

Theoretical **RE**search in Neuroeconomic **D**ecision-making (www.neuroeconomictheory.org)

Resource Allocation in the Brain

Ricardo Alonso USC Marshall Isabelle Brocas *USC and CEPR*

Juan D. Carrillo *USC and CEPR*

Neuroeconomic Theory

Use evidence from neuroscience to revisit economic theories of decision-making

- Examples of neuroscience evidence include: Existence of multiple brain systems, interactions between systems, physiological constraints, etc.
- Revisiting theories of decision-making includes: Building models of bounded rationality based not on inspiration or casual observation but on the physiological constraints of our brain
 - \rightarrow derive behavioral biases from brain limitations

The brain is, so it should be modeled as, a multi-system organization

This paper (1)

Build a model of constrained optimal behavior in multi task decision-making based on evidence from neuroscience:

- i. Different brain systems are responsible for different tasks. Neurons in a system respond exclusively to features of that particular task.
- ii. The brain allocates resources (oxygen, glucose) to systems. Resources are transformed into energy that make neurons fire (fMRI measure blood oxygenation, PET measure changes in blood flows, etc.).
- iii. More complex tasks necessitate more resources. Performance suffers if resources needs are not filled.
- iv. Resources are scarce: "biological mechanisms place an upper bound on the amount of cortical tissue that can be activated at any given time".

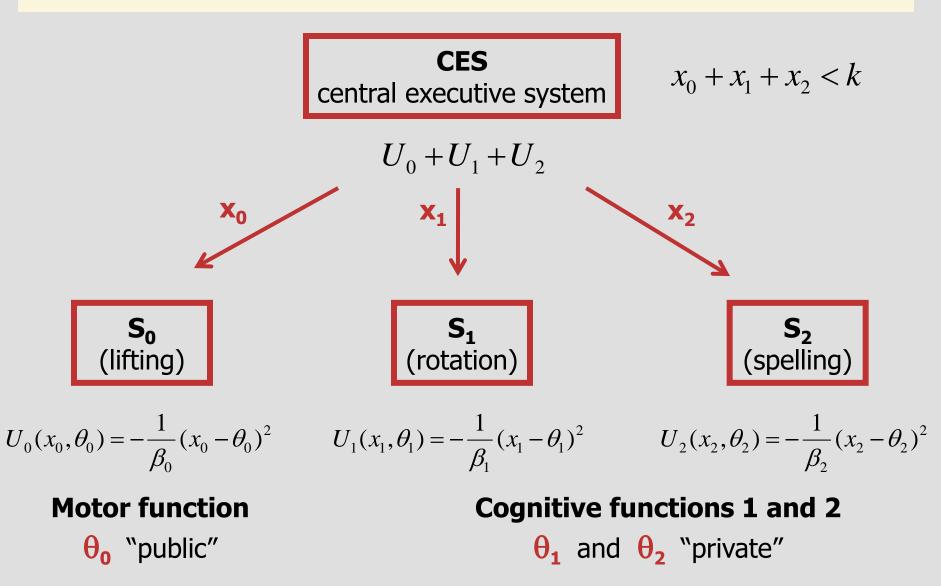
This paper (2)

- v. Central Executive System (**CES**) coordinates the allocation of resources:
 - Active when two tasks are performed simultaneously.
 - Not active if only one task, if two sequential tasks, or if two tasks but subject instructed to focus on only one.
- vi. Asymmetric information in the brain: neuronal connectivity is very limited
 → information carried by neurotransmitters reaches some systems but not others.

The model

- Three systems (0, 1, 2) perform three types of tasks:
 - System 0 (S_0) controls motor skill functions. Needs θ_0 are known
 - Systems 1 and 2 (S₁ and S₂) control higher order cognitive functions (mental rotation, auditory comprehension, face recognition) Needs θ₁ and θ₂ depend on task complexity and are privately known
 - Distributions $F_1(\theta_1)$ and $F_2(\theta_2)$ satisfy Increasing Hazard Rate (IHR)
- Another system, Central Executive System (CES), allocates resources {x₀, x₁, x₂} to S₀, S₁, S₂
- Performance of system I is $U_l(x_l, \theta_l) = -\frac{1}{\beta_l}(x_l \theta_l)^2$ with $I \in \{0, 1, 2\}$. Systems are tuned to respond only to their task
- **CES** maximizes (weighted) sum of performances of systems: $U_0 + U_1 + U_2$
- Resources are scarce and bounded at k: $x_0 + x_1 + x_2 \le k$
- Each system requires a minimum of resources to operate: $x_{l} \ge 0$

