Biology and the Arguments of Utility

Luis Rayo
Arthur Robson
May 2012

"Biological Basis of Economic Preferences and Behavior"

Introduction

- Study why our utility functions have the arguments they do
- Why do we care about anything other than offspring?
(Implication: we sacrifice offspring for other goods)
- We show that the marginal utility of a given action does not depend only on its fitness value
Note: "Innate/primary" vs. "conditioned/secondary" arguments
Observations:

1. Innate arguments are numerous - e.g., Linden, 2001

General Problem

Principal: Natural selection (maximizes fitness)
Agent: Individual (maximizes utility)

- Principal selects utility function of Agent
- Agent selects expected-utility-maximizing action, which randomly determines fitness
- Fitness-maximizing action depends on unknown state of nature $3 / 4$

What is the expected-fitness-maximizing utility function when each player has only partial information about $3 / 4$?

Related Literature

- Biology and Economics: Becker (76), Robson (01a,b), Samuelson (04), Samuelson-Swinkels (06), Rayo-Becker (07), Robson-Samuelson (07), Robson and Szentes (08), Netzer (09), Herold -Netzer (11), Robson-Szentes-lantchev (11), Ely-Lleras-Muney (12), Alger-Weilbull (12)
- Optimal Delegation: Holmstrom (84), Aghion -Tirole (97), Dessein (02), Alonso-Matouschek (08), Armstrong-Vickers (10)
- Monotone Comparative Statics: Milgrom-Shannon (94), Athey (02)
- Key differences vis-à-vis standard principal-agent model:
All actinne aro contractahlo

Model

- $x \in R^{N}$: Agent's action
- $3 / 4 \in R$: state; $s, t \in R$: Principal and Agent's signals of $3 / 4$

$$
3 / 4 \sim f(3 / 4 \mid s, t) ; 3 / 4 \sim g(3 / 4 \mid t)
$$

(f and g increasing in s, t according to FOSD)

- $y \in R$: fitness

$$
y=\varphi(x, 3 / 4)
$$

($\varphi(\mathrm{x}, 3 / 4)$ strictly concave in $\left.\mathrm{x} ; \varphi_{\mathrm{xi}}{ }^{3 / 4}(\mathrm{x}, 3 / 4), \varphi_{\mathrm{xixk}}(\mathrm{x}, 3 / 4)>0\right)$

- $x^{F B}(\mathrm{~s}, \mathrm{t})=\operatorname{argmax}_{\mathrm{x}} \int \varphi(\mathrm{x}, 3 / 4) \mathrm{f}(3 / 4 \mid \mathrm{s}, \mathrm{t}) \mathrm{d}^{3} / 4$
- $x_{i}{ }^{F B}(\mathrm{~s}, \mathrm{t})$ increasing in s and t (for all i)

Timing

1. Principal privately observes $s \in R$, selects utility function

$$
\mathrm{U}:(\mathrm{x}, \mathrm{y}, \mathrm{~s}) \rightarrow \mathrm{R}
$$

2. State $3 / 4 \in R$ is drawn
3. Agent observes U, observes t, solves

$$
\max _{x} E[U(x, y, s) \mid t]
$$

4. Fitness y is realized

How can the principal implement $x^{F B}(s, t)$ for all s, t ?

Case 1: Principal communicates

 sSuppose the Agent knows (s,t)
Remark 1: The utility function

$$
U(x, y, s) \equiv y
$$

is then optimal for all s.

Proof: Agent maximizes $\int \varphi(\mathrm{x}, 3 / 4) \mathrm{f}(3 / 4 \mid \mathrm{s}, \mathrm{t}) \mathrm{d} 3 / 4$, which by definition delivers $x^{F B}(\mathrm{~s}, \mathrm{t})$.

Case 2: U can depend on t (as well as s)

Remark 2: The utility function

$$
U(x, y, s, t)=U(x, s, t)= \begin{cases}1 & \text { if } x=x^{F B}(s, t) \\ 0 & \text { otherwise }\end{cases}
$$

is then optimal for all s.

Proof: Agent is an "automaton" who automatically chooses $x^{F B}(\mathrm{~s}, \mathrm{t})$.

Case 3: U cannot depend on t and agent does not know s

Definition 1: Let

- $x^{i}\left(x_{i}, s\right): R \times R \rightarrow R^{N}$ and
- $t^{i}\left(x_{i}, s\right): R \times R \rightarrow R$ such that:
A. $x^{i}\left(x_{i}, s\right)=x_{i}$,
B. $\mathrm{x}^{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{s}\right)=\mathrm{x}^{F B}\left(\mathrm{~s}, \mathrm{t}^{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{s}\right)\right)$

