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Abstract. This paper provides an evolutionary foundation for our
capacity to attribute mental states such as belief, desire, and intent to
ourselves, and to others. This ability, referred to as “Theory of Mind”,
is intrinsic to game theory and is viewed by many as the capstone of
social cognition. We argue here that theory of mind allows organisms to
efficiently modify their behavior in strategic environments with a persistent
element of novelty. We find that in such non-stationary environments it
yields a sharp, unambiguous advantage over less sophisticated, behavioral
approaches to strategic interaction.

1. Introduction

An individual with theory of mind (ToM ) has the ability to conceive of himself, and

of others, as having agency, and so to attribute to himself and others mental states

such as belief, desire, knowledge, and intent. It is generally accepted in psychology that

human beings beyond early infancy possess ToM. Further, it is conventional in game

theory to make the crucial assumption, without much apology, that agents have ToM.

The present paper considers ToM in greater depth by addressing the question: Why

and how might have such an ability evolved? In what types of environments would ToM

yield a distinct advantage over alternative, less sophisticated, approaches to strategic

interaction? In general terms, the answer we propose is that ToM is an evolutionary

adaptation for dealing with strategic environments that have a persistent element of

novelty.

The argument made here in favor of theory of mind is a substantial generalization

and reformulation of the argument in Robson (2001) concerning the advantage of having

daniel.monte@fgv.br
nkasimat@sfu.ca

robson@sfu.ca



Theory of Mind 2

an own utility function in a non-strategic setting. In that paper, an own utility function

permits an optimal response to novelty. Suppose an agent has experienced all of the

possible outcomes, but has not experienced and does not know the probabilities with

which these are combined. This latter element introduces the requisite novelty. If the

agent has the biologically appropriate utility function, she can learn the correct gamble

to take; if she acts correctly over a sufficiently rich set of gambles, she must possess,

although perhaps only implicitly, the appropriate utility function.

We shift focus here to a dynamic model in which players repeatedly interact with one

another but in which the set of games that they might face becomes larger and larger

with time. We presume individuals have an appropriate own utility function. The

focus is then on the advantage to an agent of conceiving of her opponents as rational

actors—as having preferences, in particular, and understanding that they act optimally

in the light of these. Having a template into which the preferences of an opponent can

be fitted enables a player to deal with a higher rate of innovation than can a behavioral

type of individual that adapts to each game as a distinct set of circumstances. In other

words, the edge to ToM derives from a capacity to extrapolate to novel circumstances

information that was learned about preferences in a specific case.

The distinction between the ToM and behavioral types might usefully be illustrated

with reference to the following observations of vervet monkeys (Cheney and Seyfarth

(1990), p. 213). If two groups are involved in a skirmish, sometimes a member of the

losing side is observed to make a warning cry used by vervets to signal the approach

of a leopard. All the vervets will then urgently disperse, saving the day for the losing

combatants. The issue is: What is the genesis of this deceptive behavior? One possibil-

ity, corresponding to our theory of mind type, is that the deceptive vervet appreciates

what the effect of such a cry would be on the others, understands that is, that they

are averse to a leopard attack and exploits this aversion deliberately. The other polar

extreme corresponds to our behavioral adaptive learners. Such a type has no model

whatever of the other monkeys’ preferences and beliefs. His alarm cry behavior con-

ditions simply on the circumstance that he is losing a fight. By accident perhaps, he

once made the leopard warning in such a circumstance and it had a favorable outcome.

Subsequent reapplication of this strategy continued to be met with success, reinforcing

the behavior.

Consider the argument in greater detail. We begin by fixing a two-stage extensive

form with perfect information. In each period, each of a large number of player 1’s

is randomly matched to an opponent drawn from a large number of player 2’s. In

addition, the outcomes needed to complete the game are drawn randomly from some

large but finite set. Each player has a strict ordering over the set of outcomes drawn

for that player. Each player is fully aware of his own ordering but does not know the

strict preference ordering of his opponent.

We compare two types of players – behavioral (or naive) and theory-of-mind (so-

phisticated) types. In the two-stage setting, this distinction is only important for player

1, since the optimal choice by the player 2’s relies only on 2’s preferences. The naive
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players behave in a fashion that is consistent with simple adaptive learning in psychol-

ogy and with evolutionary game theory in economics. Each game is seen as a fresh

problem, so naive learners must adaptively learn to play each such different game.

The ToM type of player 1, on the other hand, is disposed to learn the other agent’s

preferences. It is relevant now that the pattern of play is revealed to all players at the

end of that period. Each time the player 1’s see the player 2’s being forced to make a

choice, the player 1’s learn how the player 2’s rank the two outcomes. 1 For simplicity,

we do not suppose the player 1’s use the transitivity of the preference ordering of

the player 2’s. This assumption clearly loads the dice against the result we generate

concerning the evolutionary advantage of the ToM type.

We now introduce innovation by periodically adding outcomes to the pool of existing

ones. Suppose the arrival rate of such novelty is sufficiently low. Then in the limit,

the ToM player 1’s are exposed to almost all possible pairwise choices by the player

2’s and hence they play appropriately in all but a vanishing fraction of the games they

face. In this case, the fraction of possible games that naive players are exposed to will

also tend to one in the limit, so they also play appropriately on all but a diminishing

fraction of games. If the growth rate is sufficiently high, on the other hand, there will

again be no apparent advantage to the ToM types, since both types will be informed

about a vanishing fraction of cases they face.

The key observation is that, in an intermediate range of growth rates, the ToM

types will be informed about the opponent’s preferences with a probability converging

to 1, while the naive types will be informed of the game to be played with a probability

that converges to zero. In this simple, strong and robust sense, then, the ToM type

outdoes the naive type. The key reason for the greater success of the ToM type is

simply that there are vastly more possible games that can be generated from a given

number of outcomes than there are outcome pairs. The sharpness of this result enables

us to get away from calculating and comparing average payoffs.

The two-stage game considered so far apparently is rather special. The player 2’s

have no need of strategic sophistication at all, and the need for strategic sophistication

on the part of the player 1’s is limited to knowledge of player 2’s preferences. How

do our two-stage game results extend to a general setting? We then turn to a general

I -stage game of perfect information to consider this question. There are now I player

types, where one type associated with each stage. Again, the last player does not need

any strategic sophistication, and the advantage of ToM to the second-to-last player is

similar to that obtained already for the player 1’s in a two-stage game. However, the

third-to-last player now apparently faces a more complex task. He must not only learn

the preferences of the last two players but also learn that the second-to-last player knows

the last players preferences as well. This last requirement is one of increasing depth

of knowledge; the first requirement is one of increasing scope. In the present model,

1 The assumption that there are a large number of player 2’s means that a deviation by a single player

2 will not change the distribution observed by the player 1’s. Assuming that the player 1’s condition

only on this distribution, there is no incentive then for the player 2’s to choose strategically, or in any
way contrary to the myopic payo�.
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however, the depth requirement is finessed. When the last player makes a choice that

reveals his preferences between two outcomes, this choice is common knowledge to

all the sophisticated players. Furthermore, the increasing scope of what the second-

to-last player needs to know has no effect on the critical rate of innovation beyond

which sophisticated players are inevitably unable to learn. On the other hand, the task

faced by the naive players becomes more formidable, in terms of the critical rate of

innovation, simply because there are now more possible games. The results from the

two-stage game then generalize in a straightforward way.

2. The Model

We describe a model where the number of possible situations that agents might face

grows over time and where, initially at least, agents are unsure about how others will

behave in these different circumstances.

2.1. The Environment

Consider I equally “large” populations of infinitely lived players. Every player in

population i = 1; : : : ; I is endowed with the same preference ordering over a countably

infinite set of objects, which we refer to as Z. Denote the preferences of population

i individuals as %i⊂ Z × Z. These preferences are complete and transitive. The

members of population i may be referred to as player i’s or as having preference type

i. It assumed that each type’s preferences are private information.

There are an infinite number of discrete periods. In each period, all the players are

randomly matched up in I-sized groups, with one member of each matching from each

preference type. The players of each matching in period t then independently play

a perfect information game, denoted by Γt. In any given period, a large number of

identical games are played, each involving I players. After playing the period t game

the groups dissolve. For simplicity, all possible I member matchings of the I distinct

preference types are equally likely in every period.

We refer to Γt as the period t game. These games generally involve different out-

comes. 2 More specifically, we assume the following throughout: (1) every Γt is an I

stage game in which the player 1’s move first, then the player 2’s move, then the player

3’s, and so on, and (2) there are exactly A moves at every information set. We now

elaborate further on how stage games are realized.

