about its

performance and this is interpreted by CES. Then, the needs reported by systems at some

date affect current allocations but not future allocations. Hence, independently of whether

31If states are not independent, then �i and �j are correlated. The optimal mechanism must then exploit
this correlation, as it is well known in the mechanism design literature.

22



system i is myopic (most likely) or forward-looking (least likely), it will ‘communicate’ its

needs in order to optimize exclusively its present allocation. The mechanism M developed

in Proposition 1 as well as the implementation procedure described in Proposition 3 remain

optimal at each date t, where f i(θi) is simply replaced by gi(θti | θ
t−1
i ) updated using the

posterior pi(si | θt−1
i ). This mechanism, however, has new interesting properties.

Proposition 4 (Task inertia) The resources x∗it(θ
t
1, θ

t
2) allocated to system i at date t

(weakly) increase if θt−1
i increases or if θt−1

j decreases.

Proof: See Appendix A6. 2

The idea is simple. If CES realizes that the needs of system i in the previous period

were high, it concludes that state si is likely to be high which, other things being equal,

shifts the updated distribution of system i’s future needs towards high values. As a result,

it becomes optimal to grant more resources to system i in the current period, that is, to

set a higher cap. Given our resource monotonicity principle, a more generous allocation

to system i comes necessarily at the expense of both systems 0 and j.

Using Proposition 1, we can then compare two models, depending on whether at the

beginning of date t the needs (θt1, θ
t
2) of systems 1 and 2 are known by CES (the ‘public

information’ case, as in section 2) or unknown by CES (the ‘private information’ case,

as in section 3). In both models, the underlying state is unknown, so there is learning

over time about si, and therefore about the distribution f i(θi|si) from which needs are

drawn.32 These two models yield two different implications for observed behavior that are

summarized below.

Implication 3 In a dynamic multi-task setting, the expected performance is constant un-

der public information and improves over time under private information.

With public information, the resource allocation of CES does not depend on his as-

sessment of the state. Nevertheless, higher states lead to higher needs and therefore lower

expected performance whereas lower states leads to lower needs and therefore higher ex-

pected performance (see equation (3)). From the perspective of date 0, however, learning

about the state may go in either direction. With private information, a new effect is in

place. Over time, CES learns about si through the realization of θi. This reduces the in-

formation asymmetry between CES and system i, which results in an improved expected

32Public information refers to the fact that, at the beginning of date t, the needs (�t1; �
t
2) are known

whereas the needs at future dates are not.
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performance.33

This conclusion is in line with experimental evidence. Subjects tend to adapt their

behavior and obtain better outcomes in the presence of feedback about performance even

when there is nothing to ‘learn’ about the characteristics of the task. In a sense, the result

rationalizes performance improvements purely through practice or task repetition.

Implication 4 In a dynamic multi-task setting, the allocation rule exhibits path-independence

under public information and path-dependence under private information.

With public information, present needs are a sufficient statistic to determine the op-

timal allocation. With private information, the allocation mechanism depends on the

distribution from which needs are drawn: higher past needs of system i reflects a higher

likelihood of present needs inducing a more favorable treatment by CES through a higher

consumption cap. This more favorable treatment translates into a higher performance of

system i at the expense of systems j and 0.

Task inertia and a path-dependent performance is a particularly interesting result in

the light of the recent neuroscience research. Indeed, suppose that for the first few periods

the task performed by system i is more complex than the task performed by system j.

Not surprisingly, resources are primarily directed to system i. Suppose now that, at some

point, there is a reversion in complexity. There is substantial fMRI evidence of residual

activity right after the change in the previously crucial but now unimportant system i.

Conversely too few resources are allocated to the previously unimportant but now crucial

system j following the reversion in complexity. This misallocation vanishes after a few

periods. Behaviorally, it translates into a short-term lowered performance (slower response

and more mistakes) in the task for which system j is responsible (Wylie and Allport (2000),

Monsell (2003), Yeung et al. (2006)). Neuroscientists argue that this phenomenon is due

to a “task inertia” or a “task switching cost.” However, the evidence on the existence

of such cost is not accompanied by an understanding of where it comes from and why

it vanishes rapidly. In order to generate this effect in a model with public information,

33To be precise, improved expected performance follows from two observations. First, the requirement
of dominant strategy incentive compatibility does not depend on the common beliefs on the distribution
of needs. Thus, every mechanism that is feasible and DSIC remains so after the CES updates his belief
over the state si. Second, since for any belief the CES has available the same direct mechanisms, it cannot
do worse when it has additional information on the state and systems act myopically. Formally, letting D
be the set of feasible and DSIC mechanisms:

E
[
max
D

E [ΠCES | I]
]
≥ max

D
E [ΠCES ] :
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we would need to impose some ad-hoc cost of adaptation. Perhaps more satisfactorily,

inertia and a path-dependent allocation arise very naturally when critical resources need

to be allocated to competing tasks under private information. Alternatively, our model

proposes an explanation for why adaptation to a changing environment may be slow, and

offers therefore a foundation for theories that take this result as an assumption.

The result is also related to ‘priming’, an effect widely documented in psychology.

According to this literature, making some identity features salient has a short-lived but

significant impact on the behavior of individuals (see e.g. Wegner and Bargh (1998)).

A reinterpretation of our model may provide some foundations for this effect. Indeed,

information regarding identity traits triggers activity in certain systems which remain

operational for a short period of time when the individual subsequently performs other

unrelated tasks, hence generating the inertia.

Last, the biologically plausible mechanism discussed in Proposition 3 has a natural

implication in the multi-period framework.

Implication 5 In a dynamic multi-task setting, the biologically plausible mechanism pre-

dicts that the initial rate of resources sent to system i at date t increases when the needs

of system i at t− 1 increase. Furthermore, if in equilibrium needs of system i are satiated

(θti < x̄∗it(θj)), the individual completes that task faster the higher the past needs.

It suffices to apply Proposition 3 to each period. Interestingly, the rates ri and νi will

change over time as a function of learning. It comes immediately from Proposition 4 that

the initial rates allocated to task i at date t increase if the needs θt−1
i to complete task i

at date t−1 increase and if the needs θt−1
j to complete task j at date t−1 decrease. More

resources are sent if the task is expected to be more difficult given the feedback obtained.

This also implies that the task should be completed faster at date t as more processing

resources are available more rapidly –perhaps even the same metabolic resources combined

with greater plasticity–, providing another testable implication of the theory.

5 The architecture of brain systems: integration vs. spe-
cialization

So far, we have assumed that each system performs exactly one task. In reality, systems

are responsible for multiple tasks and tasks require the coordination of multiple systems.

There are numerous reasons for such an organization of the brain. In this section, we

focus on one specific aspect that builds on the core premise of our theory: restricted

communication channels. More precisely, we study from a strict informational viewpoint
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the trade-off between integrating the two cognitive tasks into one system vs. specializing

systems into performing one cognitive task each.

Specialization corresponds to the case already analyzed in section 3. To study integra-

tion, we assume that one system, denoted by I, performs tasks 1 and 2. More precisely,

system I has access to the same information and performs the same tasks as the previous

systems 1 and 2. For transparency, we assume that this system puts the same relative

weight on each task as the CES. Formally, I is endowed with the following performance

function:

ΠI(x1, x2; θ1, θ2) ≡ Π1(x1; θ1) + Π2(x2; θ2) = − 1

β1
(x1 − θ1)2 − 1

β2
(x2 − θ2)2

Under integration, CES can only choose the total resources that are allocated to tasks

1 and 2. System I knows the relative needs in tasks 1 and 2 and decides how to split the

resources between the tasks. Following (2), system I with needs (θ1, θ2) who is granted

resources k′ (< θ1 + θ2) splits them according to:34

x̂1(k′; θ1, θ2) = θ1 −
β1

β1 + β2
(θ1 + θ2 − k′)

x̂2(k′; θ1, θ2) = θ2 −
β2

β1 + β2
(θ1 + θ2 − k′)

(9)

His equilibrium performance given resources k′ is then:

ΠI(x̂1, x̂2; θ1, θ2, k
′) = − 1

β1 + β2

(
θ1 + θ2 − k′

)2
Notice that the performance of the integrated system, ΠI(·), depends only on the sum

of needs θ1 + θ2. It follows that any mechanism in which CES allocates total resources

to system I can only separate the needs in tasks 1 and 2 based on the one dimensional

statistic θ1 + θ2. The overall performance from the viewpoint of CES if system I receives

k′ resources and splits them according to (9) and system 0 receives the remaining k − k′

resources is:

ΠCES = − 1

β0

(
θ0 − (k − k′)

)2
− 1

β1 + β2

(
θ1 + θ2 − k′

)2
(10)

Our next lemma provides a characterization of the optimal mechanism I under inte-

gration of tasks 1 and 2 by system I.