The model



Benchmark case: full information

 \max_{x_0, x_1, x_2}

$$\frac{1}{\beta_0} U_0 \left(x_0 \left(\theta_1, \theta_2 \right), \theta_0 \right) + \frac{1}{\beta_1} U_1 \left(x_1 \left(\theta_1, \theta_2 \right), \theta_1 \right) + \frac{1}{\beta_2} U_2 \left(x_2 \left(\theta_1, \theta_2 \right), \theta_2 \right)$$

s.t. $x_0 \left(\theta_1, \theta_2 \right) + x_1 \left(\theta_1, \theta_2 \right) + x_2 \left(\theta_1, \theta_2 \right) \le k$ (R)

 $x_0(\theta_1,\theta_2) \ge 0, x_1(\theta_1,\theta_2) \ge 0, x_2(\theta_1,\theta_2) \ge 0$ (F)

Benchmark case: full information

 \max_{x_0, x_1, x_2}

$$\frac{1}{\beta_0}U_0\left(x_0\left(\theta_1,\theta_2\right),\theta_0\right) + \frac{1}{\beta_1}U_1\left(x_1\left(\theta_1,\theta_2\right),\theta_1\right) + \frac{1}{\beta_2}U_2\left(x_2\left(\theta_1,\theta_2\right),\theta_2\right)$$

i.t. $x_0\left(\theta_1,\theta_2\right) + x_1\left(\theta_1,\theta_2\right) + x_2\left(\theta_1,\theta_2\right) \le k$ (R)

$$x_0(\theta_1,\theta_2) \ge 0, x_1(\theta_1,\theta_2) \ge 0, x_2(\theta_1,\theta_2) \ge 0$$
 (F)

Solution under full information (assuming (R) binds and (F) does not):

$$x_l^F = \theta_l - \frac{\beta_l}{\sum \beta} \left(\sum \theta - k \right)$$

Distribute k according to needs $(\theta_0, \theta_1, \theta_2)$ weighed by importance $(\beta_0, \beta_1, \beta_2)$

$$U_l^F\left(x_l^F;\theta_l\right) = -\frac{\beta_l}{\left(\sum\beta\right)^2} \left(\sum\theta - k\right)$$

Utility of a system depends on total needs (sum of θ_l) and relative importance (β_l) but not on how needs are distributed among the systems (θ_1 v. θ_2)

Roadmap

- 1. Normative approach: optimal allocation given private information if **CES** could use any conceivable communication mechanism
 - General properties
 - Comparative statics
- 2. Positive approach: can this allocation be implemented using a physiologically plausible mechanism?
- 3. Applications
 - Task inertia
 - Task separation

- 1. Normative approach: optimal allocation given private information if **CES** could use any conceivable communication mechanism
 - General properties
 - Comparative statics
- 2. Positive approach: can this allocation be implemented using a physiologically plausible mechanism?
- 3. Applications
 - Task inertia
 - Task separation

The optimization problem

Optimal allocation of resources when needs of systems 1 and 2 are unknown and **CES** can use any mechanism. Using the revelation principle:

$$\max_{x_{0},x_{1},x_{2}} \iint \frac{1}{\beta_{0}} U_{0} \left(x_{0} \left(\theta_{1}, \theta_{2} \right), \theta_{0} \right) + \frac{1}{\beta_{1}} U_{1} \left(x_{1} \left(\theta_{1}, \theta_{2} \right), \theta_{1} \right) + \frac{1}{\beta_{2}} U_{2} \left(x_{2} \left(\theta_{1}, \theta_{2} \right), \theta_{2} \right) dF_{1}(\theta_{1}) dF_{2}(\theta_{2})$$
s.t. $U_{i} \left(x_{i} \left(\theta_{i}, \theta_{j} \right), \theta_{i} \right) \ge U_{i} \left(x_{i} \left(\tilde{\theta}_{i}, \theta_{j} \right), \theta_{i} \right) \quad \forall i, j \in \{1, 2\}, \forall \theta_{i}, \tilde{\theta}_{i}, \theta_{j} \quad \text{(IC)}$
 $x_{0} \left(\theta_{1}, \theta_{2} \right) + x_{1} \left(\theta_{1}, \theta_{2} \right) + x_{2} \left(\theta_{1}, \theta_{2} \right) \le k \quad \forall \theta_{1}, \theta_{2} \quad \text{(R)}$
 $x_{0} \left(\theta_{1}, \theta_{2} \right) \ge 0, x_{1} \left(\theta_{1}, \theta_{2} \right) \ge 0, x_{2} \left(\theta_{1}, \theta_{2} \right) \ge 0 \quad \forall \theta_{1}, \theta_{2} \quad \text{(F)}$

