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Abstract

Financial intermediaries trade frequently in many markets using sophisticated models.

Their marginal value of wealth should therefore provide a more informative stochastic

discount factor (SDF) than that of a representative consumer. Guided by theory, we use

shocks to the leverage of securities broker-dealers to construct an intermediary SDF.

Intuitively, deteriorating funding conditions are associated with deleveraging and a high

marginal value of wealth. Our single-factor model prices size, book-to-market,

momentum, and bond portfolios with an R2 of 77 percent and an average annual pricing

error of 1 percent—performing as well as standard multifactor benchmarks designed to

price these assets.

Key words: cross-sectional asset pricing, financial intermediaries

Adrian: Federal Reserve Bank of New York (e-mail: tobias.adrian@ny.frb.org). Etula: Harvard

University (e-mail: etula@post.harvard.edu). Muir: Kellogg School of Management

(e-mail: t-muir@kellogg.northwestern.edu). This paper is a revised combination of two previously

circulated papers: “Funding Liquidity and the Cross Section of Stock Returns” (Adrian and Etula

2010) and “Intermediary Leverage and the Cross-Section of Expected Returns” (Muir 2010). The

authors thank Ariel Zucker and Daniel Green for outstanding research assistance. They also thank

Richard Crump, Kent Daniel, Andrea Eisfeldt, Francesco Franzoni, Cam Harvey, Taejin Kim,

Arvind Krishnamurthy, Ravi Jagannathan, Annette Vissing-Jorgensen, Jonathan Parker, Dimitris

Papanikolaou, Stefan Nagel, Hans Dewachter, Wolfgang Lemke, two anonymous referees, and

seminar participants at Kellogg School of Management, the Bank of England, the European

Central Bank, the Federal Reserve Banks of Boston, Chicago, and New York, the Bank of

Finland, HEC Paris, the University of California at Los Angeles, ECARES at the Free University

of Brussels, the Shanghai Advanced Institute of Finance, Moody’s KMV, the Society for

Economic Dynamics, the European Finance Association, the American Finance Association, the

Society for Financial Econometrics, the Financial Intermediation Research Society, and the Fed

“Day Ahead” conference for useful comments and suggestions. The views expressed in this paper

are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of

New York or the Federal Reserve System. 



1 Introduction

Modern finance theory asserts that asset prices are determined by their covariances with the

stochastic discount factor (SDF), which is usually linked to the marginal value of aggregate

wealth. Assets that are expected to pay off in future states with high marginal value of

wealth are worth more today, as dictated by investors’first order conditions. Following this

theory, much of the empirical asset pricing literature centers around measuring the marginal

value of wealth of a representative investor, typically the average household. Specifically,

the SDF is represented by the marginal value of wealth aggregated over all households.

However, the logic that leads to this SDF relies on strong assumptions: all households

must participate in all markets, there cannot be transactions costs, households are assumed

to execute complicated trading strategies, the moments of asset returns are known, and

investment strategies are continuously optimized based on forward-looking expectations. If

these assumptions are violated for some agents, it can no longer be assumed that the marginal

value of wealth of the average household prices all assets.1 For example, if some investors

trade only in (say) value stocks, their marginal value of wealth can only be expected to

correctly price those stocks. In contrast, should there exist a single class of investors that

fits the assumptions of modern finance theory, their marginal value of wealth can be expected

to price all assets.

This paper shifts attention from measuring the SDF of the average household to mea-

suring a “financial intermediary SDF.” This approach takes us to a new place in the field

of empirical asset pricing– rather than emphasizing average household behavior, the as-

sumptions of frictionless markets and intertemporally optimizing behavior suggest to elevate

financial intermediaries to the center stage of asset pricing. Indeed, financial intermediaries

do fit the assumptions of modern finance theory nicely: They trade in many asset classes

1See Jagannathan and Wang (2007) for evidence that households may optimize infrequently and Malloy,
Moskowitz, and Vissing-Jorgensen (2009) for evidence that limited participation in the stock market can
help explain the cross-section of stock returns and equity premium puzzle.
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following often complex investment strategies. They face low transaction costs, which al-

lows trading at high frequencies. Moreover, intermediaries use sophisticated, continuously

updated models and extensive data to form forward-looking expectations of asset returns.