34More precisely, system I allocates resources according to (9) as long as k′ ≥ max {�2 − �2�1=�1;
�1 − �1�2=�2}. This condition ensures that it is optimal for system I to allocate a positive amount of
resources to both tasks. If the condition is violated, however, system I will assign all resources to one task:
to task 1 if k′ < �2 − �2�1=�1 and to task 2 if k′ < �1 − �1�2=�2.
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Lemma 3 The optimal integration mechanism I is such that CES sets a fixed cap k̂ on

the total resources allocated to system I. The optimal cap k̂ satisfies:

1

β1 + β2

(
E[θ1 + θ2 | θ1 + θ2 ≥ k̂]− k̂

)
=

1

β0

(
θ0 − [k − k̂]

)
(11)

Proof: See Appendix A7. 2

The optimal resource cap in the integration mechanism I is determined in a similar way

as the optimal caps in the priority mechanism Pi and the specialization mechanism M (see

(5), (6) and (11)). Indeed, from the overall performance function ΠCES described in (10),

we notice that conditional on the required resources exceeding the cap k̂, equation (11)

equalizes the expected marginal benefit for CES of allocating one extra unit of resources

to system I with the marginal benefit of allocating that extra unit to system 0.

We can then compare the performance from CES viewpoint of the specialization mech-

anism M and the integration mechanism I as a function of the importance attached by

CES to each of the tasks. For notational convenience, we perform the following change of

variables: 1
β0
≡ 1−γ

β′0
and 1

βi
≡ γ

β′i
with γ ∈ [0, 1]. The new parameter γ captures the impor-

tance of the two cognitive tasks relative to the motor skill task in the overall performance

function. We also focus on the case where θ1 +θ2 = k. We impose this assumption to be in

the interesting situation where integration and specialization yield identical performance if

either γ = 0 or γ = 1. In the former case, only the motor skill task matters and optimality

requires x0 = k. In the latter case, only the cognitive tasks matter and first best can be

achieved by setting x1 = θ1 and x2 = θ2.35 Which brain architecture dominates when

γ ∈ (0, 1) depends on the informational trade-off. The result is summarized below.

Proposition 5 (Brain architecture) Assume that f1(θ1)f2(θ2) > 0. There exist γ and

γ with 0 < γ ≤ γ < 1 such that, from the viewpoint of CES, integration dominates

specialization for all γ ∈ (0, γ) and specialization dominates integration for all γ ∈ (γ, 1).

Proof: See Appendix A8. 2

From a pure informational perspective, integration has both benefits and costs for CES.

On the one hand, given a fixed amount of resources allocated to the cognitive tasks, the

ability of the integrated system to split them efficiently between tasks 1 and 2 is beneficial

for CES. This occurs because, for a given amount of total resources granted to tasks 1 and

35If we assume �1 + �2 > k, then integration dominates specialization when 
 = 1 (and therefore also
when 
 → 1) but for ad-hoc reasons. Indeed, when 
 = 1, all the resources are directed to tasks 1 and 2.
Since resources are sometimes scarce (�1 + �2 > k for some (�1; �2)), it is efficient to have system I (which
by assumption knows the relative needs in those tasks) deciding how to split k between the two.
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2, both CES and system I would follow the same splitting rule. Moreover, this splitting

rule is undertaken by system I under full information of needs. On the other hand, under

integration CES is unable to make the resources granted to task i contingent on the needs

in task j. In other words, the direct revelation mechanism under integration allows CES

to learn only about the sum of needs in the cognitive tasks whereas under specialization

CES learns about each of the needs separately. This information loss is costly.

According to Proposition 5, the benefits of specialization offset those of integration

when the importance of the cognitive tasks is high relative to the motor skill task (γ >

γ). The benefits of integration offset those of specialization when the importance of the

cognitive tasks is low relative to the motor skill task (γ < γ).36 Intuitively, when the

cognitive tasks are important, the majority of resources are allocated to tasks 1 and 2.

It then becomes relatively more valuable to get extra information about the needs in

each of the tasks in order to determine how much to grant to task 0. This is obtained

through specialization. Conversely, when the motor skill task is very valuable, most of the

resources are allocated to system 0. At the margin, it is then important to optimize the

(few) resources granted to the cognitive tasks, and this is achieved through integration.

Figure 4 depicts the equilibrium allocation as a function of needs under integration

(bold line – mechanism I). The allocation under specialization is the same as in Figure 1

and is superimposed in the graph (dotted lines – mechanism M). Two differences between

the mechanisms deserve emphasis. First, under mechanism I the amount of resources

consumed in task i (∈ {1, 2}) are x∗∗i (θ1, θ2) = θi if θ1+θ2 ≤ k̂ and x∗∗i (θ1, θ2) = x̂i(k̂; θ1, θ2)

if θ1 + θ2 > k̂. It means that, in equilibrium, the needs in either none or both cognitive

tasks are constrained. This contrasts with mechanism M which has four regions so that,

for some parameters, the needs of one and only one task are constrained. Second and by

construction, under mechanism I the cap is set on total resources for the cognitive tasks,

so lower needs in task i do not result in spillovers for task 0 when θ1 + θ2 > k̂. Again, this

contrasts with mechanism M, where lower needs by system i result in more resources for

both system j and system 0.

36We show for a parametric example (�i ∼ U [0; 1] and �1 = �2) that 
 = 
. Unfortunately, the
uniqueness of the cutoff does not extend to other cases so, in general, we cannot determine what happens
when 
 ∈ [
; 
].
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Figure 4. Optimal allocation under integration (I) and specialization (M).

Mechanism I

Mechanism M

(θ1, θ2)

(x̂1(θ1, θ2), x̂2(θ1, θ2))

An immediate implication, or rather an intuitive reformulation of Proposition 5 is

summarized below.

Implication 6 Different cognitive tasks should be performed by different systems if the

tasks are crucial for CES and by the same system if they are not.

Finally, note that integration is necessarily associated with a tendency to under-

perform in all cognitive tasks if the amount of resources allocated to the integrated system

is insufficient. This is the case because the allocation mechanism is done as if information

were public. Observing flawless decision-making in simple tasks and asymmetric perfor-

mance in easy versus difficult tasks indicates that tasks are likely to be separated. This

property could a priori be tested.

6 Discussion and conclusions

Incorporating choice imperfections in the decisions of agents has become central to behav-

ioral economics. Observed behaviors or “outputs” such as empirical evidence, experimental

data or sometimes mere introspection have been the main source of inspiration for mod-

els of bounded rationality. The premise of the present research is that “inputs” such as

physiological constraints in our ability to perceive events, process information, and select
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between options should also be used as building blocks for new theories of individual de-

cision making. This paper follows this alternative route. It determines the constrained

optimal allocation of resources to brain systems when multiple tasks are performed simul-

taneously. It shows that the optimal mechanism takes a resource cap structure and that

it can be implemented using a physiologically plausible process. Some implications of the

theory are discussed, most notably the inverse relation between task difficulty and perfor-

mance, the endogenous emergence of task inertia and the conditions for the optimality of

task integration.

Although our theory is strictly motivated by the neurobiology of the brain, the model

can also be applied to more traditional areas of economics. For example, it can be straight-

forwardly reinterpreted as a manager in a firm whose objective is to allocate scarce funds

between self-interested units (research, production, marketing, etc.) given private infor-

mation of needs.37 It can also capture the decision problem of colluding firms who decide

how to split the market without using side transfers that would provide compromising

evidence of their illegal activities. Other natural applications include provision of private

goods to a group of individuals and lobbying activities in political contexts.

The paper also makes an observation (though, admittedly, tangential to its core objec-

tive) on the relationship between the literatures on mechanism design without transfers

and axiomatic social choice. We demonstrate that, under IHR, resource monotonicity is a

characteristic of the allocation rule that maximizes total welfare. This is related to but dif-

ferent from Barbera, Jackson and Neme (1997) who show that any allocation mechanism

must necessarily have a cap structure (where the cap is non-increasing in the requests

of other systems) if we impose resource monotonicity on top of strategy proofness and

ex-post efficiency.