Fix a sequence of outcome sets {Zt} 3 and let Gt be the set all perfect information

games that could be generated from Zt that satisfy the two restrictions above. Assume

each period game is drawn with equal probability from Gt. 4

The sequence of available outcomes {Zt} comprises a dynamic environment with

ever growing complexity. Although only a finite set of outcomes is available at each

2 It is possible to allow the game forms to di�er also, but this is precluded in the interests of simplicity.
3 Each type’s preference ordering over Zt is derived from the type’s original ordering over Z.
4 This is for simplicity. All that matters is that players have su�cient exposure to all of their opponents’

relevant choices.
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date, as time goes by, there are more and more of these. Precisely, one new outcome

is introduced at each of a sequence of arrival dates, denoted t1; :::; tk; :::, where tk is

the arrival date of the k-th new outcome, so that tk ≤ tk+1 for all k = 1; 2; : : : ;. Once

introduced, outcomes are never removed from the pool of available objects. As a result,

in periods tk to tk+1 − 1 the number of available outcomes is |Z0|+ k, where Z0 is the

initial set of objects.

This k-th object might be chosen at random from the set of remaining possibilities,

but we will not spell out the details of how these drawings occur. Although there may

be implications for the rank distribution of a newly introduced object, we assume the

players do not avail themselves of any such information. Without loss of generality, then

take Z as the set of integers 1; 2; : : : ; : Further, take Z0 = {1; 2; : : : ; N}, the first object

introduced as N+1, the second as N+2, and so on. In periods t = tk; : : : ; tk+1−1 games

are then drawn from the set of all the games that can be generated from the outcome

set {1; 2; : : : ; N; : : : ; N + k} : Thereby, the strategic environment is summarized as:

E =
(
I; A;

(
%1; : : : ;%I

)
; {tk}∞k=1

)
:

2.2. Strategies and Histories

In each period, all players know the entire history of play. 5 Somewhat more for-

mally, a history of length t− 1 is a sequence

Ht−1 =
{(

Γτ ; �̃
1
τ ; �̃

2
τ ; : : : ; �̃

I
τ

)}t−1

τ=1
;

where �̃iτ is the aggregate distribution of period t play, at nodes reached by i preference

types, in period t. Let Ht−1 denote the set of all t− 1 length histories.

The focus of the analysis is on how players learn in the environments described

above. This learning is facilitated since there are no supergame effects here. Individual

players ignore the effects of their actions on the future behavior of their opponents and

play myopically. Why couldn’t players fool their opponents about their preferences?

Recall that we assume a player reacts only to the distribution of choices made by the

remaining players. Since any particular player has no effect on these distributions,

and hence cannot affect the behavior of her future opponents, any such particular

player must behave myopically. In the two-stage case, player 1’s cannot, in any case,

advantageously mislead the 2’s because 2’s do not react to 1’s previous behavior. More

interestingly, the type 1’s disregard the choice of any particular type 2, since this choice

cannot affect the distribution of player 2’s choices, and so type 2’s have no incentive to

mislead the player 1’s.

2.3. Cognitive Types

We are now ready to define the two cognitive types, theory of mind (“theory,” for

short, or ”sophisticated”) and behavioral (or “naive”), that are the subjects of the

analysis.

5 However, players never observe an opponent’s payoffs.
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Behavioral types are characterized by an inability to attribute mental states to

other agents. They cannot then establish any relationship between the choices made

by others in different contexts. Specifically, a behavioral (or naive) type is a player

that adapts to each period game as a distinct set of circumstances, learning to play

appropriately in a game only from repeated exposure to it. 6

Theory types make inferences about preferences and beliefs using observed behavior.

A theory of mind type knows that other agents are endowed with preferences and

beliefs, and that they act optimally according to these. This is common knowledge

among ToM types.

We adopt the following simplifying assumption.

A1: Each preference type has a strict preference between any distinct pair of outcomes.

The strictness of each preference ordering is common knowledge among ToM types. 7

Speci�cally, it is commonly known by theory types that for each i� I and z; z′ � Z,

z ∼i z′ if and only if z = z′:

When the players are theory types A1 implies there are histories that make com-

monly known some information about preferences. For any z; z′ � Zt and i� I, where

z 6= z′, say that Ht reveals z �i z′ if all theorists commonly know that Ht could not

have happened if z′ �i z. 8

The section closes with illustrative examples of preference revelation. Assume A1

throughout.

Consider first “last mover” (the I type) preference revelation. Suppose the subgame

in Figure 1 is reached by a positive measure of player I’s. Suppose further, that z �I z′.

I
L

��

R

��
z z′;

Figure 1: If z �I z′ then this is revealed when this subgame is reached.

Since all players are rational, all player i’s who reach this subgame choose action “L”.

Let Ht be the resulting history. Then Ht reveals z �I z′ since “L” could not have been

chosen in the event that z′ �I z:
6 Our behavioral agents approach a game in an essentially nontheoretic fashion. They merely associate

games with acts according to some statistical procedure. They are reinforcement learners with only an

ability to tell the di�erence between distinct social situations. More rational behavioral types might
respond optimally to beliefs about what happens at other players’ information sets (Fudenberg and
Kreps, 1995). These players are behavioral in the sense that these beliefs are updated according to

experience in an adaptive fashion.
7 Consider the following salient case. Suppose each z ε Zt is an I-tuple, (x1, . . . , xi, . . . , xI), where xi

is the amount of money, say, allocated to player i. The present assumption then rules out independent
preferences since it rules out that, in general, (x1, . . . , xi, . . . , xI) ∼i (x̂1, . . . , xi, . . . , x̂I). Nevertheless,
the results can also be obtained with independent preferences if we assume that (x1, . . . , xi, . . . , xI) ∼i
(x̂1, . . . , x̂i, . . . , x̂I) if and only if xi = x̂i and make this common knowledge among ToM types.
8 Without A1 each history would then be consistent with a wide range of preference based models.
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What kind of histories reveal information about %i when i < I? Consider the per-

spective of any ToM player who observes the subgame in Figure 2, where
{
z �I x; z′ �I x′

}
have been previously revealed and where z 6= z′. The observer knows that player I − 1

I − 1
L

{{

R

##
I

L

��

R

��

I
L

��

R

��
z x z′ x′;

Figure 2: If
{
z �I x; z′ �I x′

}
have been revealed, I−1’s choice here reveals

I − 1’s preference between z; z′.

knows how player I will choose. Hence, if the I−1 types choose“L”, z �I−1 z′ becomes

commonly known.

3. Results

Recall (from Section 2.1) that the environment is given by:

E =
(
I; A;

(
%1; : : : ;%I

)
; {tk}∞k=1

)
:

The main results are about how different cognitive types cope in various environments—

in particular, how they learn to play as we vary I, A, and, particularly, the arrival dates.

In very slowly and in very rapidly complexifying environments there are no benefits

to ToM. There is however an intermediate, and significant, range in which ToM has

a striking and unambiguous advantage over naivete. These results are expressed in

Theorem 1 below. Before stating the result we need to first introduce some key notation.

Let Rit denote the set of pairs in Zt × Zt on which %i has been revealed. That

is, Rit =
{
{z; z′} :%i revealed on {z; z′}

}
: Assume {z; z} � Rit; for every z � Zt; and

moreover that if {z; z′} � Rit then {z′; z} � Rit: A primary object of interest is the count

of how much information has been revealed about i type preferences. This is given by

Ki
t = |Rit|; which belongs to the set {|Zt|; |Zt|+ 2; : : : ; |Zt|2}: Let

Lit ≡ Ki
t=|Zt|2:

This is the fraction of i type binary choices that have been revealed by period t. We

will also keep track of the number of games players have been exposed to. The basic

game tree has AI terminal nodes. Thus the number of possible games in period t is
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|Gt| = |Zt|A
I
. Letting KN

t be the number of distinct games that have been realized

along Ht; the fraction of period t games to which players have been exposed is then

LNt ≡ KN
t =|Zt|A

I
: 9

The arrival date sequence is specified in (A2) below. The formulation chosen here

parameterizes the rate at which the environment becomes increasingly complex, in a

fashion that yields a straightforward connection between this rate and the advantages

to theory of mind.