Therefore, if we can measure the marginal value of wealth for these active investors, we can

expect to price a broad class of assets.2 In other words, the marginal value of wealth of

intermediaries can be expected to provide a more informative SDF.

Backed by recent theories that give financial intermediaries a central role in asset pricing,

we argue that the leverage of security broker-dealers is a good empirical proxy for the mar-

ginal value of wealth of financial intermediaries and it can thereby be used as a representation

of the intermediary SDF. We find remarkably strong empirical support for this hypothesis:

Exposures to the broker-dealer leverage factor can alone explain the average excess returns

on a wide variety of test assets, including equity portfolios sorted by size, book-to-market,

and momentum, as well as the cross-section of Treasury bond portfolios sorted by matu-

rity. The broker-dealer leverage factor is successful across all cross-sections in terms of high

adjusted R-square statistics, low cross-sectional pricing errors, and prices of risk that are

significant and remarkably consistent across portfolios.3 When taking all these criteria into

account, our single factor outperforms standard multi-factor models tailored to price these

cross-sections, including the Fama-French three-factor model and a five-factor model that

includes the momentum factor and a bond pricing factor. Figure 1 provides an example of

the leverage factor’s pricing performance in a cross-section that spans 35 common equity

portfolios sorted on size, book-to-market, and momentum, and 6 Treasury bond portfolios

sorted by maturity. The single-factor model we present explains 77% of the variation in

average returns in these cross-sections, with an average absolute pricing error around 1% per

annum.
2An insight due to He and Krishnamurthy (2009).
3The returns on momentum portfolios have thus far been particularly diffi cult to connect to risk. We

regard the strong pricing performance across transaction cost intensive momentum and bond portfolios as
and indication that these portfolios are better priced by the SDF of a sophisticated intermediary.
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We provide a number of robustness checks that confirm the strong pricing ability of

the leverage factor across a variety of equity and bond portfolios. Most importantly, the

fact that we have a one-factor model avoids the typical criticisms that plague asset pricing

tests (see Lewellen, Nagel, and Shanken, 2010). We provide simulation evidence supporting

this: the probability that a random “noise” factor could spuriously replicate our cross-

sectional results, in terms of high R-square and low cross-sectional intercept, is zero. We

also construct a tradeable leverage mimicking portfolio (LMP), which allows us to conduct

pricing exercises at a higher frequency and over a longer time period. In cross-sectional

and time-series tests using monthly data, we show that the single factor mimicking portfolio

performs well going back to the 1930’s. We also conduct mean-variance analysis and find

the LMP to have the highest Sharpe ratio among benchmark portfolio returns. In fact, the

mean variance characteristics of the LMP are close to the tangency portfolio on the effi cient

frontier generated by combinations of the three Fama-French factors and the momentum

factor. As a further robustness check, we use the entire cross-section of stock returns to

construct portfolios based on our leverage factor betas and find substantial dispersion in

average returns that line up well with the post-formation leverage betas.

Our empirical results are consistent with a growing theoretical literature on the links be-

tween financial institutions and asset prices. First, shocks to leverage may capture the time-

varying balance sheet capacity of financial intermediaries. As funding constraints tighten,

balance sheet capacity falls and intermediaries are forced to deleverage by selling assets at

fire sale prices. These are times when their marginal value of wealth is high. Second, our

results can be interpreted in light of intermediary asset pricing models where broker-dealer

leverage measures financial sector health as a whole. Taken together, these theories imply

that leverage will capture aspects of the intermediary SDF that other measures (such as

aggregate consumption growth or the return on the market portfolio) do not capture. A

common thread in these theories is the procyclical evolution of broker-dealer leverage, which
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suggests a negative relationship between broker-dealer leverage and the marginal value of

wealth of investors. By implication, investors are expected to require higher compensation

for holding assets whose returns exhibit greater comovement with broker-dealer leverage

shocks. In the language of the arbitrage pricing theory, the cross-sectional price of risk

associated with broker-dealer leverage shocks should be positive.