As a final point, economists often express reservations about the idea that brain systems

may have competing goals. In particular, wouldn’t it be more efficient if every subpart

pursued the common good? There are evolutionary, physiological and empirical arguments

against this common interest approach. First, the well-known neural Darwinism (Edelman,

1987) and neuronal selectionism (Changeux, 1985) theories provide evidence and models

where neuronal groups within the brain compete with each other for stimulus and reward

resources.38 Second, and paradoxically, a cooperative approach would require a greater

37As mentioned in section 1.2, the literature on organizations has studied related questions. However,
to our knowledge this problem with two actions and two agents with private information has not been
treated. The implications for inertia in organizations and the trade-off integration vs. specialization of
units within a firm are also potentially important in this application.

38Under this approach, biological evolution encourages fitness of the neuronal system, rather than fitness
at a higher level (the individual) or a lower level (the gene). See also Tooby and Cosmides (1992) for an
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degree of brain connectivity and/or sophistication. Indeed, each system would have to be

able either to ‘communicate’ its needs back to the central decision-maker or to perform

a non-trivial marginal analysis and give up worthy resources whenever these are more

valuable to other systems. Instead, the physiological evidence reviewed in section 1.1

points towards a lack of information flowing from systems to CES (possibly due to the

scarcity of the energetically costly neural connections) and a simplistic ‘deplete-until-

satiation’ behavior of neurons in the decision systems. These two features are consistent

with the mechanism described in Proposition 3. Third, some of the empirical regularities

discussed in the paper (the possibility of flawless behavior, the inverse relation between

task complexity and performance, the prevalence of task inertia) arise naturally in our

non-cooperative model with private information but would not be present in a model with

common objectives.

evolutionary theory of internal conflicts in changing environments and Livnat and Pippenger (2006) for a
computational model showing the advantages of having modules with opposing objectives.
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Appendix

A1. Interpreting the direct revelation mechanism.

Suppose there are two stages. In stage τ ∈ {1, 2}, CES allocates a local budget to each

system (yτ1 , y
τ
2 ). A budget is a function of past “messages”, which in our case corresponds

to past “consumptions”. We denote by mτ
i the consumption of system i in stage τ .

In stage 2, the resources needed by system i are r2
i and its allocation is y2

i (m
1
1,m

1
2).

It is optimal to consume exactly what is needed or, if this is not possible, to deplete the

local budget:

m2
i

(
y2
i (m

1
1,m

1
2), r2

i

)
= min

{
y2
i (m

1
1,m

1
2), r2

i

}
In stage 1, the resources needed by system i are θi and its allocation is y1

i . Consumption

cannot exceed the allocation (m1
i 6 y1

i ). If θi < y1
i , then it is (weakly) optimal to consume

m1
i = θi. If θi > y1

i , system i chooses m1
i and the ex-post utility is:

−
(
m1
i + min

{
y2
i (m

1
1,m

2
1), θi −m1

i

}
− θi

)2

where stage 2 needs are replaced by total needs minus stage 1 consumption. We look for

a solution in dominant strategies, that is:

−
(
m1
i + min

{
y2
i (m

1
i ,m

1
j ), θi −m1

i

}
− θi

)2
> −

(
m̃1
i + min

{
y2
i (m̃

1
i ,m

1
j ), θi − m̃1

i

}
− θi

)2

for all m1
i 6 y1

i and m̃1
i 6 y1

i , yielding a solution m1∗
i (θi, y

1
i ). At equilibrium, sys-

tem i consumes m1∗
i (θi, y

1
i ) in stage 1. He receives y2

i (m
1∗
i (θi, y

1
i ),m

1∗
j (θj , y

1
j )) in stage

2 and consumes m2∗
i (θi, θj , y

1
i , y

1
j ) = min

{
y2
i (m

1∗
i (θi, y

1
i ),m

1∗
j (θj , y

1
j )), θi − y1

i

}
. Total

consumption is m1∗
i (θi, y

1
i ) + m2∗

i (θi, θj , y
1
i , y

1
j ) which, by construction, is less than y1

i +

y2
i (m

1∗
i (θi, y

1
i ),m

1∗
j (θj , y

1
j )).

Let xi(θi, θj , y
1
i , y

1
j ) = m1∗

i (θi, y
1
i ) +m2∗

i (θi, θj , y
1
i , y

1
j ). Again by construction, for all θj

and for all y1
i , y

1
j , we have:

−
(
xi(θi, θj , y

1
i , y

1
j )− θi

)2
> −

(
xi(θ

′
i, θj , y

1
i , y

1
j )− θi

)2

which means that the two-stage mechanism where stage 2 budget depends on stage 1

consumption is formally equivalent to a direct mechanism where, for any initial local

budgets (y1
1, y

1
2), each system i is asked to report its total needs θi and receives a final

allocation xi that is divided among the two stages. The mechanism is direct and incentive

compatible in dominant strategies. Moreover, for any such mechanisms with initial budgets

(y1
1, y

1
2), there exists an equivalent mechanism with no budget in stage 1. That mechanism
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is itself equivalent to a static mechanism in which all resources are allocated in stage 2.

We can thus restrict to such mechanisms.

A2. Proof of Lemma 1.

Under a priority mechanism Pi the center assigns resources θi to system i. We first restrict

attention to priority mechanisms that set an upper bound on the resources allocated to

system j, i.e. xPij (θ1, θ2) = min{θj , yj(θi)}, and characterize the optimal upper bound.

We then show that this mechanism is optimal in the general class of priority mechanisms.

(a) Optimal cap yj(θi).

The expected performance when total resources assigned to systems 0 and j are k′ = k−θi
and a resource cap yj(θi) is imposed on system j is given by (omitting the dependence of

yj(θi) on θi to avoid clutter)

Jj(yj) = −
∫ θj

yj

1

βj
(yj − θj)2 dF j(θj)−

∫
Θj

1

β0
(x0 (θj)− θ0)2 dF j(θj)

where x0 (θj) = k′ − θj if θj ≤ yj and x0 (θj) = k′ − yj if θj > yj . The optimal threshold

yj solves

max Jj(yj) s.t. 0 ≤ yj ≤ k′ (12)

We now show that the function Jj(yj) is quasiconcave in [0, k′]. By differentiating

Jj(yj) we have

J ′j(yj) = 2
(
1− F j (yj)

) [ 1

βj
(E [θi | θi ≥ yj ]− yj)−

1

β0

(
yj + θ0 − k′

)]
(13)

Assumption 1 implies that d (E[θi | θi ≥ yj ]− yj) /dyj ≤ 0. Therefore the term in

brackets in (13) is strictly decreasing in yj and there exists at most one point ŷj ∈ [0, k′]

such that J ′j(ŷj) = 0. Moreover, whenever J ′j(ŷj) = 0, we have J ′′j (ŷj) ≤ 0. Therefore

Jj(yj) is either monotonic or, if ŷj exists such that J ′j(ŷj) = 0, increasing for yj ≤ ŷj and

decreasing for yj ≥ ŷj . This establishes that Jj(yj) is quasiconcave. With these insights

we can now solve (12).

First, for yj = 0 to be a solution of (12) it is necessary and sufficient that J ′j(0) ≤ 0

which is equivalent to βj(θ0 − k′) ≥ β0E[θj ]. For ŷj = k′ to be a solution of (12) it is

necessary and sufficient that J ′j(k
′) ≥ 0 which is equivalent to β0 (E[θj | θj ≥ k′]− k′) ≥

βjθ0. In all other cases the maximizer of (12) is the unique solution to J ′j(yj) = 0 thus

satisfying:
1

βj
(E[θj | θj ≥ yj ]− yj) =

1

β0

(
θ0 − (k′ − yj)

)
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In particular, the uniqueness of maximizer and the Maximum Theorem establish that

yj(k
′) is continuous. Summarizing, the optimal threshold yj (θi) under Pi is:

yj (θi) = 0 if βj (θ0 + θi − k) ≥ β0E [θj ]
yj (θi) = k − θi if β0 (E [θj |θj ≥ k − θi ]− (k − θi)) ≥ βjθ0
1
βj

(E [θj − yj (θi) | θj ≥ yj (θi)]) = 1
β0

(θ0 − (k − θi − yj (θi))) otherwise
(14)

At any point θi at which yj (θ′i) = k − θ′i for θ′i in a neighborhood of θi we have

y′j (θi) = −1. We can implicitly differentiate (14) for any interior solution to find

y′j (θi) = − βj/β0

1− d
dyj(θi)

E[θj | θj ≥ yj(θi)] + βj/β0

∈ [−1, 0)

since Assumption 1 implies dE[θj | θj ≥ yj(θi)]/dyj ≤ 1. In particular, if h′j(θj) > 0 then

y′j (θj) ∈ (−1, 0).

