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Introduction

e Study why our utility functions have the
arguments they do

 Why do we care about anything other than
offspring?
(Implication: we sacrifice offspring for other goods)

* We show that the marginal utility of a given action
does not depend only on its fithess value

Note: “Innate/primary” vs. “conditioned/secondary”
arguments

Observations:

1. Innate arguments are numerous - e.g., Linden,
2001
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General Problem

Principal: Natural selection (maximizes fithess)
Agent: Individual (maximizes utility)

e Principal selects utility function of Agent

* Agent selects expected-utility-maximizing action,
which randomly determines fithess

e Fitness-maximizing action depends on unknown
state of nature ¥

What is the expected-fitness-maximizing utility
function when each player has only partial
Information about %47




Related Literature

* Biology and Economics: Becker (76), Robson
(0la,b), Samuelson (04), Samuelson-Swinkels (06),
Rayo-Becker (07), Robson-Samuelson (07), Robson
and Szentes (08), Netzer (09), Herold -Netzer (11),
Robson-Szentes-lantchev  (11), Ely-Lleras-Muney
(12), Alger-Weilbull (12)

e Optimal Delegation: Holmstrom (84), Aghion -Tirole
(97), Dessein (02), Alonso-Matouschek (08),
Armstrong-Vickers (10)

 Monotone Comparative Statics: Milgrom-Shannon
(94), Athey (02)

» Key differences vis-a-vis standard principal-agent
model:
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Model

X € RN: Agent’s action
¥, € R: state; s, t € R: Principal and Agent’s
signals of ¥4

Ya~1(34|S,1); Ya~g(Fa|l)

(f and g increasing in s,t according to FOSD)
y € R: fithess

y = ¢(X,%4)
(@(x,%4) strictly concave in X; ¢,3,(X,%4), ¢ ., (X,%2) > 0)

XFB(s,t) = argmax, I o (X,¥4)f(%4s,)d¥4
xFB(s,t) increasing in s and t (for all i)
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Timing

1. Principal privately observes s € R, selects utility
function

U: (x,y,8) > R

2. State % € R Is drawn
3. Agent observes U, observes t, solves

max, E[U(X,y,S) | ]

4. Fitness y Is realized

How can the principal implement xFB(s,t) for all s,t?




Case 1: Principal communicates A

S

Suppose the Agent knows (s,t)

Remark 1: The utility function

U(x,y,s) =y
IS then optimal for all s.

Proof: Agent maximizes jgo(x,?/4)f(~°/4|s,t)d3/4, which

by
definition delivers xFB(s,t).




Case 2: U can depend on t
(as well as s)

Remark 2: The utility function

U(X,y,S,t) — U(X,S,t) = {

Is then optimal for all s.

1 if x =xFB(s,1)
O otherwise

Proof: Agent is an “automaton” who automatically
chooses x"B(s,t).




Case 3: U cannot depend on t
and agent does not know s

Definition 1: Let
X'(x;,S): RxR — RN and
t'(x,,s): RxR — R such that:

A X(X,S) =X
B. X(x,s) = X"B(s,t(x;,S))
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Theorem 1: An optimal utility function is
U(x,y,s) = @ (X,%) + a(X,S),

where a(x,s) = Z a'(x;,s), and

ai(x,9) = - : [u(x(z.))g(34t(2,5))d%dlz.




lllustration of Theorem
Suppose N = 1. Agent’s objective:

E[U] = [o(x,%)g (%)% + a(x,s)

FOC for x:

0(%,5) = - (X, 76) (¥ )d%a

Since xFB(s, t) is monotonic, we can obtain
t(x,s) such that t(x™8(s, t),s) =t for all s.t,

and so the R.H.S. above is a function of (x,s).




lllustration of Theorem

0(%,5) = - (X, %) (%] (x,5))d¥s

SOC for x:

d2U/dx2 = - j 0w (X,¥2) (34| t(x,5))d% < O,

which follows from single-crossing and FOSD.




Example: Linear ¢ and E[%4]s,1]
Assume:
A. o(X,%) =a(x) + b(X)%
e.g., x = effort; y = %x - C(x)

B. E[%]|s,f] = As+ (1-W)t
Optimal Utility:
U= p(x,%) + —fa() +b()s]

b'(XFB(s,1))
a'(xFB(s,1))

FOC: As+ (L-A)t=-




Example: Comparative Statics

U = p(x,%) + %F(X) + b(x)s]
dx/dy|, = - o, (X"B(s,t),S,A)
= - a'(xFB(s,1) - b'(x™B(s, )t

Remark 2.
«Ift>s, dx/dy|, <O,
« Ift<s, dx/dy|, > 0.




Example: Comparative Statics

Remark 3 (A).
 If t > s, dx/dy|, < 0 and decreasing In 2,
 If t <s, dx/dy|, > 0 and increasing in A.

Remark 4 (s).
» dx/dy|, IS Increasing in s.




Example: Effort
x= effort; y = 3x - C(X)
Optimal utility function:
U=y -\1%[(:()() - SX |

Y
C(x)

}




The End
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It is (strictly) optimal to separate two (strictly)
ordered prospects, and (strictly) optimal to pool
two (strictly) unordered prospects.