We provide empirical support for the view that leverage represents funding constraints by

showing that our leverage factor correlates with funding constraint proxies such as volatility,

the Baa-Aaa spread, asset growth, and a betting-against-beta factor that goes long leveraged

low beta securities and short high beta securities. Frazzini and Pedersen (2011) show that

investors who face funding constraints will prefer to hold naturally high beta securities

rather than levering up low beta ones, resulting in a positive average return spread between

a levered low beta asset and a naturally high beta assets. This betting-against-beta factor

should co-move with funding constraints. Consistent with this view, we find our leverage

factor correlates well with the betting-against-beta portfolio and explains the cross-section

of returns sorted on betas as well.

To the best of our knowledge, we are the first to conduct cross-sectional asset pricing

tests with financial intermediary balance sheet components in the pricing kernel, which

provides an explicit link between intermediary balance sheets and asset prices. To quote

John H. Cochrane’s 2011 Presidential Address on discussing intermediary-based theories of

asset pricing: “A crucial question is, as always, what data will this class of theories use to

measure discount rates? Arguing over puzzling patterns of prices is weak. The rational-

behavioral debate has been doing that for 40 years, rather unproductively. Ideally, one

should tie price or discount-rate variation to central items in the models, such as the balance

sheets of leveraged intermediaries.”

The remainder of the paper is organized as follows. Section 2 provides a discussion of

the related theory and literature, reviewing a number of theoretical rationalizations for the
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link between financial intermediary leverage and aggregate asset prices. Section 3 describes

the data and empirical strategy, section 4 conducts a number of asset pricing tests in the

cross-section of stock and bond returns. Section 5 analyzes the properties of the leverage

mimicking portfolio and forms portfolios sorted on leverage betas, providing a variety of

robustness checks. Section 6 discusses directions and challenges for existing theories. Section

7 concludes.

2 Financial Intermediary Asset Pricing

We motivate our financial intermediary pricing kernel in two ways. While neither of them

yields direct empirical implications in terms of observable balance sheet components, they

are consistent with our finding that low leverage states are characterized by high marginal

utility of wealth and therefore assets that covary positively with leverage earn higher average

returns.

The first motivation for the intermediary pricing kernel arises if the balance sheet capacity

of intermediaries can directly impact asset price dynamics, as is the case in the literature on

limits to arbitrage. In such frameworks, the leverage of financial intermediaries measures the

tightness of intermediary funding constraints and therefore their marginal value of wealth. As

risk constraints– such as those on intermediary funding– tighten, prices fall, and expected

returns rise. Since these models feature risk-neutral investors, the marginal value of wealth is

the Lagrange multiplier on the funding constraint, making low leverage states ones with high

marginal utility. Prominent examples of such theories include Gromb and Vayanos (2002),

Brunnermeier and Pedersen (2009), Geanokoplos (2009), and Shleifer and Vishny (1997,

2010). Brunnermeier and Pedersen show how funding liquidity enters the pricing kernel

when investors are risk neutral and face funding constraints. Specifically, let φ1 be the

Lagrange multiplier on the time-one margin constraint and let W1 denote time-one wealth.

Risk-neutral investors subject to these constraints maximize E0 [φ1W1]. Immediately, we see
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the SDF is given by φ1
E0[φ1]

as this problem is clearly equivalent to an investor maximizing

the present value of her portfolio using φ1 as the time-one state price. Thus even with risk-

neutrality, the constraint gives rise to non-trivial state-pricing since it places higher value on

states in which funding constraints are tighter.

Taking the first order conditions of the risk-neutral intermediary, the ex-ante time-zero

price of security j is given by p0,j = E0[p1,j]+
Cov0[p1,j ,φ1]

E0[φ1]
where φ1 is the Lagrange multiplier

on the time-one margin constraint, which is monotonically decreasing in time-one leverage

(see Brunnermeier and Pedersen’s equation 31). Rearranging and stating this in returns, we

have the following equation for excess returns

E0

[
Re

1,j

]
= −

Cov0

[
φ1, R

e
1,j

]
E0 [φ1]

(1)

When funding constraints tighten intermediaries are forced to deleverage by selling off as-

sets they can no longer finance. Since leverage provides a proxy for funding conditions in

their model, they provide justification for our one-factor leverage model. Along similar lines,

Danielsson, Shin, and Zigrand (2010) consider risk-neutral financial intermediaries that are

subject to a value at risk (VaR) constraint.4 The intermediaries’demand for risky assets

depends on the Lagrange multiplier of the VaR constraint that reflects effective risk aver-

sion. In equilibrium, asset prices depend on the level of effective risk aversion, and hence

on the leverage of the intermediaries– times of low intermediary leverage are times when

effective risk aversion is high. As a result, financial intermediary leverage directly enters the

equilibrium SDF. Importantly, leverage– not wealth– is the key measure of marginal value

of wealth in these models.