(b) Optimality of resource-cap priority mechanisms.

The overall performance under a priority mechanism Pi given (θi, θj) and resources xj ∈
[0, k − θi] to system j is

J(xj , θi, θj) = − 1

βj
(xj − θj)2 − 1

β0
(k − θi − xj − θ0)2

= −
(

1

βj
+

1

β0

)
(xj − yCES (θj))

2 − (k − θ0 − θi − θj)2

β0 + βj

where

yCES (θj) = max

{
β0

β0 + βj
θj −

βj
β0 + βj

(θi + θ0 − k), 0

}
is the amount of resources optimally allocated to system j if the CES knew θj . The search

for the optimal Pi is equivalent to a delegation problem where system j is offered a set of

“resources” Dj(θi) ⊂ [0, k− θi]. This problem has been studied in Alonso and Matouschek

(2008) who provide conditions for the optimal Dj(θi) to simply involve an upper resource

cap. Proposition 3 in Alonso and Matouschek (2008) states that, defining the forward bias

Sj(θj) =
(
1− F j(θj)

) (
θj − E

[
yCES (z)

∣∣∣ z ≥ θj]) , (15)

the optimal mechanism involves an upper resource cap if and only if there exists ŷj such

that (i) Sj(ŷj) = 0 and Sj(θj) > 0 for θj > ŷj , and (ii) Sj(θj) is concave in θj ∈ [0, ŷj ].

First, we note that

Sj(θj) = −1

2

(
β0βj
βj + β0

)
J ′j(θj)
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From (13) we have that J ′j(ŷj) = 0 and J ′j(θj) < 0 for θj > ŷj thus satisfying condition

(i). Differentiating (15) yields

S′j(θj) =
(
1− F j(θj)

)
[1− hj(θj)(θj − yCES (θj))]

The difference between system j’s preferred allocation and the CES preferred allocation

for system j, θj − yCES (θj), is positive and increasing in θj . Assumption 1 then implies

that hj(θj)(θj − yCES(θj)) is increasing in θj . From the second order conditions on ŷj
we have J ′′j (ŷj) ≤ 0 implying S′j(ŷj) ≥ 0 and hj(ŷj)(ŷj − yCES(ŷj)) ≤ 1. Therefore

1− hj(θj)(θj − yCES(θj)) is positive and decreasing in [0, ŷj ]. It follows that S′j(θj) as the

product of two decreasing and positive functions must be decreasing. Therefore Sj(θj) is

concave in θj ∈ [0, ŷj ] thus satisfying condition (ii).

A3. Proof of Proposition 1.

The proof of Proposition 1 will be based on the following two lemmas.

Lemma A The thresholds y2(θ1) and y1(θ2) in the priority mechanisms P1 and P2

intersect if and only if the following two conditions are satisfied :

E[θ1 | θ1 ≥ k + β0/β2E[θ2]− θ0]− (k − θ0 + β0/β2E[θ2]) < β1/β2E[θ2]
E[θ2 | θ2 ≥ k + β0/β1E[θ1]− θ0]− (k − θ0 + β0/β1E[θ1]) < β2/β1E[θ1]

(16)

Furthermore, if h1(θ1) and h2(θ2) are strictly increasing and yi(θj) < k−θj then y2(θ1)

and y1(θ2) intersect at a single point.

Proof : We first show that if at least one of the conditions (16) is not satisfied then

y1 (θ2) and y2 (θ1) never intersect. The functions y1(θ2) − y−1
2 (θ2) and y2(θ1) − y−1

1 (θ1)

are weakly increasing for θi ∈ [yi(0), yi(θj)] ∩ [0, θi], since at any point of differentiability

d(yi(θj) − y−1
j (θj))/dθj = y′i(θj) − (1/y′j(y

−1
j (θj))) ≥ 0.39 Therefore, a necessary and

sufficient condition for y1 (θ2) and y2 (θ1) to never intersect is that either y1 (0)−y−1
2 (0) > 0

or y2 (0)− y−1
1 (0) > 0.

Consider first the case y1 (0)−y−1
2 (0) > 0. In other words, under a priority mechanism

P1 there is a θ1 such that whenever system 1 requests at least θ1 system 2 obtains zero

resources (y2 (θ1) = 0) and θ1 < y1 (0) ≤ k. The minimum value θ̃1 at which y2(θ̃1) = 0

is given by θ̃1 = k − θ0 + β0/β2E[θ2] according to (14). The condition y1(0) > θ̃1 can

be restated as requiring that the marginal effect on overall performance of increasing the

threshold to system 1 at θ̃1 must be positive, which from Lemma 1 implies:

1

β1

(
E
[
θ1

∣∣∣ θ1 ≥ θ̃1

]
− θ̃1

)
− 1

β0

(
θ̃1 + θ0 − k

)
≥ 0

39It can be readily shown that any other point must entail a binding constraint yi(�j) = k− �j in which
case the functions yi(�j)− y−1

j (�j) are continuous and weakly increasing.
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Substituting the value of θ̃1 this requires:

E [θ1 | θ1 ≥ k + β0/β2E [θ2]− θ0]− (k − θ0 + β0/β2E [θ2]) ≥ β1/β2E [θ2]

Following a similar analysis, y2(0)− y−1
1 (0) > 0 if and only if:

E [θ2 |θ2 ≥ k + β0/β1E [θ1]− θ0 ]− (k − θ0 + β0/β1E [θ1]) ≥ β2/β1E [θ1] .

Second, suppose that y1(θ2) < k − θ2 and y2 (θ1) < k − θ1, i.e. both yi(θj) are interior

solutions of (14) and that the hazard rates are strictly increasing. We now show that,

provided (16), y2(θ1) − y−1
1 (θ1) = 0 has a unique solution. From h′2(θ2) > 0, h′1(θ1) > 0

and Lemma 1 it follows that 0 > y′2(θ1) > −1 and d(y−1
1 (θ1))/dθ1 < −1. Taking both

implications together we have that the difference y2(θ1)− y−1
1 (θ1) is strictly increasing in

θ1 and thus changes sign at most once. Therefore if the curves y1 (θ2) and y2 (θ1) intersect

at an interior point, then they intersect only once.

Lemma B Let Θ+
i =

{
θi : θj > x∗j (θi)⇒ θi > x∗i (θj)

}
be the set of values θi such that

under an optimal mechanism M and for any (θi, θj) in which system j receives less than

θj, system i receives less than θi. If θ1 and θ2 are independent, then x∗j (θi) is constant in

Θ+
i .

Proof : Let θi ∈ Θ+
i . Then the optimal cap on system j, x∗j (θi), must satisfy the first order

condition: ∫ θj

x∗j

(
1

βj

(
x∗j − θj

)
− 1

β0

(
k − θ0 − (x∗j + xi (θi, θj)

))
dF j(θj) = 0

By definition, system i receives less than its needs if θj ≥ x∗j when θi ∈ Θ+
i . Therefore

its allocation xi (θi, θj) is independent of θi, xi (θi, θj) = x∗i (θj). It follows that for all

θi ∈ Θ+
i the optimum x∗j is independent of θi.

Using Lemmas A and B, we can now prove the characterization of the mechanism M.

Proof of Proposition 1: The first order condition for x∗i at θj can be written as

1

βi

(
E [θi | θi ≥ x∗i ]− x∗i

)
− 1

β0

(
x∗i + θ0 − k

)
=

1

β0

(
E [xj (θi, θj) | θi ≥ x∗i ]

)
(17)

From the proof of Lemma 1 the cap x∗i must (weakly) decrease for any x′j (θi, θj) such

that E[x′j(θi, θj) | θi ≥ x∗i ] ≥ E[xj(θi, θj) | θi ≥ x∗i ]. In words, the optimal cap on a system

must be lower if the other system receives more resources. This observation allows us to

establish the following lower and upper bounds on the resources allocated to each system

under an optimal mechanism M : (i) system i obtains at least the same resources than
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under the priority mechanism Pj , and (ii) system i’s resources never exceed those obtained

under Pj when system j demands zero resources. Indeed, since

0 ≤ E[xj(θ1, θ2) | θj ≥ y] = E[min{θj , xj(θi)} | θj ≥ y] ≤ θj

we then have:

yi (θj) ≤ x∗i (θj) ≤ yi (0) (18)

We consider first the case in which y1 (θ2) and y2 (θ1) intersect at an interior point

(Lemma A). To characterize M we proceed in several steps:

(i) The sets Θ+
i are non-empty.

