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Introduction 

 Study why our utility functions have the 

arguments they do 

 Why do we care about anything other than 

offspring?  

(Implication: we sacrifice offspring for other goods) 

 We show that the marginal utility of a given action 

does not depend only on its fitness value  

Note: “Innate/primary” vs. “conditioned/secondary” 

arguments  

Observations: 

1. Innate arguments are numerous  – e.g., Linden, 

2001 

food, prestige, body temperature, view, sex, effort   

(Bentham: 26 categories of simple pleasures and 

pains) 

2. Not everything is a primary argument 

 

 



General Problem 

Principal: Natural selection (maximizes fitness) 

Agent: Individual (maximizes utility) 
 

 Principal selects utility function of Agent 

 Agent selects expected-utility-maximizing action, 

which randomly determines fitness 

 Fitness-maximizing action depends on unknown 

state of nature ¾ 
 

What is the expected-fitness-maximizing utility 

function when each player has only partial 

information about ¾? 
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 Monotone Comparative Statics: Milgrom-Shannon 
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 Key differences vis-à-vis standard principal-agent 
model: 

(1) All actions are contractable 

(2) No exogenous preferences for the agent (e.g. 
effort cost) 

(3) Principal has information that cannot be 
communicated 

 



Model 

 

 

 

 

 

• x ∈ RN: Agent’s action  

• ¾ ∈ R: state; s, t ∈ R: Principal and Agent’s 

signals of ¾ 
 

¾  f(¾  s,t); ¾  g(¾  t) 
 

(f and g increasing in s,t according to FOSD)     

• y ∈ R: fitness 

y =  (x,¾) 
 

( (x,¾) strictly concave in x; xi¾
(x,¾), xixk

(x,¾) > 0) 

• xFB(s,t) = argmaxx  (x,¾)f(¾s,t)d¾ 

• xi
FB(s,t) increasing in s and t (for all i) 



1. Principal privately observes s ∈ R, selects utility 

function            

U: (x,y,s)  R 
 

2. State ¾ ∈ R is drawn 

3. Agent observes U, observes t, solves 
 

maxx E [U(x,y,s)  t] 
 

4. Fitness y is realized 

 

How can the principal implement xFB
 (s,t) for all s,t?   

 

Timing 



Case 1: Principal communicates 

s 
 

Suppose the Agent knows (s,t) 
 

Remark 1: The utility function  

U(x,y,s)  y 

 is then optimal for all s. 

 

Proof: Agent maximizes  (x,¾)f(¾s,t)d¾, which 

by 

      definition delivers xFB
 (s,t).  

 



Case 2: U can depend on t 

(as well as s) 
 

 

Remark 2: The utility function 
  

          U(x,y,s,t) = U(x,s,t) =  
  

 is then optimal for all s. 

 

Proof: Agent is an “automaton” who automatically 

chooses xFB
 (s,t).  

 

1 if x = xFB
 (s,t) 

0 otherwise 



Case 3: U cannot depend on t 

and agent does not know s 
 

Definition 1: Let  

• xi(xi,s): RR  RN  and  

• ti(xi,s): RR  R such that: 
 

A.  xi(xi,s) = xi, 

B.  xi(xi,s) = xFB
 (s, ti(xi,s)) 
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Theorem 1: An optimal utility function is 

  

U(x,y,s) =  (x,¾) +  (x,s), 
 

 where (x,s) =  i(xi,s), and 
 

 i(xi,s) = - 

xi

 xi (xi(z,s))g(¾ti(z,s))d¾dz. 

 

 

  

i 



  
Suppose N = 1. Agent’s objective:  

E [ U   t ] =  (x,¾)g (¾  t)d¾ + (x,s) 
 

FOC for x:  
 

x(x,s) = - x (x,¾)g(¾  t)d¾ 

 

Since xFB(s, t) is monotonic, we can obtain 
 

 t(x,s) such that t(xFB(s, t),s) = t for all s,t, 
 

and so the R.H.S. above is a function of (x,s). 
 

 

  

i 
Illustration of Theorem 



  

x(x,s) = - x (x,¾)g(¾  t(x,s))d¾ 

 

SOC for x: 

d2U/dx2 = - x (x,¾)gt(¾  t(x,s))d¾ < 0, 

 

which follows from single-crossing and FOSD. 
 

  

i 
Illustration of Theorem 



Example: Linear  and E [¾  s,t]  
 

 

 

 

Assume:  
 

A.   (x,¾) = a(x) + b(x)¾ 
 

e.g., x = effort;  y = ¾x - C(x) 
 

 

B.  E [¾  s,t] = s+ (1 - )t 
 

Optimal Utility: 
 
 

U =  (x,¾) +         [a(x) + b(x)s] 

 

 

    FOC:  s+ (1 - )t = -  

 

 

  

__________ b′ (xFB
 (s,t)) 

a′ (xFB
 (s,t)) 

____  
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Example: Comparative Statics  
 

 

 

 

 

U =  (x,¾) +         [a(x) + b(x)s] 

 

      dx/dy U = - x(x
FB

 (s,t),s,) 

  

        = - a′(xFB
 (s,t)) - b′(xFB

 (s,t))t 

 

Remark 2.  
 

• If t > s, dx/dy U < 0, 
 

• If t < s, dx/dy U > 0. 

 

      

 

 

 

 

 

  
 

 

 

  

____  
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Example: Comparative Statics  
 

 

 

 

 

Remark 3 ().  
 

• If t > s, dx/dy U < 0 and decreasing in ,  
 

• If t < s, dx/dy U > 0 and increasing in . 

 
Remark 4 (s).  
 

• dx/dy U is increasing in s. 

 

      

 

 

 

 

 

  
 

 

 

  



Example: Effort 
 

 

 

 

x= effort;  y = ¾x - C(x) 

 

Optimal utility function: 

 

U = y -                      [C(x) - sx ] 

 
 

                                               Ĉ(x) 

 

 

 

____  
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The End 
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Ordered 
v 

¼ 

Unordered 

  It is (strictly) optimal to separate two (strictly) 

ordered prospects, and (strictly) optimal to pool 

two (strictly) unordered prospects. 

 