In the language of Brunnermeier and Pedersen, we propose φ1 ≈ a − b ln (Leverage1),

such that lower leverage Leverage1 corresponds to tighter funding constraints. We therefore

4Other examples include Chabakauri (2010), Prieto (2010) and Rytchkov (2009), which are dynamic
versions of models with funding constraints. These theories build on heterogeneous-agent extensions of the
Intertemporal Capital Asset Pricing Model (ICAPM) of Merton (1973) where leverage arises as a reduced-
form representation of relevant state variables, capturing shifts in the marginal value of wealth.
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have the approximation,

E0

[
Re

1,j

]
= λCov0

[
ln (Leverage1) , R

e
1,j

]
(2)

where λ > 0. Thus assets that covary with leverage are risky and hence earn a larger risk

premium.

Second, it is possible that broker-dealer leverage proxies for the wealth of the entire

intermediary sector, as broker-dealers facilitate many of the trades of active investors. He

and Krishnamurthy (2010) assert that financial intermediaries are the marginal investor,

and as a result the stochastic discount factor is given by the marginal value of wealth of the

intermediary sector. In this framework, only financial intermediaries are capable of investing

in all risky asset classes. As a result, the stochastic discount factor is directly related to

the functioning of the financial intermediary sector, and to the preferences that the owners

of financial intermediaries have. In the simple setting of log preferences, the stochastic

discount factor is proportional to the aggregate wealth of the intermediary sector, giving an

intermediary CAPM. However, note that the wealth of the intermediary sector is diffi cult

to measure as it includes, for example, hedge funds whose wealth is not easily observable.

Acting as market makers, broker-dealers facilitate the trades of active investors such as

hedge funds and asset managers. As substantial inventory is required to meet the demand

for such trades, and holding more inventory requires higher leverage, the leverage of broker-

dealers may reflect the level of trading activity and wealth within the entire financial sector.5

Indeed, Cheng, Hong and Scheinkman (2010) find that leverage and risk taking by managers

in the financial sector is empirically correlated with current compensation, particularly for

broker-dealers, suggesting that times of high leverage are associated with high financial

sector wealth. Conversely, low leverage states are associated with low wealth states, when
5For example, consider a hedge fund trading a momentum strategy that requires turning over a dollar

volume of shares each period proportional to its assets under management. In order to facilitate this volume,
the market-making broker-dealer must carry more inventory– requiring it to increase leverage when hedge
funds have more assets under management. Broker-dealer leverage can therefore be expected to mirror the
wealth of the broader financial intermediary sector, which is otherwise diffi cult to measure.
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the marginal value of wealth is high. Brunnermeier and Sannikov (2010) derive a closely

related equilibrium asset pricing model with financial intermediaries where intermediation

arises as an outcome of principal agent problems.

While two theoretical linkages between financial intermediaries and asset pricing have

been proposed, the insight that financial institutions’balance sheets contain information

about the real economy and expected asset returns has received less empirical attention.

Adrian and Shin (2010) document that security broker-dealers adjust their financial lever-

age aggressively as economic conditions change. Broker-dealers’balance sheet management

practices result in highly pro-cyclical leverage. Recently, Adrian, Moench and Shin (2010)

and Etula (2010) show that broker-dealer leverage contains strong predictive power for asset

prices. The predictive power of leverage for stock and bond returns suggests that leverage

contains valuable information about the evolution of risk premia over time. In this paper, we

show that broker-dealer leverage can price assets by connecting the cross-section of returns

to exposures to broker-dealer leverage shocks.

3 Data and Empirical Approach

Motivated by the theories on financial intermediaries and aggregate asset prices, we identify

shocks to the leverage of security broker-dealers as a proxy for shocks to the pricing kernel.