A2: Let the arrival sequence {tk} be given as follows. Fix � ≥ 0. For each k = 1; 2; : : : ;

let

tk = b[|Z0|+ k]αc: 10 (1)

We are now in a position to state the main results (Theorems 1 and 2). The proofs

of these are given in the Appendix. First, for the simplest possible environment—

Theorem 1: Assume (A1-2), and suppose I = 2 and A = 2:

A) If �� [0; 2) then L2
t −→ 0 and LNt −→ 0 a.e. as t −→ ∞. That is, both the

sophisticated and the naive type are overwhelmed by the rapid rate of arrival of

new outcomes.

B) If �� (4;∞), then L2
t −→ 1 and LNt −→ 1 in probability, as t −→ ∞. That is,

the rate of arrival of new outcomes is slow enough that theory types are able to

essentially learn everything and naive types are exposed to all games.

C) Finally, however, if �� (2; 4), then L2
t −→ 1 in probability but LNt −→ 0 a.e.

as t −→ ∞. That is, for this intermediate range of arrival rates, the ToM type

learns essentially everything, while the naive type learns essentially nothing.

There are several aspects of the above result that bear emphasis. With the possible

exception of the two isolated critical values of 2 and 4, the results are dramatic—either

everything is learnt in the limit or nothing is. Indeed, it is not hard to see that, for

either type, the range where nothing is learnt is inescapable in that the arrival rate

of novelty outstrips there the maximum rate at which learning can occur. So the

real contribution of the above is the much less obvious result that full learning occurs

essentially whenever it is even possible that it could. These results make irrelevant the

various simplifying assumptions that we invoked here.

In terms of the contest between the two types, there is then an interval over which

the ToM type learns everything and the naive type learns nothing. The simplicity

9 The count of the number of games that can be composed from |Zt| outcomes assumes that the order
of the outcomes matters. If we allow outcomes after a given choice by a player to be permuted, and
allow the subtrees after the choices by the �rst player to be permuted, this reduces the number of games

by a constant factor. However, the present results depend crucially only on the leading power to which

|Zt| is raised.
10 Here b·c denotes the 
oor function. It seems more plausible, perhaps, that these arrival dates would

be random. This makes the analysis mathematically more complex, but does not seem to fundamentally
change the results. The present assumption is then in the interests of simplicity.
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of these results implies that we can finesse the issue of considering payoffs explicitly.

Whatever these payoffs might be it is clear that the ToM type is outdoing the naive

type in this intermediate range. 11

3.1. General Environments

The two-stage game environment considered so far is special in a number of ways.

The type 2’s have no need of strategic sophistication at all, and the strategic sophis-

tication of the player 1’s is limited to knowledge of player 2’s preferences. In fact, all

that is required in order to play properly here is a first level theory of mind—some

attribution by the player 1’s of preferences to the player 2’s.

We obtain, however, similar results for a general environment E , with an arbitrary

number of stages and moves. That is, the advantage of ToM is, in general, rather

similar to that obtained already for the player 1’s in a two-stage game. This is despite

the need, in an I-stage game, for player 1, for example, to know what player 2’s know

about the preferences about the remaining players. In the current model of learning,

however, such higher order sophistication comes for free. That is, when a player reveals

her preferences all theory players simultaneously learn that player’s preferences and

that the other theory players know these preferences. The growth in complexity here

does not then directly stem from higher and higher orders of belief, since when learning

about preferences occurs here it is common knowledge. Any growth in complexity that

there is stems from the more prosaic need for players moving near the start of the

game to obtain preference information about more and more players. Remarkably, this

greater complexity does not show up as a decreased ability to respond to novelty.

We argue then that evolution might proceed stage by stage in a general environment

with I preference types. First, the player I − 1’s derive an advantage from ToM over

naivete, regardless of the sophistication of the i < I − 1 types for much the same

reason as in the two-stage game. Once the I − 1’s can be taken to be ToM it is then

straightforward to demonstrate an edge to ToM over naivete for the player before him.

The advantage to theory of mind is then established by induction.

We state the main result for environments with arbitrary (finite) I and A—

Theorem 2: Assume (A1-2). Let T be the number of terminal nodes pertaining to the

basic game tree. Here, the statements about the Lits assume that all players i+ 1; :::; I

are theory types.

A) If �� [0; 2) then for each i� I, Lit −→ 0 and LNt −→ 0 a.e. as t −→ ∞. That is,

both the sophisticated and the naive type are overwhelmed by the rapid rate of

arrival of new outcomes.

B) If �� (T;∞), then for each i� I, Lit −→ 1 and LNt −→ 1 in probability as t −→∞.

That is, the rate of arrival of new outcomes is slow enough that theory types are

able to essentially learn everything and naive types are exposed to all games.

11 Suppose on the contrary that the ToM were right in the limit 5/8 of the time and the naive types

were right 3/8 of the time. Without knowing more about the games in question, their payo�s in
particular, it does not follow automatically the the ToM type is superior.
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C) Finally, however, if �� (2; T ), then Lit −→ 1 in probability but LNt −→ 0 as

t −→ ∞. That is, for this intermediate range of arrival rates, the ToM type

learns essentially everything, while the naive type learns essentially nothing.

The general results here are again dramatic—except possibly at two points, every-

thing is learnt in the limit or nothing is. Again, when nothing is learnt, it is because it

is simply mechanically impossible to keep up with the rate of novelty, so that the key

contribution of this theorem is to show that everything is learnt essentially whenever

this is not mechanically ruled out.

The proof of Theorem 2 is somewhat intricate. Why is that? It is always clear that

the rate of learning must be small if Lit, for example, is close to one. When � > 2,

however, the proof involves showing that this is the only circumstance under which the

rate of learning is small. There are two factors that complicate showing this. The first

is that there are i-type subgames in which i’s player choice cannot reveal information

about %i because there is insufficient knowledge about the remaining players’ choices.

The second factor is more awkward. It concerns the existence of i-type subgames

with outcomes that are avoided by the remaining opponents, thus making it difficult

to reveal information about %i. Such games may arise even as t −→ ∞. However, A1

implies that these problematic games are a vanishing small fraction of all games in the

limit as t −→∞.

Again, there is then an interval over which the ToM type learns everything and

the naive type learns nothing. Another point deserving emphasis is that the range in

which theory types learn everything is independent of the complexity of the periodic

interactions. The introduction of more and more stages (corresponding to more distinct

preference types) and actions would seem bound to shift the transition point from no

learning to full learning for the ToM types.

However, as the number of stages grows, although the speed of learning must surely

be adversely affected, whenever � > 2 theory types can learn in any perfect information

game that has a bounded number of terminal nodes. Consider a three stage environ-

ment, for example. As long as � > 2, player 1’s will learn the player 3’s preferences

completely in the limit. In addition, at the same time that 3’s choices reveal informa-

tion about 3’s preferences to player 1, they reveal the same information to the type 2’s

and the type 1’s know this. But now, given this all this knowledge, and that � > 2,

player 1 can also completely learn player 2’s preferences. 12

Naive types on the other hand do worse and worse as the period game becomes

increasingly complicated. In that case, the naive types face a larger set of possible

games, and hence can only keep up with a slower rate of novelty. Their disadvantage in

this regard is particularly striking as the number of preference types increases. Recall

that the number of terminal nodes, T , from Theorem 2 is AI in our model. Hence the

range in which naive players are surpassed by theory types grows with each increase in

I and A:

12 We can again �nesse the issue of considering payo�s explicitly. Whatever these payo�s might be,
the ToM type is outdoing the naive type in the relevant intermediate range.
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4. Extensions

What can be said about games with imperfect information? Normal form games,

as a key case? For a general normal form game with multiple Nash equilibria, it is not

clear how to disentangle the lack of knowledge of payoffs from the lack of information

about which equilibrium is to be played, at least in the absence of strong assumptions.

It is perhaps realistic to suppose that normal form games crop up along with the

games of perfect information emphasized here, using outcomes drawn from the same

set. Whether or not any learning can be accomplished on such normal form games,

our approach shows that learning would arise based only on the games of perfect

information. Given only that the naive types are not given some ad hoc advantage over

the ToM ’s when playing the normal form games, the results here will be robust.

How much do the current results depend on the particular model described here?

Although the environment is rather particular, it is best seen merely as a test to

discriminate between the underlying characteristics of ToM ’s and of the naive players.

That is, although other environments might show the difference in a less clear-cut

fashion, it is hard to picture an even-handed test at which the naive players would

outdo the ToM players.