The solution

- Optimal mechanism M:
 - resource cap $\overline{x}_1(\theta_2)$ for S_1
 - resource cap $\overline{x}_2(\theta_1)$ for S_2
- Equilibrium allocation under M:
 - $x_1^*(\theta_1, \theta_2) = \min \{ \theta_1, \overline{x}_1(\theta_2) \}$
 - $x_2^*(\theta_1, \theta_2) = \min \{ \theta_2, \overline{x}_2(\theta_1) \}$
 - $x_0^*(\theta_1, \theta_2) = k x_1(\theta_1, \theta_2) x_2(\theta_1, \theta_2)$
- What are the optimal caps $\overline{x}_1(\theta_2)$ and $\overline{x}_2(\theta_1)$?

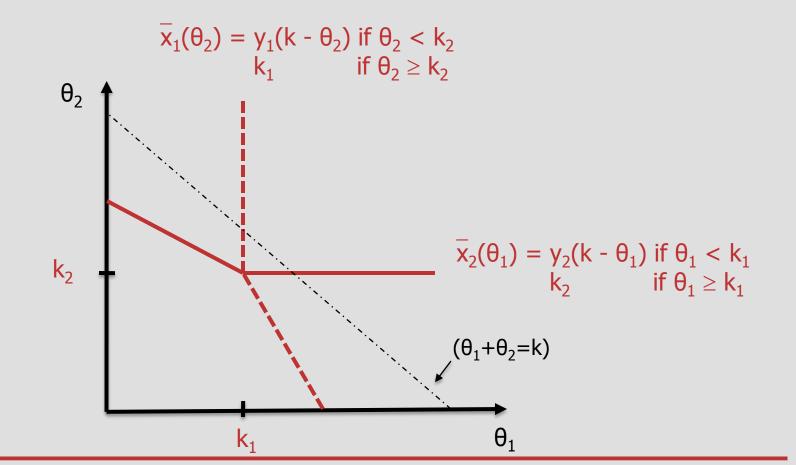
The solution

Sketch of proof

- 1. Derive optimal allocation with only 2 systems (1 with private info.)
- 2. Use it to derive "priority mechanism":
 - **P**₁: optimal mechanism under the requirement that **S**₁ always obtains the resources it requests
 - P₂: optimal mechanism under the requirement that S₂ always obtains the resources it requests.
- 3. Compare P_1 and P_2 . Show that optimum is a hybrid of both: it behaves like P_1 for certain (θ_1, θ_2) and like P_2 for some other (θ_1, θ_2) .

Optimal Resource Allocation

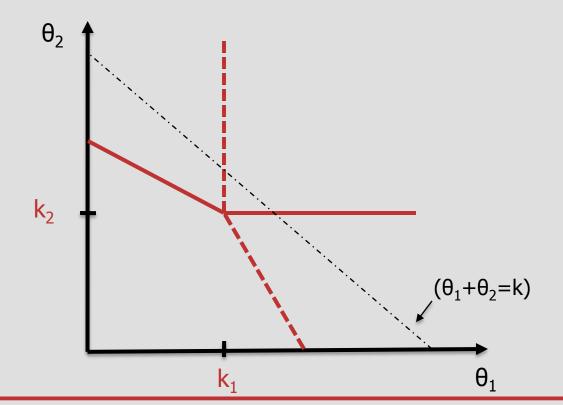
Optimal caps $\overline{x}_1(\theta_2)$ and $\overline{x}_2(\theta_1)$ are first strictly decreasing and then constant in the needs of the other system