Theorem 1: An optimal utility function is

$$
\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{~s})=\varphi(\mathrm{x}, 3 / 4)+\alpha(\mathrm{x}, \mathrm{~s}),
$$

where $\alpha(x, s)=\sum_{i} \alpha^{i}\left(x_{i}, s\right)$, and

$$
\alpha^{i}\left(x_{i}, s\right)=-\int^{x_{i}} \int \varphi_{x_{\mathrm{i}}}\left(x^{i}(z, s)\right) g\left(3 / 4 \mid \mathrm{t}^{\mathrm{i}}(\mathrm{z}, \mathrm{~s})\right) \mathrm{d}^{3} / 4 \mathrm{dz} .
$$

Illustration of Theorem

Suppose $\mathbf{N}=1$. Agent's objective:

$$
E[U \mid t]=\int \varphi(x, 3 / 4) g(3 / 4 \mid t) d 3 / 4+\alpha(x, s)
$$

FOC for x :

$$
\alpha_{x}(x, s)=-\int \varphi_{x}(x, 3 / 4) g(3 / 4 \mid t) d^{3 / 4}
$$

Since $x^{F B}(s, t)$ is monotonic, we can obtain $\mathrm{t}(\mathrm{x}, \mathrm{s})$ such that $\mathrm{t}\left(\mathrm{x}^{F B}(\mathrm{~s}, \mathrm{t}), \mathrm{s}\right)=\mathrm{t}$ for all s, t, and so the R.H.S. above is a function of (x, s).

Illustration of Theorem

$$
\alpha_{x}(x, s)=-\int \varphi_{x}(x, 3 / 4) g(3 / 4 \mid t(x, s)) d 3 / 4
$$

SOC for x :

$$
\mathrm{d}^{2} \mathrm{U} / \mathrm{dx} x^{2}=-\int \varphi_{\mathrm{x}}(\mathrm{x}, 3 / 4) \mathrm{g}_{\mathrm{t}}(3 / 4 \mid \mathrm{t}(\mathrm{x}, \mathrm{~s})) \mathrm{d} 3 / 4<0
$$

which follows from single-crossing and FOSD.

Example: Linear φ and $\mathrm{E}[3 / 4 \mid \mathrm{s}, \mathrm{t}]$

Assume:
A. $\varphi(x, 3 / 4)=a(x)+b(x)^{3 / 4}$
e.g., $x=$ effort; $y=3 / 4 x-C(x)$
B. $E[3 / 4 \mid s, t]=\lambda s+(1-\lambda) t$

Optimal Utility:
$U=\varphi(x, 3 / 4)+\frac{\lambda}{1-\lambda}[\mathrm{a}(\mathrm{x})+\mathrm{b}(\mathrm{x}) \mathrm{s}]$
FOC: $\lambda s+(1-\lambda) t=-\quad \frac{b^{\prime}\left(x^{F B}(s, t)\right)}{a^{\prime}\left(x^{F B}(s, t)\right)}$

Example: Comparative Statics

$$
\begin{aligned}
& U=\varphi(\mathrm{x}, 3 / 4)+\frac{\lambda}{1-\lambda}[\mathrm{a}(\mathrm{x})+\mathrm{b}(\mathrm{x}) \mathrm{s}] \\
& \begin{aligned}
\mathrm{dx} /\left.\mathrm{dy}\right|_{U}= & -\alpha_{\mathrm{x}}\left(\mathrm{x}^{\mathrm{FB}}(\mathrm{~s}, \mathrm{t}), \mathrm{s}, \lambda\right) \\
& =-\mathrm{a}^{\prime}\left(\mathrm{x}^{\mathrm{FB}}(\mathrm{~s}, \mathrm{t})\right)-\mathrm{b}^{\prime}\left(\mathrm{x}^{\mathrm{FB}}(\mathrm{~s}, \mathrm{t})\right) \mathrm{t}
\end{aligned}
\end{aligned}
$$

Remark 2.

- If $t>s, d x /\left.d y\right|_{U}<0$,
- If $\mathrm{t}<\mathrm{s}, \mathrm{dx} /\left.\mathrm{dy}\right|_{U}>0$.

Example: Comparative Statics

Remark 3 (λ).

- If $\mathrm{t}>\mathrm{s}, \mathrm{dx} /\left.\mathrm{dy}\right|_{\mathrm{u}}<0$ and decreasing in λ,
- If $\mathrm{t}<\mathrm{s}, \mathrm{dx} /\left.\mathrm{dy}\right|_{\mathrm{U}}>0$ and increasing in λ.

Remark 4 (s).

- $\mathrm{dx} /\left.\mathrm{dy}\right|_{\mathrm{U}}$ is increasing in s .

Example: Effort

$x=$ effort; $y=3 / 4 x-C(x)$
Optimal utility function:

$$
U=y-\underbrace{\frac{\lambda}{1-\lambda}[C(x)-s x]}_{\hat{C}(x)}
$$

The End

Glimcher
foundations of neuroeconomic analysis, 2010
(value comparison, learning

It is (strictly) optimal to separate two (strictly) ordered prospects, and (strictly) optimal to pool two (strictly) unordered prospects.