For example, it is only for simplicity that we restrict attention to a fixed game

tree. The tree itself could be random: it might involve a random number of moves

or a random order of play, for example. Similarly, players could be allowed to move

multiple times, sequentially, and so on.

Similarly, the assumption that individuals have a strict ranking over each distinct

pair of outcomes is basically innocuous. If indifference is allowed, suppose, for example,

that individuals randomize over each pair of indifferent outcomes. The indifference of

player i between z and z′ would then be common knowledge to the ToM types, if ever

player i chose z over z′ and z′ over z. This would lead a difference of detail rather than

substance.

We assume here that ToM types do not apply transitivity in their deductions about

the preferences of other players. This might make a substantive difference to the

relevant ranges of the growth parameter �. The new value of � cannot exceed 2, since

applying transitivity could not be disadvantageous. It is actually not hard to see that

applying transitivity could not lower the critical value of � below 1. In any case, there

would continue to be the key intermediate range of values where ToM outperforms

naivete; applying transitivity could only make this range larger.

Further, the results do not seem to be highly dependent on the exact specification

of the two types. More sophisticated naive types could clearly do better than the

ones we describe here. If naive types assign beliefs to subgames, rather than to entire

games, for example, they would do as well as ToM types in the two stage game case.

More generally, with three or more stages, such more sophisticated naive players would

do better than the naive players considered here, but not as well as the sophisticated

players.
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5. The Evolution of ToM in Economics and Other Literatures

There are only a handful of papers within economics and game theory that attempt

to provide an evolutionary foundation for ToM. Most of the existing work, in fact, has

focused on the evolutionary basis of strategic choice rather than of ToM per se.

One such exception is Stahl (1993), who asks when evolutionary selection might

favor strategic sophistication over naivete. In that paper, degrees of sophistication cor-

respond to levels of of iteration of best responses. 13 The model yields a negative result

pertaining to the emergence of higher order strategic intelligence. Naive types—in par-

ticular, those that luck upon the appropriate way to play—will not be eliminated from

the population. Moreover, if higher orders of intelligence entail costs in terms of repro-

ductive fitness then, and if aggregate play converges, all of the sophisticated types will

die out in the long run. A crucial difference between Stahl (1993) and the present work

is that the former focuses on a single symmetric normal form game. On the other hand,

the non-stationarity of the environment, with a randomly chosen game in each period,

generates our positive result in favor of sophistication. Another important difference

between the two works lies in how we make the distinction between sophisticated and

naive types. Here the ToM cognitive types are set apart by a disposition to view others

as intentional rather than by an enhanced ability to iterate. Our naive types simply

lack the ability to see others like this.

Another game theoretic work that addresses the evolutionary foundations of strate-

gic intelligence is Mohlin (forthcoming, 2012). 14 Mohlin also obtains somewhat nega-

tive results concerning the emergence of sophisticated agents. Whether or not higher

cognitive types are supported in the limiting distribution depends on the characteris-

tics of the particular games in question (i.e., the iterated best replies). 15 In contrast,

our results concerning ToM are not derived from the specific details of the periodic

interactions but from the growing complexity of the environment, involving a widening

variety of games.

Outside of economics and game theory, considerable effort has been devoted to

identifying the ecological factors yielding selective pressures for social intelligence (see

for instance Byrne and Whiten (1988) and Whiten and Byrne (1997)). 16 In this

regard, the Machiavellian Intelligence Hypothesis (MIH) has emerged as the central

explanatory theory. Although there are several discernible varieties of the MIH, a

feature common to all of them is the idea that higher order social cognition is derived

from social living and the resulting complexity (Byrne and Whiten, 1997). 17

13 A smartn cognitive type chooses a strategy that is nth-order rationalizable. The smart0 types play
in a predetermined way, i.e., a particular player of this type selects the same pure strategy in every
period.
14 Two di�erent notions of strategic sophistication are put forward by Mohlin: a Levelk cognitive

hierarchy model (see, for instance, Stahl and Wilson (1995)) and a heterogeneous �ctitious play model.

In the Levelk model, an anchor type, Level0, plays a �xed strategy, Levelk best responds to Levelk−1,
and so on. In heterogeneous �ctitious play, the lowest cognitive types best responds to the empirical
distribution of past play. In general, each higher type best responds to the type below him, and so on.
15 The agents in the paper interact over a �xed, �nite set of normal form games.
16 Social intelligence here is a suite of cognitive abilities encompassing ToM, in particular.
17 For a game theoretic treatment of the MIH, describing the evolution of intelligence as the result of

an arms race in memory capacity, see Robson (2003) .
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An influential argument concerning the MIH is due to Dawkins and Krebs (1978)

and Krebs and Dawkins (1984). They begin with the premise that natural selection will

lead animals to manipulate conspecifics, with deceptive communication if necessary. 18

Presumably, an ability to deceive would often enhance the communicator’s reproductive

chances. However, it would also set in motion selective pressure for a strategy that

anticipates and detects deception. Here we find a compelling rationale for the evolution

of an ability to discriminate between others’ states of mind. An individual with such

an ability can extract true intent from possibly deceptive superficial behavior, use such

information to better predict the protagonist’s behavior, and then use these predictions

to optimize his own choices. 19

6. Conclusions|Complexity and the Hierarchy of
Beliefs|Experimental Implementation

One interesting aspect of the model here deserves emphasis. This concerns how the

problem facing players becomes more complex in a game of perfect information with a

larger number of stages, I. In the conventional account, the greater complexity arises,

for example, from the need for player 1’s to know that player 2’s know that ... player

I’s payoffs. In the current model of learning about others’ preferences, when a player

makes a choice that reveals his preference over some pair of choices, this is common

knowledge. The only greater complexity that does arise with more stages is that player

1, for example, must learn the preferences of players 2; : : : ; I. Although this is clearly

a harder and harder problem for player 1, as I increases, this difficulty is not reflected

in the value of �. That is, if � > 2, player 1 can learn player I’s binary preferences.

Given these preferences, and still just with � > 2, player 1 can learn player I − 1’s

preferences. Given these two sets of preferences, and still just with � > 2, player 1

can learn I − 2’s preferences, and so on. This model does not directly then reinforce a

notion of complexity based on the level reached in the common knowledge hierarchy;

rather the complexity is merely the more prosaic issue of identifying the preferences of

the later players, perhaps by backwards recursion.

It would be of inherent interest to experimentally implement a version of the model

here, perhaps simplified to have no innovation. That is, put a reasonably large number

of subjects into each of I pools—one for each role in the game. Induce the same

preferences over a large set of outcomes for each of the player i’s for i = 1; :::; I by

using monetary payoffs. No player knows the other players’ payoffs. Play the game

otherwise as above. How fast would players learn other players’ preferences? Would

they be closer to the sophisticated ToM types described above or to the naive types?

How would the number of stages I affect matters?

18 Previously, the accepted view was that communication among animals provided honest
information|a position they attacked because it suggests that behavior could evolve because it bene-
�ted others.
19 An alternative|but not mutually exclusive|hypothesis is that intelligence derived from ecological

complexity (Robson and Kaplan (2003), for example). To the extent that cognitive abilities suited
to environmental complexity also enhance an individual’s social intelligence, this ecological hypothesis

could illuminate the emergence of ToM. Strategic intelligence applies a suite of cognitive skills that

might well have �rst arisen to solve non-social problems|memory, attention, capacities for counter-
factual and causal reasoning, etc.
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7. Appendix

The proofs of Theorems 1 and 2 are given in this appendix. We focus initially on the

cases where the fraction of revealed information is negligible in the limit (Lit; L
N
t −→ 0).

After this, the positive claims about learning are established (Section 7.2). In all of

the following fix an environment E = (I; A; (%1; : : : ;%I); {tk}∞k=1) with an arrival date

sequence given by tk = b[|Z0|+ k]αc for some ��R+:

7.1. No learning in the limit

It is shown here that if outcomes arrive at too fast a rate, learning cannot occur

even when the greatest possible amount of information is revealed in every period.