Suppose that θ̄i > yi(0). From Lemma A we have that y2(0) < y−1
1 (0), that is the maximum

resources granted to system 2 in a priority mechanism P1 (which occurs when system 1

demands zero) are less than the needs of system 2 that under P2 would lead system 1 to

obtain zero resources. From (18), y2(0) represents an upper bound on the resources that

system 2 would obtain under M. Therefore, for θ2 ≥ y2(0) we have θ2 ∈ Θ+
2 as system

2 is necessarily constrained. Lemma A also implies that y1(0) < y−1
2 (0). Therefore, for

θ1 ≥ y1(0) we have θ1 ∈ Θ+
1 .

(ii) Mechanism M behaves like a priority mechanism Pi for θi ≤ ki
From Lemma B let ki = x∗i (θj) be the constant cap for θj ∈ Θ+

j . Then ki represents the

minimum resources guaranteed to system in the sense that ki ≤ x∗i (θj) for all θj . To see

this, suppose by way of contradiction that there exists a θ′j such that x∗i (θ
′
j) < ki. Then

(17) implies that under M

E[xj(θi, θ
′
j) | θi ≥ ki] > E[xj(θi, θj) | θi ≥ ki] (19)

for all θj ∈ Θ+
j . Given that M is incentive compatible and ex-post efficient then xj(θi, θ

′
j) >

xj(θi, θj) only if θ′j > θj . But this leads to a contradiction since then (19) implies θ′j >

max Θ+
j = θ̄j . Therefore, ki ≤ x∗i (θj) for all θj which implies that for θi ≤ ki system i

always obtains its resource needs xi (θi, θj) = θi. Therefore, for θi ≤ ki (17) is satisfied by

x∗j (θi) = yj (θi).

(iii) Optimal guaranteed resources satisfy kj = yj (ki).

Define k∗i as the point of intersection of y1 (θ2) and y2 (θ1), i.e. k∗j = yj (k∗i ) . We now show

that ki = k∗i .

First, for any θ1 > k1 system 1 obtains at least resources k1. This implies that the

resources obtained by system 2 cannot exceed those obtained under a priority mechanism

P1 when system 1 demands resources k1, i.e. x2 (θ1, θ2) ≤ x∗2 (θ1) ≤ y2 (k1) for θ1 > k1.

Therefore the optimal k1 that satisfies (17) is (weakly) higher than the cap under a priority

mechanism P2 when system 2 demanded resources y2 (k1) , i.e.

k1 ≥ y1 (y2 (k1))
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or y2(k1)−y−1
1 (k1) ≥ 0. By Lemma A, y2(θ1)−y−1

1 (θ1) is an increasing function implying

that

k1 ≥ k∗1 (20)

Analogously we obtain that k2 ≥ k∗2.

Second, system 2 always obtains at least resources k2 when θ2 ≥ k2. Therefore the

optimal k1 that satisfies (17) cannot exceed the cap under a priority mechanism P2 when

system 2 demands resources k2 , i.e.

k1 ≤ y1 (k2) (21)

Combining (20) and (21) and k2 ≥ k∗2 we have

k1 ≤ y1 (k2) ≤ y1 (k∗2) = k∗1 ≤ k1

A similar reasoning yields k2 = k∗2.

Finally, we also consider the case in which y1 (θ2) and y2 (θ1) never intersect. If yi (0)−
y−1
j (0) > 0 then by Lemma A we have yj(θi) < y−1

i (θi) for all θi which implies that

ki = yi(0). Therefore M is a priority mechanism Pi for θi ≤ yi(0) while it implements the

allocation xi (θ1, θ2) = ki and xj (θ1, θ2) = 0 for θi > yi (0).

A4. Proof of Proposition 2.

The thresholds yi(θj) are defined in (14). A decrease in β1 to β′1 < β1 relaxes the conditions

(1/β0)(θ0 + θ2 − k) < (1/β1)E[θ1] and (1/β1)(E[θ1 | θ1 ≥ k − θ2] − (k − θ2)) ≥ (1/β0)θ0

implying that if y1(θ2)(β1) ≥ 0 then y1(θ2)(β′1) ≥ 0, and if y1(θ2)(β1) = k − θ2 then

y1(θ2)(β′1) = k − θ2.

If y1(θ2)(β1) satisfies (1/β1)(E[θ1 | θ1 ≥ y1(θ2)]−y1(θ2)) = (1/β0)(y1(θ2)+θ2 +θ0−k),

then implicitly differentiating we have that ∂y1(θ2)/∂β1 < 0. In summary, if β′1 < β1 then

y1 (θ2) (β′1) ≥ y1 (θ2) (β1) for all θ2 ∈ [0, θ2]. Since y2(θ1) does not depend on β1, we have

x̄∗1(θ2)(β′1) ≥ x̄∗1(θ2)(β1), x̄∗2(θ1)(β′1) ≤ x̄∗2(θ1)(β1), and k1(β′1) ≥ k1(β1), k2(β′1) ≤ k2(β1).

Following a similar argument for a decrease in β0 or an increase in θ0 we find that if

β′0 < β0 or θ′0 > θ0 then yi(θj)(β
′
0) ≤ yi(θj)(β0) and yi(θj)(θ

′
0) ≤ yi(θj)(θ0) for θj ∈ [0, θj ].

Finally, let Hi(ki) = E[θi | θi ≥ ki]−ki, which satisfies H ′i(ki) < 0 whenever h′i(θi) > 0.

If ki(β0) > 0 and ki(θ0) > 0 from Proposition 1 we have that the guaranteed levels ki
satisfy:

(1/β1)H1(k1) = (1/β2)H2(k2) if k1 + k2 = k (22)

(1/β1)H1(k1) = (1/β2)H2(k2) = (1/β0) (k1 + k2 + θ0 − k) if k1 + k2 < k (23)

We now show that both guaranteed levels are reduced for β′0 < β0 or θ′0 > θ0. First

consider the case (22). Then for any β′0 < β0 or θ′0 > θ0 such that we still have k1 (β′0) +
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k2 (β′0) = k or k1 (θ′0) + k2 (θ′0) = k the guaranteed levels do not change as (22) does not

depend on β0 or θ0. Next suppose that k1 +k2 < k. Then by the implicit function theorem

applied to (23):

∂ki
∂β0

= −
(1/βj)H

′
j(kj)(1/β

2
0) (k1 + k2 + θ0 − k)

∆
and

∂ki
∂θ0

=
(1/βj)H

′
j(kj)(1/β0)

∆

where ∆ = (1/β1)(1/β2)H ′1(k1)H ′2(k2)−(1/β0)
∑

j=1,2(1/βj)H
′
j(kj) > 0. Therefore ∂ki/∂β0 >

0 and ∂ki/∂θ0 < 0.

A5. Proof of Lemma 2.

