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Use evidence from neuroscience to revisit economic theories of  

decision-making 
 

• Examples of neuroscience evidence include:  

 Existence of multiple brain systems, interactions between systems, 
physiological constraints, etc. 

 

• Revisiting theories of decision-making includes: 

Building models of bounded rationality based not on inspiration or casual  

observation but on the physiological constraints of our brain  

 derive behavioral biases from brain limitations 
 

 

The brain is, so it should be modeled as, a multi-system organization 

Neuroeconomic Theory 



This paper (1) 

Build a model of constrained optimal behavior in multi task decision-making  

based on evidence from neuroscience:  
 

i. Different brain systems are responsible for different tasks. Neurons in a 
system respond exclusively to features of that particular task. 
 

ii. The brain allocates resources (oxygen, glucose) to systems. Resources 
are transformed into energy that make neurons fire (fMRI measure blood 
oxygenation, PET measure changes in blood flows, etc.). 
 

iii. More complex tasks necessitate more resources. Performance suffers if 
resources needs are not filled. 
 

iv. Resources are scarce: “biological mechanisms place an upper bound on 
the amount of cortical tissue that can be activated at any given time”. 



This paper (2) 

 

v. Central Executive System (CES) coordinates the allocation of resources: 

- Active when two tasks are performed simultaneously. 

- Not active if only one task, if two sequential tasks, or if two tasks but 
subject instructed to focus on only one. 

 

vi. Asymmetric information in the brain: neuronal connectivity is very limited 
 information carried by neurotransmitters reaches some systems but 

not others. 



The model 

• Three systems (0, 1, 2) perform three types of tasks: 

- System 0 (S0) controls motor skill functions. Needs θ0 are known 

- Systems 1 and 2 (S1 and S2) control higher order cognitive functions  
(mental rotation, auditory comprehension, face recognition) 
Needs θ1 and θ2 depend on task complexity and are privately known 

- Distributions F1(θ1) and F2(θ2) satisfy Increasing Hazard Rate (IHR) 
 

• Another system, Central Executive System (CES), allocates resources  
{x0, x1, x2} to S0, S1, S2  

 

• Performance of system l is                                             with l  {0,1,2}. 
 

 Systems are tuned to respond only to their task 
 

• CES maximizes (weighted) sum of performances of systems: U0+U1+U2 
 

• Resources are scarce and bounded at k:  x0 + x1 + x2  k 
 

• Each system requires a minimum of resources to operate:  xl  0 
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Benchmark case: full information 
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Benchmark case: full information 

 

Solution under full information (assuming (R) binds and (F) does not): 

 

 

Distribute k according to needs (θ0, θ1, θ2) weighed by importance (0, 1, 2) 
 

 

 

Utility of a system depends on total needs (sum of θl) and relative importance   

(l) but not on how needs are distributed among the systems (θ1 v. θ2)  
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Roadmap 

1. Normative approach: optimal allocation given private information if CES 
could use any conceivable communication mechanism  

- General properties  

- Comparative statics 
 

2. Positive approach: can this allocation be implemented using a 
physiologically plausible mechanism? 
 

3. Applications 

- Task inertia 

- Task separation 
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The optimization problem 

Optimal allocation of resources when needs of systems 1 and 2 are unknown  

and CES can use any mechanism. Using the revelation principle: 
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The solution 

• Optimal mechanism M: 

- resource capx1(θ2) for S1  

- resource capx2(θ1) for S2 
 

• Equilibrium allocation under M: 

- x1*(θ1,θ2)  =  min { θ1,x1(θ2) }   

- x2*(θ1,θ2)  =  min { θ2,x2(θ1) } 

- x0*(θ1,θ2)  =  k - x1(θ1,θ2) - x2(θ1,θ2)  
 

• What are the optimal capsx1(θ2) andx2(θ1) ? 



The solution 

Sketch of proof 
 

1. Derive optimal allocation with only 2 systems (1 with private info.) 
 

2. Use it to derive “priority mechanism”:  

- P1 : optimal mechanism under the requirement that S1 always 
obtains the resources it requests 

- P2 : optimal mechanism under the requirement that S2 always 
obtains the resources it requests. 

 

3. Compare P1 and P2 . Show that optimum is a hybrid of both: 

 it behaves like P1 for certain (θ1,θ2) and like P2  for some other (θ1,θ2). 