Lemma 1: In each of the following convergence is sure.

i) Suppose �� [0; 2): Then Lit −→ 0 for each preference type i = 1; : : : ; I:

ii) Suppose there are T terminal nodes. If �� [0; T ); then LNt −→ 0:

Proof. Consider any environment in which the underlying game tree has T terminal

nodes. Clearly Ki
t < t · T everywhere. Similarly, since only one game is played in

each period, KN
t ≤ t surely. Thus, Lit < T · t=|Zt|2 and LNt ≤ t=|Zt|T surely. Since

|Zt| = |Z0|+ k whenever

b(|Z0|+ k)αc ≤ t < b(|Z0|+ k + 1)αc;

it follows that t < (|Zt|+ 1)α : Hence

Ljt < T · [|Zt|+ 1]α=|Zt|2 and LNt < [|Zt|+ 1]α=|Zt|T : (2)

This establishes the claim since obviously whenever � < 2; for instance, (2) implies

Lit −→ 0 surely. �

7.2. Results About Learning

Theorem 1 is just a special case of Theorem 2. Thus the remainder of this Appendix

is devoted to proving the claims in Theorem 2 about full learning (the Lit and LNt ’s

converging to one in probability). Attention is restricted to the ToM players, and so

to the Lits. As hypothesized in Theorem 2, when considering Lit, players i+ 1; :::; ; I are

taken to be ToM. The corresponding claim about the behavioral types goes through

with minor changes to the analysis.

We will rely on the auxiliary claims—Propositions 1, 2, and 3—to be stated next.

In the subsequent section (7.2.2) we use these to establish our claims about learning.

The proofs of the auxiliary claims themselves are deferred to Sections 7.2.3-7.2.5.
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7.2.1. Auxiliary Results

The first auxiliary result relates Lit, the fraction of what is known about %i over

pairs of outcomes, to what is commonly known about %i in relation to A-tuples of

outcomes. Let Zt denote the set of A-tuples from Zt and let Ui
t ⊆ Zt be the A-tuples

on which the %i-preferred outcome is not commonly known.

Proposition 1: For all i� I and t

|Ui
t|

|Zt|
≥
[
1− Lit

]A − uit;
where uit ≥ 0 and uit −→ 0; surely.

The gist of the next result, Proposition 2, is the following. Suppose preference types

i; : : : ; I−1 are all ToM and that Li+1
t ; : : : ; LIt each converge to one in probability. Then,

in the limit, the probability of revealing new information about %i is small only if the

fraction of extant knowledge about preferences, Lit; is close to one. Indeed, although

the probability of revealing new information about %i is clearly small if 1−Lit is small,

the converse is not as obviously true.

The following proposition, however, provides an appropriate bound. It decomposes

E(Ki
t+1 |Ht)−Ki

t into a factor of 1−Lit, which accounts for what is yet to be revealed

about %i; and a residual term �iεt : The residual stems from two factors that complicate

proving that the probability of revealing new information about %i is small only if Lit; is

close to one. These are (1) i-type subgames in which i’s choice cannot reveal information

about %i because there is insufficient knowledge about the remaining players’ choices

and (2) i-type subgames with outcomes that are avoided by the remaining opponents,

so making it difficult to reveal information about %i.

Proposition 1 will be used in the proof of the following.

Proposition 2: Suppose each of the random variables Li+1
t ; : : : ; LIt converges to one

in probability. Then for each "� [0; 1] there exists a random variable �iεt ≥ 0; such that

E(Kt+1 |Ht)−Kt ≥ "A
i ·
[[

1− Lit
]Ai − �iεt ] ;

where �iεt converges in probability to a continuous function, mi : [0; 1] −→ [0; 1] such

that lim
ε−→0

mi(") = 0:

The next result is simply that whenever � > 2 the result of Proposition 2 ensures

Lit converges to one.

Proposition 3: Fix a preference type i: Suppose for each "� [0; 1] there exists a random

variable �iεt ≥ 0; such that

E(Kt+1 |Ht)−Kt ≥ "A
i ·
[[

1− Lit
]Ai − �iεt ] ;
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where �iεt converges in probability to a continuous function, mi : [0; 1] −→ [0; 1] such

that lim
ε−→0

mi(") = 0: Then, if the arrival rate of complexity, �; is greater than two, Lit

converges to one in probability.

With Propositions 1-3 we are now ready to establish the Theorem 2 claims about

Lit converging to one when � > 2.

7.2.2. Proof of the Theorem 2 Claim About Lit −→ 1

The proof proceeds by induction. For the inductive step suppose Li+1
t ; : : : ; LIt all

converge to one in probability. By Proposition 2, Lit satisfies the hypothesis of Propo-

sition 3. This implies Lit −→ 1 in probability whenever � > 2: What is required then

is to show that LIt −→ 1 in probability when � > 2: To that end, consider the games

where an A-tuple from UI
t is assigned to each of the type I information sets. The

fraction of these games is—since the I type has AI−1 information sets—

[
|UI

t |
|Zt|

]AI−1

:

Clearly, in the event such a game is drawn, I type choice, at any of her information

sets, reveals new information about her preferences. Hence, since games are uniformly

drawn in each period,

E(KI
t+1 |Ht)−KI

t ≥
[
|UI

t |
|Zt|

]AI−1

:

Proposition 1 then implies, where uIt ≥ 0 converges to zero as t −→∞,

E(KI
t+1 |Ht)−KI

t ≥
[[

1− LIt
]A − uIt ]AI−1

≥ [1− LIt ]A
I −

AI−1∑
s=0

(
AI−1

s

)[
uIt
]s
:

(3)

Hence E(KI
t+1 |Ht)−KI

t satisfies the hypothesis of Proposition 3 and therefore LIt −→ 1

in probability. This completes the proof.

The remaining sections (7.2.3-7.2.5) are dedicated to proving the auxiliary results.

7.2.3. Proof of Proposition 1

Recall that (z1; : : : ; zA)�Ui
t ⊆ Zt whenever the i preferred outcome in {z1; : : : ; zA}

is not commonly known. There are possibly many different values |Ui
t| can assume

given Ki
t revelations about %i : To prove the claim we first solve, for any K, the

problem

min |Ui
t|; s.t. Ki

t = K:
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The bound is obtained by expressing Lit and the minimized vale of |Ui
t| (conditional on

Ki
t = K) in common terms.

Let us proceed to give a complete description of the above minimization problem.

First, let Nt(z)� {1; : : : ; |Zt|} be the number of outcomes in Zt that are commonly

known to be %i-worse than z: We claim that

|Zt| − |Ui
t| =

∑
z ε Zt

[
[Nt(z)]

A − [Nt(z)− 1]A
]
: (4)

To see this fix z � Zt. There are exactly [Nt(z)]
A elements of Zt that have all coordinates

in the revealed %i-worse-than set of z: Subtract the number of A-tuples with every

coordinate strictly worse than z (thus z is not itself present) to obtain

[Nt(z)]
A − [Nt(z)− 1]A :

This is the number of A-tuples, (z1; : : : ; zA); where at least one zr = z and moreover it

is commonly known that z %i zs for each s� {1; : : : ; A} : Summing these last indented

expressions over Zt gives the count of A-tuples among whose coordinates, {z1; : : : ; zA} ;
the i preferred outcome is commonly known. But this is |Zt|−|Ui

t| by definition, which

establishes (4).

Now express Ki
t in terms of the Nt(z)’s by setting A = 2 in (4); this yields

Ki
t =

∑
z ε Zt

[
[Nt(z)]

2 − [Nt(z)− 1]2
]

= 2 ·
∑
z ε Zt

[Nt(z)− 1] + |Zt|: (5)

In the following write rt(z) for the place of z in the %i ordering of Zt—worst

to best (i.e. rt(z) = |Zt| for the %i-best outcome, and so on). Any solution to

the above minimization problem must then solve the programming problem: for any

K� {|Zt|; |Zt|+ 2; : : : ; |Zt|2};

max
{Nt(z)}

∑
z ε Zt

[
[Nt(z)]

A − [Nt(z)− 1]A
]

subject to

2 ·
∑
z ε Zt

[Nt(z)− 1] + |Zt| = K;

Nt(z)� {1; 2; : : : ; rt(z)} for each z � Zt:

(6)

In the remainder {NK
t (z)}z ε Zt will denote a solution to this problem.