For simplicity, we ignore subscripts and superscripts in θ. From (7) and (8), we have:

giθ(θ̃|θ)
gi(θ̃|θ)

=

∫ si
si
f iθ(θ|si)f i(θ̃|si)pi(si)dsi∫ si

si
f i(θ|si)f i(θ̃|si)pi(si)dsi

−

∫ si
si
f iθ(θ|si)pi(si)dsi∫ si

si
f i(θ|si)pi(si)dsi

Therefore,
d

dθ̃

(
giθ(θ̃|θ)
gi(θ̃|θ)

)
> 0

⇔
∫ si

si

f iθ(θ|si)f iθ̃(θ̃|si)p
i(si)dsi

∫ si

si

f i(θ|si)f i(θ̃|si)pi(si)dsi

>

∫ si

si

f iθ(θ|si)f i(θ̃|si)pi(si)dsi
∫ si

si

f i(θ|si)f iθ̃(θ̃|si)p
i(si)dsi

Suppose that

∫ si

si

f i(θ|si)f iθ̃(θ̃|si)p
i(si)dsi > 0. Then:

d

dθ̃

(
giθ(θ̃|θ)
gi(θ̃|θ)

)
> 0 ⇔

∫ si
si
f iθ(θ|si)f iθ̃(θ̃|si)p

i(si)dsi∫ si
si
f i(θ|si)f iθ̃(θ̃|si)p

i(si)dsi
>

∫ si
si
f iθ(θ|si)f i(θ̃|si)pi(si)dsi∫ si

si
f i(θ|si)f i(θ̃|si)pi(si)dsi

⇔

∫ si
si

f iθ(θ|si)
f i(θ|si)f

i
θ̃
(θ̃|si)pi(si|θ)dsi∫ si

si
f i
θ̃
(θ̃|si)pi(si|θ)dsi

>

∫ si
si

f iθ(θ|si)
f i(θ|si)f

i(θ̃|si)pi(si|θ)dsi∫ si
si
f i(θ̃|si)pi(si|θ)dsi

⇔
∫ si

si

li(θ|si)q(si)dsi >
∫ si

si

li(θ|si)r(si)dsi

where li(θ|si) =
f iθ(θ|si)
f i(θ|si)

, q(si) =
f i
θ̃
(θ̃|si)pi(si|θ)∫ si

si
f i
θ̃
(θ̃|si)pi(si|θ)dsi

, r(si) =
f i(θ̃|si)pi(si|θ)∫ si

si
f i(θ̃|si)pi(si|θ)dsi

.
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Integrating by parts and given Q(si) = R(si) = 1 and Q(si) = R(si) = 0, we have:∫ si

si

li(θ|si)
(
q(si)− r(si)

)
dsi > 0 ⇔

∫ si

si

(
Q(si)−R(si)

)
lisi(θ|si)dsi < 0.

Assumption 2 implies lisi(θ|si) > 0. Also, given

∫ si

si

f i
θ̃
(θ̃|si)pi(si|θ)dsi > 0, then

Q(si)−R(si) < 0 ⇔

∫ si
si
f i
θ̃
(θ̃|x)pi(x|θ)dx∫ si

si
f i(θ̃|x)pi(x|θ)dx

<

∫ si
si
f i
θ̃
(θ̃|si)pi(si|θ)dsi∫ si

si
f i(θ̃|si)pi(si|θ)dsi

(24)

So a sufficient condition for Q(si)−R(si) < 0 is
d

dsi

[∫ si
si
f i
θ̃
(θ̃|x)pi(x|θ)dx∫ si

si
f i(θ̃|x)pi(x|θ)dx

]
> 0.

According to Assumption 2, for all si > s′i:

f i
θ̃
(θ̃|si)

f i(θ̃|si)
>
f i
θ̃
(θ̃|s′i)

f i(θ̃|s′i)
⇔ f i

θ̃
(θ̃|si)f i(θ̃|s′ii (θ̃|si)f iθ̃g(θ̃|s′i)

⇒ f i
θ̃
(θ̃|si)

∫ si

si

f i(θ̃|x)pi(x|θ)dx > f i(θ̃|si)
∫ si

si

f i
θ̃
(θ̃|x)pi(x|θ)dx

⇒ d

dsi

[∫ si
si
f i
θ̃
(θ̃|x)pi(x|θ)dx∫ si

si
f i(θ̃|x)pi(x|θ)dx

]
> 0,

which proves that
d

dθ̃

(
giθ(θ̃|θ)
gi(θ̃|θ)

)
> 0 when

∫ si

si

f i(θ|si)f iθ̃(θ̃|si)p
i(si)dsi > 0.

Now, suppose that

∫ si

si

f i(θ|si)f iθ̃(θ̃|si)p
i(si)dsi < 0. Then:

d

dθ̃

(
giθ(θ̃|θ)
gi(θ̃|θ)

)
> 0 ⇔

∫ si
si
f iθ(θ|si)f iθ̃(θ̃|si)p

i(si)dsi∫ si
si
f i(θ|si)f iθ̃(θ̃|si)p

i(si)dsi
<

∫ si
si
f iθ(θ|si)f i(θ̃|si)pi(si)dsi∫ si

si
f i(θ|si)f i(θ̃|si)pi(si)dsi

⇔
∫ si

si

(
Q(si)−R(si)

)
lisi(θ|si)dsi > 0.

But given

∫ si

si

f i
θ̃
(θ̃|si)pi(si|θ)dsi < 0, then

Q(si)−R(si) > 0 ⇔

∫ si
si
f i
θ̃
(θ̃|x)pi(x|θ)dx∫ si

si
f i(θ̃|x)pi(x|θ)dx

<

∫ si
si
f i
θ̃
(θ̃|si)pi(si|θ)dsi∫ si

si
f i(θ̃|si)pi(si|θ)dsi
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which is the very same condition as (24).

A6. Proof of Proposition 4.

Given Proposition 1 and Lemma 2 it suffices to show that if x∗i (θj)(G1) is the optimal

resource cap when θ1 is distributed according to G1 then for G′1 �MLRP G1 we have

x∗1(θ2)(G′1) ≥ x∗1(θ2)(G1) and x∗2(θ1)(G′1) ≤ x∗2(θ1)(G1).

If G′1 �MLRP G1, then the hazard rates satisfy hG′1(θ1) ≤ hG1(θ1) and
1−G′1(θ1)
1−G1(θ1) in-

creases in θ1. Since

EG1 [θ1 | θ1 ≥ y1]− y1 =

∫ θ1

y1

1−G1(θ1)

1−G1(y1)
dθ1

it follows that

EG′1 [θ1 | θ1 ≥ y1]− y1 > EG1 [θ1 | θ1 ≥ y1]− y1 (25)

From (25) and the definition of y1(θ2) in (14) we have: (i) if y1(θ2)(G1) = 0 then

y1(θ2)(G′1) ≥ 0; (ii) if y1(θ2)(G1) = k− θ2 then y1(θ2)(G′1) = k− θ2; and (iii) if y1(θ2)(G1)

satisfies
1

β1

(
E[θ1 | θ1 ≥ y1(θ2)]− y1(θ2)

)
=

1

β0

(
y1(θ2) + θ2 + θ0 − k

)
then y1(θ2)(G1) < y1(θ2)(G′1). In summary, ifG′1 �MLRP G1 then y1(θ2)(G′1) ≥ y1(θ2)(G1)

for all θ2 ∈ [θ2, θ2]. Since y2(θ1)(G′1) = y2(θ1)(G1), we can immediately conclude that

(i) k1(G′1) > k1(G), k2(G′1) < k2(G1) and (ii) x∗1(θ2)(G′1) ≥ x∗1(θ2)(G1), x∗2(θ1)(G′1) ≤
x∗2(θ1)(G1).

A7. Proof of Lemma 3.

For fixed resources k′ (≥ 0) and needs (θ1, θ2) system I will choose to distribute them

according to

1. If k′ ≥ maxi

{
θi − βi

βj
θj

}
then

{
x1(k′; θ1, θ2) = θ1 − β1(θ1 + θ2 − k′)/(β1 + β2)
x2(k′; θ1, θ2) = θ2 − β2(θ1 + θ2 − k′)/(β1 + β2)

2. If k′ < θ1 − β1
β2
θ2 then

{
x1(k′; θ1, θ2) = k′

x2(k′; θ1, θ2) = 0

3. If k′ < θ2 − β2
β1
θ1 then

{
x1(k′; θ1, θ2) = 0
x2(k′; θ1, θ2) = k′

(26)

and the ex-post performance of system I is

ΠI(θ1, θ2, k
′) = − 1

β1+β2
(θ1 + θ2 − k′)2 if k′ ≥ maxi{θi − βi

βj
θj}

ΠI(θ1, θ2, k
′) = − 1

β1
(θ1 − k′)2 − 1

β2
θ2

2 if k′ < θ1 − β1
β2
θ2

ΠI(θ1, θ2, k
′) = − 1

β1
θ2

1 − 1
β2

(θ2 − k′)2 if k′ < θ2 − β2
β1
θ1
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The fact that resources allocated to each task must be non-negative accounts for the

allocation rules whenever k′ < maxi

{
θi − βi

βj
θj

}
. In fact, non-negativity implies that

system I cannot “borrow” negative resources from tasks with lower needs and redirect

them to tasks with higher needs. This insight provides an upper bound on the ex-post

performance of system I given optimal distribution rules (26):

ΠI(θ1, θ2, k
′) ≤ − 1

β1 + β2

(
θ1 + θ2 − k′

)2
(27)

Clearly, for any k′ and needs (θ1, θ2), expected overall performance is

ΠCES = ΠI(θ1, θ2, k
′)− 1/β0(θ0 + k′ − k)2.