Optimal Resource Allocation

Optimal caps $\overline{x}_1(\theta_2)$ and $\overline{x}_2(\theta_1)$ are first strictly decreasing and then constant in the needs of the other system

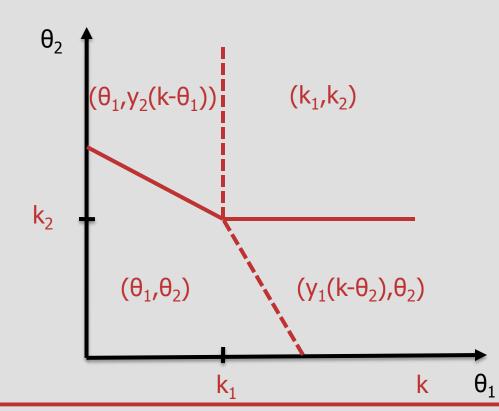
$$\frac{1}{\beta_1} \left(E[\theta_1 \mid \theta_1 > k_1] - k_1 \right) = \frac{1}{\beta_2} \left(E[\theta_2 \mid \theta_2 > k_2] - k_2 \right) = \frac{1}{\beta_0} \left(\theta_0 - \left(k - k_1 - k_2\right) \right)$$



Optimal Resource Allocation

Equilibrium allocation $(x_1^*(\theta_1, \theta_2), x_2^*(\theta_1, \theta_2))$

→ unconstrained for "small" needs and fixed for "large" needs (with $x_0^*(\theta_1, \theta_2) = k - x_1^*(\theta_1, \theta_2) - x_2^*(\theta_1, \theta_2)$)



Properties

- Equilibrium is unique (under Increasing Hazard Rate)
- k_1 , k_2 , $k k_1 k_2$ are guaranteed resources for S_1 , S_2 , S_0
- Resource monotonicity: if $\theta_1 \downarrow$, both $x_2 \uparrow and x_0 \uparrow$
- Comparative statics. Same monotonicity principle:
 - If $\beta_2 \downarrow (S_2 \text{ more important})$, then $x_2^* \uparrow$, $x_1^* \downarrow$, $x_0^* \downarrow$
 - If $k \uparrow$ (more resource), then $x_0^* \uparrow x_1^* \uparrow x_2^* \uparrow$

Implication 1. Let $\beta_1 = \beta_2$. Fix $\theta_1 + \theta_2$ with $\theta_1 > \theta_2$

- Full information: $U_1^F = U_2^F$
- Private information: U₁* ≤ U₂*
 Better performance in easy tasks than in difficult tasks

- 1. Normative approach: optimal allocation given private information if **CES** could use any conceivable communication mechanism
 - General properties
 - Comparative statics
- 2. Positive approach: can this allocation be implemented using a physiologically plausible mechanism?
- 3. Applications
 - Task inertia
 - Task separation

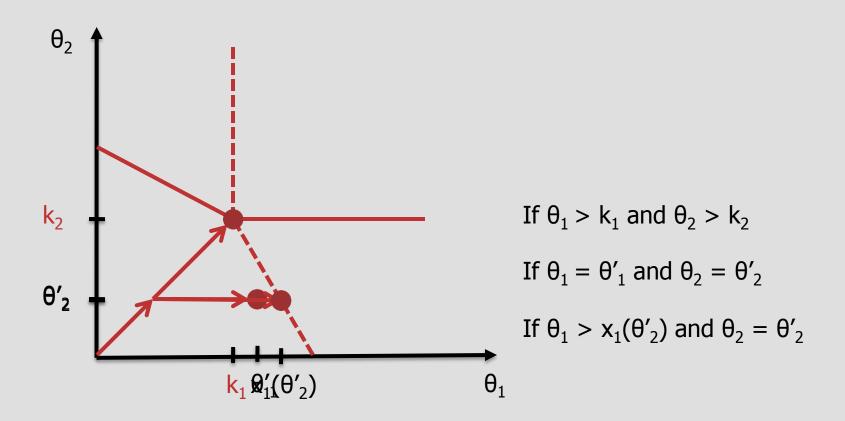
Implementation

So far, abstract revelation mechanism: "announce θ'_i , receive $x_i(\theta'_{i,}\theta'_j)''$

Can **CES** implement the optimal mechanism in a "simple" way and, most importantly, in a way compatible with the physiology of the brain?