Each summed term in the objective function is convex and strictly increasing in the

Nt(z)’s. Hence, the solution to (6) must be at a corner in the sense that all but at

most one z � Zt has NK
t (z)� {1; rt(z)} : Convexity also implies there is always a solution
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satisfying NK
t (z) ≥ NK

t (z′) whenever z �i z′. That is, we can proceed by filling the

NK
t (z)’s from the best outcome on downward, until exhausting the constraint Ki

t = K:

Precisely, for any fixed K one solution is given by

NK
t (z) =



1; if rt(z) < rK ;

MK ; if rt(z) = rK ;

rt(z); if rt(z) > rK ;

(7)

for some rK and MK , where rK � {1; : : : ; |Zt|} and MK � {1; : : : ; rK} : 20

Suppose

K > 2 · [|Zt| − 1] + |Zt|:
Using our solution from (7) in (4) and (5) (see Footnote 20 also), we obtain

|Ui
t| ≥ |Zt| −

 |Zt|∑
s=rK+1

[
sA − [s− 1]A

]
+ [MK ]A − [MK − 1]A + [rK − 1]


and

K =

|Zt|∑
rK+1

[
s2 − [s− 1]2

]
+ [MK ]2 − [MK − 1]2 + [rK − 1]:

All but the first and last terms of the terms under the summation cancel, yielding,

|Ui
t| ≥ |Zt| −

[
|Zt|A − rAK + [MK ]A − [MK − 1]A + [rK − 1]

]
;

and

K = |Zt|2 − r2
K + [MK ]2 − [MK − 1]2 + rK − 1:

These last two expressions give, after some algebra,

|Ui
t|

|Zt|
≥
[
rK
|Zt|

]A
−
[
[MK ]A − [MK − 1]A + rK − 1

]
=|Zt| (8)

and

1− Lit =

[
rK
|Zt|

]2

−
[
[MK ]2 − [MK − 1]2 + rK − 1

]
=|Zt|2:

20 For instance, if K ≤ 2 · [|Zt|−1]+ |Zt|, then rK = |Zt|, and MK solves K = 2 · [MK−1]+ |Zt|. That
is, NK

t (z) = 1 for all but the %i-best outcome in Zt, and NK
t (z′) = MK for z′, the %i-best outcome

in Zt. On the other hand, if K > 2 · [|Zt| − 1] + |Zt|, then rK and MK are obtained from

2 ·
|Zt|∑

s=rK+1

(s− 1) + 2 · (MK − 1) + |Zt| = K.

In the latter case there is exactly one rK ε {1, . . . , |Zt| − 1} and a corresponding MK ε {1, . . . , rK}
satisfying this equation.
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Clearly now, [
rK
|Zt|

]2

≥ 1− Lit;

and hence [
rK
|Zt|

]A
>
[
1− Lit

]A
:

Using this in (8) gives

|Ui
t|

|Zt|
≥
[
1− Lit

]A − [[MK ]A − [MK − 1]A + rK − 1
]
=|Zt|: (9)

Now consider the case in which

K ≤ 2 · [|Zt| − 1] + |Zt|:

Then, the solution described in (7) has rK = |Zt|. Using this in (4) and (5) yields,

after some algebra (again refer to Footnote 20),

|Ui
t|

|Zt|
≥ 1−

[
[MK ]A − [MK − 1]A + [|Zt| − 1]

]
=|Zt|

and

1− Lit = 1−
[
[MK ]2 − [MK − 1]2 + |Zt| − 1

]
=|Zt|2:

Then

|Ui
t|

|Zt|
−
[
1− Lit

]A ≥ |Ui
t|

|Zt|
− [1− Lit]

≥ [MK ]2 − [MK − 1]2 + |Zt| − 1

|Zt|2
− [MK ]A − [MK − 1]A + |Zt| − 1

|Zt|A

≥ − [MK ]A − [MK − 1]A + |Zt| − 1

|Zt|A
:

(10)

Since MK ≤ |Zt| this means

|Ui
t|

|Zt|
≥
[
1− Lit

]A − |Zt|A − [|Zt| − 1]A + |Zt| − 1

|Zt|
:

Setting uit from the statement of the proposition to[
|Zt|A − [|Zt| − 1]A + rK − 1

]
=|Zt|

establishes the desired result since uit defined this way converges to zero surely as |Zt|
tends to infinity.
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7.3. Proof of Proposition 2

In the following fix a preference type i. We forgo writing the i superscripts whenever

no confusion will result.

Let P i+1
t (z) be the fraction of i+ 1 subgames 
 for which it is common knowledge

that outcome z obtains whenever play reaches 
: We first establish

E(Kt+1 |Ht)−Kt ≥

∑
zεUi

t

[
P i+1
t (z1) · P i+1

t (z2)
]
· · · · · P i+1

t (zA)

Ai−1

: (11)

To verify this, first recall that Ui
t ⊆ Zt are the A-tuples on which the %i-preferred

outcome is not commonly known. Then observe that

P i+1
t (z1) · P i+1

t (z2) · · · · · P i+1
t (zA) (12)

is the fraction of i subgames in which the type i’s can uniquely and correctly predict

(and this is common knowledge) the A continuation outcomes, (z1; : : : ; zA); correspond-

ing to each of their A moves. In the event a positive mass of i types reach such a sub-

game, and if additionally (z1; : : : ; zA)�Ui
t, then i’s choice there reveals new information

about %i : Thus summing (12) over Ui
t gives the fraction of i player subgames in which

i choice yields a revelation about %i. Since the i types have Ai−1 information sets and

the subgames are uniformly and independently drawn, the probability of drawing a

period game where new information is revealed by the i’s is at least

∑
zεUi

t

[
P i+1
t (z1) · P i+1

t (z2) · · · · · P i+1
t (zA)

]Ai−1

:

This establishes (11).

Next, define for each " > 0;

Sεt =
{
z�Zt : P i+1

t (z1) · · ·P i+1
t (zA) < "A= |Zt|

}
:

Using this in (11), we obtain

E(Kt+1 |Ht)−Kt

≥

 ∑
zεUi

t \Sεt

[
P i+1
t (z1) · · ·P i+1

t (zA)
]

+
∑
zε Sεt

[
P i+1
t (z1) · · ·P i+1

t (zA)
]Ai−1

≥

 ∑
zεUi

t \Sεt

[
P i+1
t (z1) · · ·P i+1

t (zA)
]Ai−1
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≥
[
"A

|Zt|
· |Ui

t \Sεt |
]Ai−1

(13)

≥ "A
i ·
[
|Ui

t|
|Zt|

− |S
ε
t |
|Zt|

]Ai−1

:

A binomial expansion of the last above line yields

E(Kt+1 |Ht)−Kt ≥ "A
i

[ |Ui
t|

|Zt|

]Ai−1

−
Ai−1∑
r=1

(
Ai−1

r

)[
|Sεt |
|Zt|

]r : 21

Proposition 3 then implies

[
|Ui

t|
|Zt|

]Ai−1

≥
[
[1− Lt]A − uit

]Ai−1

;

where uit ≥ 0 and uit −→ 0: Another application of the binomial theorem gives

[
|Ui

t|
|Zt|

]Ai−1

≥ [1− Lt]A
i − ũit;

for some ũt ≥ 0, where again ũt −→ 0: Thus, for all " > 0

E(Kt+1 |Ht)−Kt ≥ "A
i ·

[1− Lt]A
i

− ũt −
Ai−1∑
r=1

(
Ai−1

r

)[
|Sεt |
|Zt|

]r ; (14)

where ũt −→ 0 surely.

What remains is to show that the |Sεt |=|Zt| terms can be made small (in probability)

with the appropriate choice of ": We show this in two parts, where Part 1 is used in

the proof of Part 2.

Part 1: Let N j
t (z) be the number of outcomes that have been revealed %j-worse 22

than z. Then

P i+1
t (z) ≥ 1

|Zt|

[
N i+1
t (z)

|Zt|
× · · · × N I

t (z)

|Zt|

]AI
: (15)

21 Recall, (y − x)N =
∑N
r=0

(N
r

)
yN−r · [−x]r . Thus, whenever 0 ≤ y ≤ 1, it follows that (y − x)N ≥

yN −
∑N
r=1

(N
r

)
xr.

22 Note that z %i z, in particular.
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Proof of Part 1: We will show that the right-hand-side of (15) is a lower bound on

the fraction of i + 1 subgames where it is common knowledge that all the remaining

players have dominant acts resulting in outcome z:

To that end, consider an i+1 player subgame constructed in the following way. Fix,

for the i + 1 types, an action ai+1 � A and assign outcomes that are commonly known

to be %i+1-worse than z to any terminal node reachable whenever these players choose

a 6= ai+1: Since there are T i+1 such terminal nodes, there are [N i+1
t (z)]T

i+1
ways to

do this. Then, fix an action for the i + 2 players, ai+2 � A; and assign outcomes that

have been revealed %i+2-worse than z to any terminal node attainable when the i+ 1

types choose ai+1 and the i+2 types subsequently choose a 6= ai+2: With T i+2 of these

end nodes, there are [N i+2
t (z)]T

i+2
ways of doing this. Proceed this way, obtaining a

sequence of moves (ai+1; : : : ; aI−1); until reaching player I: There, fix an action aI :

Assign z to the terminal node reached by the sequence (ai+1; : : : ; aI−1; aI) and A − 1

outcomes that are known to be %I -worse than z to the remaining T I = A − 1 end

nodes. There are [N I
t (z)]TI ways to do this.