To study the optimal mechanism under integration we consider a related optimization

problem (problem P ′) where the performances of CES and system I are given by:

Π′I(θ1, θ2, k
′) = − 1

β1 + β2

(
θ1 + θ2 − k′

)2
(28)

Π′CES = − 1

β0

(
θ0 − (k − k′)

)2
+ ΠI(θ1, θ2, k

′)

We then show that the optimal mechanism for problem P ′ is also the optimal mecha-

nism for our original specification.

(i) Optimal Mechanism for Problem P ′.
The overall performance from the viewpoint of CES in (28) can be written as

Π′CES = −
(

1

β1 + β2
+

1

β0

)(
k′ − k′CES (θ1, θ2)

)2 − (k − θ1 − θ2 − θ0)2

β0 + β1 + β2

where

k′CES (θ1, θ2) = max

{
β0

β0 + β1 + β2
(θ1 + θ2)− β1 + β2

β0 + β1 + β2
(θ0 − k), 0

}
is the optimal assignment to system I if the CES knew (θ1, θ2). The search for the

optimal mechanism is equivalent to a delegation problem where system I is offered a

set of resources DI ⊂ [0, k] and selects its preferred level from DI . We will apply the

conditions in Proposition 3 in Alonso and Matouschek (2008) to show that the optimal DI

is an interval where the maximum resources allowed to system I never exceeds its highest

needs.

First, with z = θ1 + θ2 we have G(z) =
∫

Θ1

∫ θ2=z−θ1
θ2

f (θ1, θ2) dθ1dθ2 and g(z) =∫
Θ1
f1 (θ1) f2 (z − θ1) dθ1 (which follows from independence of θ1 and θ2). The distribu-

tion function G(z) is the convolution of two distributions with an increasing hazard rate,
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and therefore has also an increasing hazard rate (Barlow et al 1963). Second, the differ-

ence between system I’s preferred choice of resources z and the CES preferred resources

k′CES (z) is a non-negative, non-decreasing function of z. Thus the delegation problem

satisfies the same conditions as in Lemma 1 implying that the optimal resource allocation

rule for problem P ′ takes the form k′ (z) = min{z, k̂} for some k̂ ≤ k.
(ii) Optimal Mechanism under integration.

First we observe that under a mechanism of the form k (z) = min{z, k̂} the allocation

for each task whenever z ≤ k̂ is the same for a system I with preferences as in (28) or

in our original setup. Moreover, the fact that the solution to problem P ′ is of the form

k′ (z) = min{z, k̂} implies that it is never optimal to “rule out” intermediate resources,

i.e. offer mechanisms of the form

k′(z) =

{
min{z, k1} if z ≤ (k1 + k2)/2

min{max{z, k2}, k̂} if z > (k1 + k2)/2

where resources k′ ∈ (k1, k2) are not available to system I. We will now show that the

expected performance to the CES in our original setup when ruling out intermediate

resources (k1, k2) is (weakly) lower than in problem P ′ with preferences (28). Since the

CES cannot gain under problem P ′ by ruling out intermediate resources it therefore cannot

be optimal to do so in our original setup.

Suppose that in the original setup the CES rules out any resource k′ ∈ (k1, k2). As a

result, system I with needs (θ1, θ2) such that k1 < θ1 + θ2 < k2 and allocating resources

according to (26) will decide whether to demand total resources k1 or k2. Let Ai be the

set of needs (θ1, θ2) that will lead system I to demand ki, that is

Ai = {(θ1, θ2) : k1 ≤ θ1 + θ2 ≤ k2,ΠI(θ1, θ2, ki) ≥ ΠI(θ1, θ2, kj)}

For problem P ′ the equivalent set ASi is

ASi = {(θ1, θ2) : k1 ≤ θ1 + θ2 ≤ k2, |θ1 + θ2 − ki| ≤ |θ1 + θ2 − kj |}

We first note that whenever system I chooses k2 with preferences (28) it will also choose

k2 when it allocates resources according to (26), i.e. AS2 ⊂ A2 and A1 ⊂ AS1 . Furthermore,

as resources granted exceed resource needs in AS2 system I will choose the same allocation

in both cases implying that ΠCES = Π′CES for (θ1, θ2) ∈ AS2 . From (27) the performance

of system I is dominated by −1/ (β1 + β2) (θ1 + θ2 − k1)2 for (θ1, θ2) ∈ AS1 implying that

ΠCES ≤ Π′CES in AS1 . Therefore expected performance from ruling out intermediate

resources is lower when system I behaves as (26) than in problem P ′.
(iii) Optimal cap k̂.
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The expected performance of CES with a resource allocation rule kI (z) = min{z, k′} is

JICES
(
k′
)

=

∫ z=k′

0
− 1

β0
(k − θ0 − z)2 dG(z)+

∫ z

z=k′

(
− 1

β0

(
k − θ0 − k′

)2 − 1

β1 + β2

(
z − k′

)2)
dG(z)

where z = θ1 + θ2.The optimal cap k̂ satisfies the first order condition

2

∫ z

z=k̂

(
1

β0

(
k − θ0 − k̂

)
+

1

β1 + β2

(
z − k̂

))
dG(z) = 0

which translates into

1

β1 + β2

(
E
[
z
∣∣∣z ≥ k̂]− k̂) =

1

β0

(
θ0 −

(
k − k̂

))
.

A8. Proof of Proposition 5.

Denote by JICES(γ) the maximum expected performance under integration and by

JMCES(γ) the maximum expected performance under specialization.

(a) Relative performance of Integration vs. Specialization as γ → 1.

(a-i) Performance under integration.

Given that z = θ̄1 + θ̄2 ≤ k, Lemma 3 establishes that for γ close to 1 the optimal

integration mechanism I sets a cap on resources k̂ where

k̂ =
γβ′0

γβ′0 + (1− γ)(β′1 + β′2)
E
[
z
∣∣∣z ≥ k̂]− (1− γ)(β′1 + β′2)

γβ′0 + (1− γ)(β′1 + β′2)
(θ0 − k) (29)

Since θ0 > k it follows that k̂ < z whenever γ < 1 and k̂ → z as γ → 1. To study the

performance of integration as γ → 1 first determine the rate at which the cap k̂ increases.

To this end we make two preliminary observations. First, given the bounded support of

θ1 and θ2, the p.d.f. of g(z) satisfies

g(z) =

∫
Θ1

f1 (θ1) f2
(
θ̄1 − θ1 + θ̄2

)
dθ1 = 0

as f2
(
θ̄1 − θ1 + θ̄2

)
= 0 for θ1 < θ̄1. Second,

g′−(z) = −f1
(
θ̄1

)
f2
(
θ̄2

)
< 0

In order to compute ∂k̂/∂γ|γ=1− as an application of the implicit function theorem to

(29) we first compute dE
[
z − k̂

∣∣∣z ≥ k̂] /dk̂|γ=1−

dE
[
z − k̂

∣∣∣ z ≥ k̂]
dk̂

∣∣∣∣∣∣
γ=1−

= −1 + lim
γ=1−

g(k̂)

1−G(k̂)
E
[
z − k̂

∣∣∣z ≥ k̂] .
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Defining the function N(k) =
∫ z
k (z − k)dG(z) =

∫ z
k (1−G(z))dz , we have

g(k)

1−G(k)
E [z − k |z ≥ k ] =

N ′′(k)N(k)

(−N ′(k))2

The (leftward) Taylor series expansion of N(k) around z is given by N(k) = g′(z)
3! (k−z)3 +

O((k − z)4) for k ≤ z. With this expression we readily obtain

lim
γ→1−

g(k̂)

1−G(k̂)
E
[
z − k̂

∣∣∣z ≥ k̂] = lim
γ→1−

N ′′(k̂)N(k̂)

(−N ′(k̂))2
=

g′(z)
3!

g′(z)
1!(

g′(z)
2!

)2 =
2

3

Thus

dE
[
z − k̂

∣∣∣z ≥ k̂]
dk̂

∣∣∣∣∣∣
γ=1−

= −1 + lim
γ=1−

g(k̂)

1−G(k̂)
E
[
z − k̂

∣∣∣z ≥ k̂] = −1

3

and by the implicit function theorem

∂k̂

∂γ

∣∣∣∣∣
γ=1−

= −(β′1 + β′2) (z + θ0 − k)

β′0
dE[z−k̂|z≥k̂ ]

dk̂

∣∣∣∣
γ=1−

= 3
β′1 + β′2
β′0

(z + θ0 − k) > 0. (30)

(a-ii) Performance under specialization.