Optimal Resource Allocation 

θ1 

(θ1+θ2=k) 

θ2 

x2(θ1) = y2(k - θ1) if θ1 < k1 
              k2           if θ1  k1 

x1(θ2) = y1(k - θ2) if θ2 < k2 
              k1           if θ2  k2 

k1 

k2 

 

 Optimal capsx1(θ2) andx2(θ1) are first strictly decreasing and then  

 constant in the needs of the other system 
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Optimal Resource Allocation 

θ1 k 

θ2 

k1 

k2 

(θ1,θ2) 

(θ1,y2(k-θ1)) 

(y1(k-θ2),θ2) 

(k1,k2) 

 

Equilibrium allocation (x1*(θ1,θ2), x2*(θ1,θ2)) 

 unconstrained for “small” needs and fixed for “large” needs  

    (with x0*(θ1,θ2) = k - x1*(θ1,θ2) - x2*(θ1,θ2) ) 



Properties 
 

• Equilibrium is unique (under Increasing Hazard Rate) 
 

• k1 , k2  , k - k1 - k2  are guaranteed resources for S1, S2 , S0 

 

 Implication 1. Let 1 = 2 . Fix θ1 + θ2 with θ1 > θ2  

- Full information:      U1
F = U2

F 

- Private information: U1*  U2* 

 Better performance in easy tasks than in difficult tasks 

 

• Resource monotonicity: if θ1 , both x2  and x0  
 

• Comparative statics. Same monotonicity principle: 

- If 2  (S2 more important), then x2* , x1*, x0* 

- If k  (more resource), then x0* x1* x2*  
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Implementation 

So far, abstract revelation mechanism:  “announce θ’i, receive xi(θ’i,θ’j)” 
 

Can CES implement the optimal mechanism in a “simple” way and, most  

importantly, in a way compatible with the physiology of the brain? 
 

• CES sends oxygen to S1, S2 , S0 at rates k1 / k, k2 / k, (k - k1 - k2) / k. 

• Systems deplete oxygen to produce energy. CES observes depletion which 

is a signal that more resources are needed (autoregulation). 

• If Si stops consumption, oxygen is redirected to Sj and S0 at a new rate. 

• If both Si and Sj stop consumption, the remaining oxygen is sent to S0. 
 

 Si  grabs incoming resources up to satiation or up to constraint 

 Si doesn’t need to know needs or even existence of Sj 

 Si doesn’t need to know its own needs θi until they are hit 

 CES must be able to redirect resources and change the rates  



Implementation 

θ1 

θ2 

k1 

k2 If θ1 > k1 and θ2 > k2 

If θ1 = θ’1 and θ2 = θ’2 
θ’2 

θ’1 

θ’2 

x1(θ’2) 

If θ1 > x1(θ’2) and θ2 = θ’2  
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Application 1: task inertia 

• CES has imperfect knowledge of the distribution of needs 
 

• CES gradually learns the distribution through observation of past needs 
 

• How should CES adjust current allocation rules based on past needs?  
 

• Learning: 

- Distributions Fi(i|si) depends on unknown but fixed state si  
(is this task usually complex or simple?) 

- Prior belief of state is pi (si) 

- Realization of i
t conditionally independent across periods 

- After Si reports i
t in period t, CES updates belief over si 

- Assume Fi(i|si) satisfies MLRP: needs are likely to be high (i high) 
when task is usually complex (si high). 

 

 Lemma: Gi(i
t+1|i

t) satisfies MLRP: high i
t implies that si is likely to be 

high which implies that i
t+1 is also likely to be high 

 



Assume si unknown and compare public info. (θ1
t,θ2

t known by CES at t)  

with private info. (θ1
t,θ2

t unknown by CES at t)  

Implication 2. Inertia and path-dependence of the allocation rule. 

 Under private info. and conditional on present needs, allocation of Si is 
higher if past needs were high:   

  If 2
t-1 
, then x2

t (θ1
t,θ2

t) , x1
t (θ1

t,θ2
t) , x0

t (θ1
t,θ2

t)  
 

  consistent with neuroscience evidence on “task switching cost”.  

 

 

Application 1: task inertia 



Application 2: task separation 

• Is it better to have an integrated system responsible for tasks 1 and 2 or 
two separate systems each responsible for one task? 

 

• Trade-off:  

- Integrated system allocates more efficiently its resources between  
tasks 1 and 2 

- Separated systems require less “informational rents”: cap of S1 can 
depend on announcement of S2 

 

Implication 3.  

- Integration of S1 and S2 dominates when motor task is important  

(“low” 0) 

- Separation of S1 and S2  dominates when cognitive tasks are important 

(“low” 1 and 2)   

 

 



• The brain is a multi-system organization. 

• Bounded rationality model based not on inspiration but on physiological 
constraints of the brain  derive behaviors from brain limitations 

 

• Optimal resource allocation: each system has guaranteed resources  
(k0, k1, k2). More resources are available only if others are satiated 

• Physiologically plausible implementation.   

• Resource allocation under capacity constraint and asymmetric information 
provides an informational rationale for (not a model built to explain): 

- Better performance in easier tasks 

- Task inertia and task switching cost 

- Conditions for integration v. separation of functions  
 

• Model can be straightforwardly applied to standard organization problems: 

- Allocation of resources between research, marketing and production 

- Market split of colluding firms (no transfers!), etc.  

Conclusions 