In the event that i+ 1 types reach any subgame constructed in this way, every ToM

player must assign probability one to the z outcome obtaining—irrespective of the

period game in which the subgame is embedded. Given the fixed sequence of actions,

ai+1 · · · aI ; the fraction of i+ 1 subgames that can be constructed in this way is

1

|Zt|

[
N i+1
t (z)

|Zt|

]T i+1 [
N i+2
t (z)

|Zt|

]T i+2

· · ·
[
N I
t (z)

|Zt|

]T I
:

Observe next that there are AI−(j+1) terminal nodes in a j + 1 subgame. Therefore

T j < AI and the last indented expression is greater than

1

|Zt|

[
N i+1
t (z)

|Zt|
× · · · × N I

t (z)

|Zt|

]AI
:

This establishes what was claimed since whenever play reaches one of the above de-

scribed subgames it is common knowledge that the sequence of actions ai+1 · · · aI ob-

tains, which by construction yields outcome z:

Part 2: Suppose each of the random variables, Li+1
t ; Li+2

t ; : : : ; LIt ; converges to one in

probability. Then for each "� [0; 1] there exists a random variable �εt such that

|Sεt |
|Zt|

< �εt ; (16)

where �εt converges in probability to a continuous function, f : [0; 1] −→ [0; 1]; with

lim
ε−→0

f(") = 0:
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Proof of Part 2: First, we express |Sεt |=|Zt| in terms of the simpler sets

Sεt =
{
z � Zt : P i+1

t (z) < "=|Zt|
}
:

To that end, observe that the fraction of A-tuples, (z1; : : : ; za; : : : ; zA); having the

property, P i+1
t (za) ≥ "=|Zt| for every s = 1; : : : ; A; is[

1− |S
ε
t |
|Zt|

]A
:

Then, since every (z1; : : : ; zA) in Sεt has at least one coordinate, za; with P i+1
t (za) <

"=|Zt|; it follows that
|Sεt |
|Zt|
≤ 1−

[
1− |S

ε
t |
|Zt|

]A
: (17)

Next, let rjt (z) denote the place of z in the %j ranking of Zt (worst to best, i.e.,

rjt (z) is the actual number of outcomes in Zt that are %j-worse than z). Recall also

that N j
t (z) is the number of outcomes in Zt that have been revealed %j-worse than z.

Writing
N j
t (z)

|Zt|
=
rjt (z)

|Zt|
· N

j
t (z)

rjt (z)
;

the result of Part 1, (15), means that z � Sεt implies

N j
t (z)

rjt (z)
< �1/2A

I
for some j � {i+ 1; : : : ; I; } or

rjt (z)

|Zt|
< �1/2A

I
for some j � {i+ 1; : : : ; I} :

(18)

In other words,

Sεt ⊆

 I⋃
j=i+1

{
z � Zt : N j

t (z)=rjt (z) < "1/2AI
}

⋃ I⋃
j=i+1

{
z � Zt : rjt (z)=|Zt| < "1/2AI

}
and therefore,

|Sεt |
|Zt|

≤ 1

|Zt|

I∑
j=i+1

∣∣∣{z � Zt : N j
t (z)=rjt (z) < "1/2AI

}∣∣∣
+

1

|Zt|

I∑
j=i+1

∣∣∣{z � Zt : rjt (z)=|Zt| < "1/2AI
}∣∣∣ : (19)
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We now show that under the hypotheses of Part 2,

1

|Zt|

I∑
j=i+1

∣∣∣{z � Zt : N j
t (z)=rjt (z) < "1/2AI

}∣∣∣ −→ 0

in probability. It suffices to show that for each j = i+ 1; : : : ; I and for all � > 0

1

|Zt|

∣∣∣{z � Zt : N j
t (z)=rjt (z) < 1− �

}∣∣∣ −→ 0

in probability whenever Ljt converges to 1 in probability. With that in mind, recall that

N j
t (z) is the number of outcomes that have been revealed %j-worse than z. Observe

that since Kj
t is the number of pairs on which %j is commonly known,

Kj
t = 2 ·

∑
z ε Zt

N j
t (z)− |Zt|: (20)

Now, let Zjηt ⊆ Zt be the set of outcomes for which N j
t (z)=rjt (z) < 1− �: 23

Using (20) we have

Kj
t = 2 ·

 ∑
z ε Zt \Zjηt

N j
t (z) +

∑
z ε Zjηt

N j
t (z)

− |Zt|

< 2 ·

 ∑
z ε Zt \Zjηt

rjt (z) + (1− �)
∑
z ε Zjηt

rjt (z)

− |Zt|
(21)

= 2 ·

∑
z ε Zt

rjt (z)− � ·
∑
z ε Zjηt

rjt (z)

− |Zt|

By assumption (A1),

∑
z ε Zt

rjt (z) =

|Zt|∑
s=1

s = |Zt| · [|Zt| − 1]=2:

23 Observe that for each j, z and t,
N

j
t (z)

r
j
t (z)

≥ 1

r
j
t (z)

≥ 1
|Zt|

. If 1− η < 1/|Zt| for some t, then each Zjηt

will be empty. However for su�ciently large τ , for each t ≥ τ , it must be the case that every Zjηt is

empty only if Nj
t (z) = rjt (z).
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Using this in the last line of (21) it follows that

Kj
t < |Zt|2 − 2 · � ·

∑
z ε Zjηt

rjt (z):

Then, the following bound is obtained by putting in the above expression the %j-

worst outcomes (lowest rjt (z)) in Zjηt :

Kj
t < |Zt|2 − 2 · � ·

|Zjηt |∑
s=1

s = |Zt|2 − � · |Zjηt | · [|Z
jη
t | − 1]:

Divide both sides of this last expression by |Zt|2 to obtain

Ljt < 1− � · |Z
jη
t |{|Z

jη
t | − 1}

|Zt|2
:

Clearly now, if Ljt converges to one in probability then |Zjηt |=|Zt| must converge to

zero in probability, for all � > 0: We have thus established that for all sufficiently small

" > 0

1

|Zt|

I∑
j=i+1

∣∣∣{z � Zt : N j
t (z)=rjt (z) < "1/2AI

}∣∣∣ −→ 0

in probability, i.e., choose � so that 1 − � = "1/2AI , the summands in the above

expression are then just |Zjηt |=|Zt|.
Next (refer to (19)), we have for each j = i+ 1; : : : ; I∣∣∣{z � Zt : rjt (z)=|Zt| < "1/2AI

}∣∣∣ < |Zt| · "1/2AI : 24

Obviously then,

1

|Zt|

I∑
j=i+1

∣∣∣{z � Zt : rjt (z)=|Zt| < "1/2AI
}∣∣∣ < [I − i] · "1/2AI :

In sum, letting

�̂εt =
1

|Zt|

I∑
j=i+1

∣∣∣{z � Zt : N j
t (z)=rjt (z) < "1/2AI

}∣∣∣+ [I − i] · "1/2AI ; (22)

24 We have used here that rjt (z) = rjt (z
′) if and only if z = z′, which implies there are at most

b|Zt| · ε1/2A
I c outcomes in Zt with rjt (z)/|Zt| < ε1/2A

I
.
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we have established, using (17) and (19), that

|Sεt |
|Zt|
≤ 1−

[
1− |S

ε
t |
|Zt|

]A
< 1−

[
1− �̂εt

]A
;

where �̂εt −→ [I − i] · "1/2AI in probability. The proof of Part 2 is completed by setting

�εt = 1−
[
1− �̂εt

]A
and by defining

f(") = 1−
[
1− [I − i] · "1/2AI

]A
Recalling (14), in particular, Parts 1 and 2 yield the proof of Proposition 2. Specif-

ically, let �iεt and mi from the statement of Proposition 2 be

�iεt = ũt +
Ai−1∑
r=1

(
Ai−1

r

)
[�εt ]r

and

mi(") =
Ai−1∑
r=1

(
Ai−1

r

)
[f(")]r ;

where �εt and f come from the proof of Part 2 above.

