A Search Theory of the Peacock's Tail

Balázs Szentes

May 5, 2012

Literature

- 1. Costly Signaling
- 2. Social Assets

Postlewaite and Mailath (2006)

Model

- males differ in a binary attribute $\{a, d\}$
- females differ in endowment $E \sim U[0, 1]$
- attribute is genetic, endowment is not

matching market

- there are two markets for the males M_a and M_d
- females decide which market to enter
- match as many as possible in each market

reproduction

- c-male and E-female reproduce q(c, E) offspring.
- half of the offspring is male
- death after reproduction or if unmatched

Assumptions

A1. q(a, E) > q(d, E) for all $E \in [0, 1)$.

A2. q(d, E) / q(a, E) is increasing in E.

A3. $q(a, E) < E(q(d, E') : E' \ge E)$ for all $E \in [0, 1)$.

A4. $1/[\partial \lg q(a, E)/\partial E] - 1/\partial \lg q(d, E)/\partial E \leq 1/2$ for all $E \in [0, 1)$.

Example

 $q(c, E) = c + (1 - c) E (c \in \{a, d\})$

 $a > d \Rightarrow A1$, A2

 $d > 2a - 1 \Rightarrow A3$

 $d > (3a - 1) / (a + 1) \Rightarrow A4$

State Space

 (μ, S)

- μ : fraction of $d-{\rm males}$
- S : population strategies of females

Assume that females want to maximize the expected number of offspring

A2 \Rightarrow if an *E*-female enters the *d*-market then E'(>E) also enters *d*-market

restrict attention to cutoff strategies: E^*

 μ : fraction of $d-{\rm males}$

Equilibrium

 (μ, E^*) is an equilibrium if

(1) E^* is a best-response to (μ, E^*) and

(2) μ is constant over time

Proposition

The only equilibria are (0, 1) and (1, 0).

WHTS: no interior equilibrium

If (μ, E^*) is an interior equilibrium

(i) a and d males have the same reproductive values

(ii) E^* -female is indifferent between the two markets

Constant μ

claim.

In any interior equilibrium there are more males than females in the d-market

proof.

 $\mathbb{E}\left[q\left(d,E\right):E\geq E^{*}\right]>q\left(a,E^{*}\right)>\mathbb{E}\left[q\left(a,E\right):E\leq E^{*}\right]$

a and d grow at the same rate if:

$$\frac{1-E^*}{\mu} \mathbb{E}\left[q\left(d,E\right):E \ge E^*\right] = \mathbb{E}\left[q\left(a,E\right):E \le E^*\right],$$

or equivalently

$$\int_{E^*}^{1} q(d, E) dE = \frac{\mu}{E^*} \int_{0}^{E^*} q(a, E) dE.$$

Define $\mu_1\left(E^*\right)$ by

$$\int_{E^*}^{1} q(d, E) dE = \frac{\mu_1(E^*)}{E^*} \int_{0}^{E^*} q(a, E) dE$$

Observe μ_1 this curve is only defined if $E^* \geq \widetilde{E}$, where \widetilde{E} solves

$$\int_{\widetilde{E}}^{1} q(d, E) dE = \frac{1}{\widetilde{E}} \int_{0}^{\widetilde{E}} q(a, E) dE$$

Best Responses

 $E^* \in (0, 1)$ is a best-response iff:

$$q(d, E^*) = \frac{1-\mu}{E^*}q(a, E^*),$$

or equivalently,

$$\frac{q\left(d,E^{*}\right)}{q\left(a,E^{*}\right)} = \frac{1-\mu}{E^{*}}.$$

Define $\mu_2(E^*)$ as the solution for the following equality:

$$q(d, E^*) = \frac{1 - \mu_2(E^*)}{E^*} q(a, E^*).$$

Lemma

- (i) $\mu_1(1) = \mu_2(1)$ and
- (ii) μ_1 and μ_2 are decreasing.

Lemma

$$\nexists E^* \in \left(\widetilde{E}, \mathbf{1}\right) : \mu_1\left(E^*\right) = \mu_2\left(E^*\right).$$

Corollary

 \nexists interior equilibrium

Corollary

$$\mu_1(E) > \mu_2(E)$$
 for all $E \in \left(\widetilde{E}, \mathbf{1}\right)$

Stability

 $(\psi, arphi): \mathbb{R}_+ imes [0,1]^2
ightarrow [0,1]^2$

If the initial state is $\left(\mu_{0}, E_{0}^{*}\right)$

then
$$\left(\psi_t\left(\mu_0, E_0^*\right), \varphi_t\left(\mu_0, E_0^*\right)\right)$$
 is the state at t

Requirements

(1)
$$\psi_t \left(\mu_0, E_0^* \right) > (<) 0$$
 if and only if
 $\frac{1 - E^*}{\mu_t} \mathbb{E} \left[q \left(d, E \right) : E \ge E_t^* \right] > (<) \mathbb{E} \left[q \left(a, E \right) : E \le E_t^* \right].$

(2) $\overset{\bullet}{\varphi}_t(\mu_0, E_0^*) > (<) 0$ if and only if

$$q(d, E_t^*) < (>) \frac{1-\mu}{E_t^*} q(a, E_t^*).$$

definition

 (μ, E^*) is a stable equilibrium if

(i) it is an equilibrium, and

(ii) for all $\varepsilon > 0$ there exists an $\varepsilon > 0$, such that if $|\mu_0 - \mu|, |E_0^* - E^*| < \delta$ then

$$\left|\psi_{t}\left(\mu_{0}, E_{0}^{*}\right) - \mu\right|, \left|\varphi_{t}\left(\mu_{0}, E_{0}^{*}\right) - E^{*}\right| < \varepsilon.$$

Theorem

The state (1,0) is the unique stable equilibrium.

Phase Diagram

. . .

What if there are many possible attributes?

Economics

- two-sided market
- quality is observable on one side only
- ex-ante investment in quality
- directed search

 \Rightarrow unobservable side invests more