- **CES** sends oxygen to S_1 , S_2 , S_0 at rates $k_1 / k_1 k_2 / k_1 (k k_1 k_2) / k_1$.
- Systems deplete oxygen to produce energy. **CES** observes depletion which is a signal that more resources are needed (autoregulation).
- If S_i stops consumption, oxygen is redirected to S_j and S_0 at a new rate.
- If both S_i and S_j stop consumption, the remaining oxygen is sent to S_0 .
- \rightarrow **S**_i grabs incoming resources up to satiation or up to constraint
- \rightarrow **S**_i doesn't need to know needs or even existence of **S**_j
- → \mathbf{S}_i doesn't need to know its own needs $\mathbf{\theta}_i$ until they are hit
- → **CES** must be able to redirect resources and change the rates

Implementation



- 1. Normative approach: optimal allocation given private information if **CES** could use any conceivable communication mechanism
 - General properties
 - Comparative statics
- 2. Positive approach: can this allocation be implemented using a physiologically plausible mechanism?
- 3. Applications
 - Task inertia
 - Task separation

Application 1: task inertia

- **CES** has imperfect knowledge of the distribution of needs
- **CES** gradually learns the distribution through observation of past needs
- How should **CES** adjust current allocation rules based on past needs?
- Learning:
 - Distributions $F_i(\theta_i | s_i)$ depends on unknown but fixed state s_i (is this task usually complex or simple?)
 - Prior belief of state is p_i (s_i)
 - Realization of θ_i^t conditionally independent across periods
 - After **S**_i reports θ^t_i in period **t**, **CES** updates belief over s_i
 - Assume $F_i(\theta_i | s_i)$ satisfies MLRP: needs are likely to be high $(\theta_i \text{ high})$ when task is usually complex $(s_i \text{ high})$.
- → <u>Lemma</u>: $G_i(\theta_i^{t+1}|\theta_i^t)$ satisfies MLRP: high θ_i^t implies that s_i is likely to be high which implies that θ_i^{t+1} is also likely to be high

Application 1: task inertia

Assume s_i unknown and compare public info. $(\theta_1^t, \theta_2^t \text{ known by CES at t})$ with private info. $(\theta_1^t, \theta_2^t \text{ unknown by CES at t})$

Implication 2. Inertia and path-dependence of the allocation rule. Under private info. and conditional on present needs, allocation of S_i is higher if past needs were high:

If θ_2^{t-1} \uparrow , then $x_2^t(\theta_1^t, \theta_2^t)$ \uparrow , $x_1^t(\theta_1^t, \theta_2^t)$ \downarrow , $x_0^t(\theta_1^t, \theta_2^t)$ \downarrow

 \rightarrow consistent with neuroscience evidence on "task switching cost".

Application 2: task separation

- Is it better to have an integrated system responsible for tasks 1 and 2 or two separate systems each responsible for one task?
- <u>Trade-off</u>:
 - Integrated system allocates more efficiently its resources between tasks 1 and 2
 - Separated systems require less "informational rents": cap of S₁ can depend on announcement of S₂

Implication 3.

- Integration of $\bm{S_1}$ and $\bm{S_2}$ dominates when motor task is important ("low" $\bm{\beta_0})$
- Separation of $\bm{S_1}$ and $\bm{S_2}$ dominates when cognitive tasks are important (''low" β_1 and β_2)

Conclusions

- The brain is a multi-system organization.
- Bounded rationality model based not on inspiration but on physiological constraints of the brain → derive behaviors from brain limitations
- Optimal resource allocation: each system has guaranteed resources (k₀, k₁, k₂). More resources are available only if others are satiated
- Physiologically plausible implementation.
- Resource allocation under capacity constraint and asymmetric information provides an informational rationale for (not a model built to explain):
 - Better performance in easier tasks
 - Task inertia and task switching cost
 - Conditions for integration v. separation of functions
- Model can be straightforwardly applied to standard organization problems:
 - Allocation of resources between research, marketing and production
 - Market split of colluding firms (no transfers!), etc.