To study the case of specialization we will consider the mechanism MD defined by

xMD
1 (θ1, θ2) = min{θ1, y1(θ2)}
xMD

2 (θ1, θ1) = min{θ2, y2(θ1)}
xMD

0 (θ1, θ2) = k − xMD
1 (θ1, θ2)− xMD

2 (θ1, θ2)

where

yi(θj) =

{
k̃i if θj ≤ k̂ − θi
k̂ − θj if θj ≥ k̂ − θi

and, with δi > 0,

k̃i = θ̄i − (1− γ)
β′i

β′0

(
γ + δi

2 β
′
i

) (θ̄i + θ0 − k
)

(31)

The mechanism MD always satisfies the resource constraint (given that θ̄1+θ̄2 ≤ k) and

is dominant strategy incentive compatible. Clearly MD is not necessarily optimal under

specialization, i.e. JMCES(γ) ≥ JMD
CES(γ). Nevertheless MD is simpler to analyze than
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the optimal mechanism under specialization and will suffice to show that specialization

dominates integration as γ → 1.

(a-iii) Comparison integration-specialization.

Define the sets

Ai =
{

(θ1, θ2) : θi ≥ k̃i, θj ≤ k̂ − θi
}
, i ∈ {1, 2}

B =
{

(θ1, θ2) : θ1 + θ2 ≥ k̂
}

As the allocation rule under the mechanisms I and MD coincides outside the sets Ai and

B we only need to estimate the difference JMD
CES(γ)− JICES(γ) in each of these three sets.

First, for (θ1, θ2) ∈ Ai (i) the mechanism MD restricts the allocation to system i to

k̃i while it grants its needs to system j and (ii) both tasks obtain their needs under the

mechanism I. We thus have(
JMD
CES(γ)− JICES(γ)

)∣∣∣
(θ1,θ2)∈Ai

=

∫
Ai

(
−1− γ

β′0

(
k − k̃i − θj − θ0

)2
− γ

β′i

(
k̃i − θi

)2
+

1− γ
β′0

(k − θi − θj − θ0)2

)
dF 1dF 2

= 2

∫
Ai

∫ θi

k̃i

(
1− γ
β′0

(s+ θj + θ0 − k)− γ

β′i

(
s− k̃i

))
dsdF 1dF 2

≥ 2

∫
Ai

∫ θi

k̃i

(
1− γ
β′0

(s+ θ0 − k)− γ

β′i

(
s− k̃i

))
dsdF 1dF 2

which leads to the estimate

2

∫
Ai

∫ θi

k̃i

(
1− γ
β′0

(s+ θ0 − k)− γ

β′i

(
s− k̃i

))
dsdF 1dF 2 ≥ δi

(
θ̄i − k̃i

)
E
[
θi − k̃i|Ai

]
Pr [Ai]

where Pr [Ai] = (1− F i(k̃i))F j(k̂ − θi) and the last inequality follows from the definition

of k̃i and that, for 1 > γ >
β′i

β′0+β′i
,

1− γ
β′0

(s+ θ0 − k)− γ

β′i

(
s− k̃i

)
≥ 1− γ

β′0

(
θ̄i + θ0 − k

)
− γ

β′i

(
θ̄i − k̃i

)
=
(
θ̄i − k̃i

) δi
2
> 0

Second, for (θ1, θ2) ∈ B both tasks obtain less than their needs both under MD and

I.40 Thus(
JMD
CES(γ)− JICES(γ)

)∣∣∣
(θ1,θ2)∈B

40This can be seen by observing that mechanism MD restricts the resources to both tasks only if
mechanism I restricts total resources to system I. This follows by the observation that k̃1 + k̃2 > k̂ for 
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= −
∫
B

(∑2

i=1

γ

β′i

(
k̂ − θ1 − θ2

)2
− γ

β1 + β2

(
θ1 + θ2 − k̂

)2
)
dF 1dF 2

= −γ
(
θ̄1 + θ̄2 − k̂

)2
(

1

β′1
+

1

β′2
− 1

β′1 + β′2

)
Pr [B]

Using both estimates we obtain the lower bound

JMD
CES(γ)− JICES(γ) ≥

(∑2

i=1
(1− F i(k̃i)) + Pr [B]

)(
θ̄1 + θ̄2 − k̂

)2
(C1(γ)− C2(γ)) (32)

where

C1(γ) =

∑2
i=1 δi

(
θ̄i − k̃i

)
E
[
θi − k̃i|Ai

]
Pr [Ai](∑2

i=1(1− F i(k̃i)) + Pr [B]
)(

θ̄1 + θ̄2 − k̂
)2

C2(γ) =

(
1

β′1
+

1

β′2
− 1

β′1 + β′2

)
γ Pr [B]∑2

i=1(1− F i(k̃i)) + Pr [B]

The following limits follow by application of L’Hôpital’s rule

lim
γ=1−

θ̄i − k̃i
θ̄1 + θ̄2 − k̂

=
− dk̃i

dγ

∣∣∣
γ=1−

− dk̂
dγ

∣∣∣
γ=1−

> 0, lim
γ=1−

θ̄i − E [θi|Ai]
θ̄1 + θ̄2 − k̂

=
− dE[θi|Ai]

dγ

∣∣∣
γ=1−

− dk̂
dγ

∣∣∣
γ=1−

> 0

lim
γ=1−

Pr [B]∑2
i=1(1− F i(k̃i)) + Pr [B]

=
g
(
θ̄1 + θ̄2

)
dk̂
dγ

∣∣∣
γ=1−

−
∑2

i=1 f
i(θ̄i)

dk̃i
dγ

∣∣∣
γ=1−

− g
(
θ̄1 + θ̄2

)
dk̂
dγ

∣∣∣
γ=1−

= 0

close to 1. Indeed, since

@k̃i
@


∣∣∣∣∣
γ=1

= �′i
�̄i + �0 − k
�′0

(
1 + δi

2
�′i

) > 0;

comparing (30) and (31) we have that∑2

i=1

@k̃i
@


∣∣∣∣∣
γ=1

=
∑2

i=1
�′i

�̄i + �0 − k
�′0

(
1 + δi

2
�′i

)
<

∑2

i=1
�′i
�̄i + �0 − k

�′0

<
∑2

i=1
�′i
z + �0 − k

�′0
=

1

3

@k̂

@


∣∣∣∣∣
γ=1−

Therefore ∂
∂γ

(∑2
i=1 k̃i − k̂

)∣∣∣
γ=1

< 0 implying that for 
 in a neighborhood of 
 = 1, k̃1 + k̃2 > k̂.
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lim
γ=1−

∑2
i=1 Pr [Ai]∑2

i=1(1− F i(k̃i)) + Pr [B]
= 1

which imply that

lim
γ→1−

C1(γ) > 0 and lim
γ→1−

C2(γ) = 0

Therefore there exists a neighborhood M of γ = 1 where γ > maxi

[
β′i

β′0+β′i

]
and JMCES(γ) ≥

JMD
CES(γ) > JICES(γ) for γ ∈M,γ 6= 1.

(b) Relative performance of Integration vs. Specialization as γ → 0.

Given θ0 > k, when γ = 0 the CES assigns all resources to system 0 both under aggregation

and specialization implying JICES(0) = JMCES(0). By the Milgrom-Segal Envelope Theorem

(Milgrom and Segal, 2002) we have

∂JICES(γ)

∂γ

∣∣∣∣
γ=0+

= − 1

β′1 + β′2
E
[
(θ1 + θ2)2

]
∂JMCES(γ)

∂γ

∣∣∣∣
γ=0+

= − 1

β′1
E
[
θ2

1

]
− 1

β′2
E
[
θ2

2

]
Then

∂
(
JICES(γ)− JMCES(γ)

)
∂γ

∣∣∣∣∣
γ=0+

=
β′1β

′
2

(β′1 + β′2)
E

[(
θ1

β′1
− θ2

β′2

)2
]
> 0

where the strict inequality follows from independence of θ1 and θ2. Therefore, there exists

a neighborhood N of γ = 0 where JICES(γ) > JMCES(γ) for γ ∈ N, γ 6= 0.
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