7.3.1. Proof of Proposition 3

The proof is given in three parts. The first two parts together show that the Lt
processes converge in probability to some random variable L: In the third part it is

shown that L must equal one a.e. In order to establish the convergence of the Lt’s we

show they belong to a class of generalized martingales with the martingale convergence

property. We make use of the following definition and result in this connection [(Egghe,

1984), Definition VIII.1.3 and Theorem VIII.1.22].

w-submil Convergence: The adapted process (Lt; Ht) is a weak sub-martingale

in the limit (w-submil) if almost surely, for each � > 0, there is a T such that

� ≥ t ≥ T implies P {E(Lτ |Ht)− Lt ≥ −�} > 1 − �: If Lt is a w-submil, then there

exists a random variable L such that Lt −→ L in probability. 25

For the remainder of this section fix a preference type i and assume the hypotheses

of Proposition 2, and also that � > 2:

Part 1: For each " > 0 there exists a random variable �εt such that the following is

true. For each pair of consecutive arrival dates t∗ < �∗,

E(Lτ∗ |Ht∗)− Lt∗ < 0 =⇒ E(Lτ∗ |Ht∗) > �εt∗ ;

25 We suppress the i’s from now on.
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where �εt −→ 1 −m(")
1

Ai in probability, and m = mi; is the function described in the

statement of Proposition 3.

Proof of Part 1: Write Qt = |Zt|2 so that Lt = Kt=Qt: Fix a pair of consecu-

tive arrival dates t∗ and �∗. Then

Lτ∗ − Lt∗ =
Kτ∗ −Kt∗

Qτ∗
− Qτ∗ −Qt∗

Qτ∗
· Lt∗

≥
τ∗−1∑
t=t∗

[Kt+1 −Kt] /Qτ∗ −
Qτ∗ −Qt∗

Qτ∗
:

(23)

Hence,

E(Lτ∗ |Ht∗)− Lt∗ < 0 =⇒
τ∗−1∑
t=t∗

E(Kt+1 −Kt |Ht∗) < Qτ∗ −Qt∗ :
(24)

By the hypothesis of Proposition 2, for all " > 0;

τ∗−1∑
t=t∗

E(Kt+1 −Kt |Ht∗) ≥ "A
i ·

τ∗−1∑
t=t∗

E([1− Lt∗ ]A
i

− �εt |Ht∗):

Then, since Lt is non-decreasing between arrival dates,

τ∗−1∑
t=t∗

E(Kt+1 −Kt |Ht∗)

> "A
i ·

[
[�∗ − t∗] · E([1− Lτ∗−1]A

i

|Ht∗)−
τ∗−1∑
t=t∗

E(�εt |Ht∗)

]
:

(25)

Using this in equation (24), and invoking Jensen’s inequality, yields after some algebra:

If E(Lτ∗ |Ht∗)− Lt∗ < 0; then

E(Lτ∗−1 |Ht∗) > 1−

[[
1

"

]Ai
· Qτ

∗ −Qt∗
�∗ − t∗

+
1

�∗ − t∗
τ∗−1∑
t=t∗

E(�εt |Ht∗)

] 1

Ai

:
(26)

Since Lτ∗ ≥ Lτ∗−1 ·Qt∗=Qτ∗ surely, multiplying the second line of (26) by Qt∗=Qτ∗

gives:

If E(Lτ∗ |Ht∗)− Lt∗ < 0; then

E(Lτ∗ |Ht∗) >

Qt∗

Qτ∗
·

1−

[[
1

"

]Ai
· Qτ

∗ −Qt∗
�∗ − t∗

+
1

�∗ − t∗
τ∗−1∑
t=t∗

E(�εt |Ht∗)

] 1

Ai
 : (27)
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Define �εt∗ as the last line in (27).

To complete the proof of Part 1 we show that

�εt∗ −→ 1−m(")
1

Ai

in probability. To verify this limit, first note that if t∗ is the arrival date of the k-th

new outcome then

Qτ∗ −Qt∗
�∗ − t∗

=
[n+ k + 1]2 − [n+ k]2

b(n+ k + 1)αc − b(n+ k)αc
;

which converges to zero when � > 2: Obviously Qt∗=Qτ∗ −→ 1; and finally

1

�∗ − t∗
?τ−1∑
t=t∗

E(�εt |Ht∗) −→ m(")

in probability as t∗ −→ ∞; since by assumption �εt converges to m(") in probability

and is finite valued everywhere. In view of (27) this completes the proof of Part 1.

We use Part 1 to establish the following.

Part 2: Lt converges in probability to some random variable L.

Proof of Part 2: As a notational convenience, let hatted variables denote vari-

ables sampled at arrival dates, e.g., L̂k = Ltk . We show first that the arrival date

subsequence {L̂k} is a w-submil and thus converges in probability. Specifically, the

following will be established. For each � > 0 there exists an M such that for all arrival

dates tm, tn, where M ≤ m < n,

P
{
E(L̂n | Ĥm)− L̂m ≥ −�

}
> 1− �: (28)

To that end, suppose

E(L̂n | Ĥm)− L̂m < 0:

Then, since

E(L̂n | Ĥm)− L̂m =

n−1∑
k=m

E(E(L̂k+1 | Ĥk)− L̂k | Ĥm);

there is at least one arrival date, tk, in this range for which

E(L̂k+1 | Ĥm)− E(L̂k | Ĥm) < 0:
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Let r be the last arrival in {m; ; : : : ; n− 1} at which this is true. Using the �εt defined

in Part 1 gives

E(L̂r+1 | Ĥm) > E(�̂εr | Ĥm);

and for each k = r + 1; : : : ; n− 1;

E(L̂k+1 | Ĥm)− E(L̂k | Ĥm) ≥ 0:

Hence,

E(L̂n | Ĥm)− L̂m > E(�̂εr | Ĥm)− L̂m ≥ E(�̂εr | Ĥm)− 1: (29)

Now observe that since �̂εk converges to 1−m(")
1

Ai in probability, we can choose an

arrival M large enough so that

P
{
E(�̂εk | Ĥm)− 1 > −2 ·m(")

1

Ai

}
> 1− 2 ·m(")

1

Ai

for all k and m with k ≥ m ≥M: Equation (29) then implies that for k ≥ m ≥M ,

P
{
E(L̂n | Ĥm)− L̂m > −2 ·m(")

1

Ai

}
> 1− 2 ·m(")

1

Ai :

To see that {L̂k} is a w-submil obtain (28) by choosing " so that m(")
1

Ai < �=2:

Having established that L̂k is a w-submil, we proceed to show that Lt is also a

w-submil. Consider any dates t and � where t < �: Then

Lτ − Lt ≥ Lτ∗ − Lt∗
Qt∗

Qτ∗

everywhere, when t∗ is the first arrival date after t and �∗ is the greatest arrival date

less than or equal to �: Since {L̂k} is a w-submil, bounded above by 1, Lτ∗ −Lt∗ −→ 0

in probability, as t∗ −→ ∞. Furthermore, Qt=Qt+1 −→ 1. Hence the right hand side

of the last indented expression converges to zero in probability which establishes that

{Lt} is a w-submil. In light of the w-submil convergence result stated above, this es-

tablishes the claim made in Part 2.

Part 3: L; the limiting function of Lt, is equal to one a.e.

Proof of Part 3: Let �εt and m = mi be as described in the statement of Proposition

3. Then, for all " > 0

E (Lτ ) =
τ−1∑
t=0

E
(
Ki
t+1 −Ki

t

)
/Qτ

≥ "Ai · �
Qτ
·

[
1

�

τ−1∑
t=1

·E
[[

1− Lit
]Ai − �εt ]

]
:

(30)
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Since �=Qτ −→ ∞ whenever � > 2 26 and Lt is everywhere finite, it must be the case

that

lim sup

(
1

�
·
τ−1∑
t=1

E
[[

1− Lit
]Ai − �εt ]

)
≤ 0; (31)

for each " > 0: It is straightforward to show that

lim
τ−→∞

[
1

�
·
τ−1∑
t=1

E
[[

1− Lit
]Ai − �εt ]

]
= E

[
[1− L]A

i

−m(")
]
:

Hence, (31) yields

E
[
[1− L]A

i

−m(")
]
≤ 0; for all " > 0:

Since m(") is continuous and tends to zero as " −→ 0; this last indented expression

implies

E
[
[1− L]A

i
]

= 0:

Finally, L ≤ 1 surely, yields L = 1 a.e.
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