We use the following measure of broker-dealer (BD) leverage:

LeverageBDt =
Total Financial AssetsBDt

Total Financial AssetsBDt − Total LiabilitiesBDt
. (3)

We construct this variable using aggregate quarterly data on the levels of total financial

assets and total financial liabilities of security broker-dealers as captured in Table L.129 of

the Federal Reserve Flow of Funds. Table 2 provides the breakdown of assets and liabilities

of security brokers and dealers as of the end of 2010.
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3.1 Aggregate Balance Sheet of Broker-Dealers

The balance sheet composition of security brokers and dealers combined with the evidence

of Adrian and Shin (2010) of intermediary balance sheet adjustements suggest that shocks

to leverage growth of financial intermediaries may provide a more informative pricing kernel

than the growth rate of average consumption or the balance sheet of the average market

participant that are usually used as pricing kernel proxies. The asset side of broker dealers’

balance sheets consists largely of risky assets, while a substantial portion of the liability

side consists of short-term, collateralized borrowing (net repos make up roughly 25-30%

of liabilities). Increases in broker-dealer leverage as captured by the Flow of Funds thus

correspond primarily to increases in risk-taking. Moreover, since the leverage of broker-

dealers computed from the Flow of Funds is a net number, we do not emphasize the level of

broker-dealer leverage but instead focus on innovations to broker-dealer leverage.

The total financial assets of $2075 billion in 2010 are divided in five main categories: (1)

cash, (2) credit market instruments, (3) equities, (4) security credit, and (5) miscellaneous

assets. The flow of funds further reports finer categories of credit market instruments (com-

mercial paper, Treasury securities, agencies, municipal securities and loans, corporate and

foreign bonds, syndicated loans). The category called “miscellaneous assets”arises as the

flow of funds statistics only keep track of a limited number of asset classes, while security

broker-dealers are involved in many financial transactions that are not captured by these

broad asset classes. Because the security broker dealer statistics are derived from the SEC’s

FOCUS reports, it is possible to reconstruct the missing items of the miscellaneous assets

from those reports. In particular, Table 2 shows the following asset categories that are the

miscellaneous assets: receivables;6 reverse repos; options and arbitrage; spot commodities;

investments not readily marketable; securities borrowed under subordination agreements; se-

6Receivables from broker-dealers and clearing organizations, and reverse repos from broker-dealers are
subtracted from the total assets in the FOCUS reports because the Flow of Funds reports the balance sheet
for the aggregate broker-dealer sector.
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cured demand notes; membership in exchanges; investment in and receivables from affi liates,

subsidiaries, and associated partnerships. A further category that appears in the FOCUS

reports, but not in the Flow of Funds, are non-financial assets (property, furniture, etc.). The

liabilities that the Flow of Fund reports are (1) net repo; (2) corporate and foreign bonds;

(3) trade payables; (4) security credit; (5) taxes payable, and (6) miscellaneous liabilities.

The miscellaneous liabilities can be extracted from the FOCUS reports: payables;7 securities

sold not yet purchased; liabilities subordinated to claims of general creditors. The repos that

appear on the liability side of the flow of funds are the difference between repos and reverse

repos from the FOCUS reports. The Flow of Funds thus only report the net repo funding

of the broker dealers, and not the total size of the repo market.8

3.2 Time-Series of Broker-Dealer Leverage

While the Flow of Funds data begins in the first quarter of 1952, the data from the broker-

dealer sector prior to 1968 raises suspicions: broker-dealer equity is negative over the period

Q1/1952-Q4/1960 and extremely low for most of the 1960s, resulting in unreasonably high

leverage ratios. As a result, we begin our sample in the first quarter of 1968. However, we

show that our results do not depend on this exact date and are robust to using a 5-year

window around this period.

We construct the leverage factor as seasonally adjusted log changes in the level of broker-

dealer leverage.

LevFact =
[
4 ln

(
LeverageBDt

)]SA
(4)

We seasonally adjust the log changes by using quarterly seasonal dummies. We do this

in real time, meaning that we compute an expanding window regression at each date using

7Payables to broker-dealers and clearing corporations are subtracted from the FOCUS report liabilities
before entering the Flow of Funds.

8One peculiarity of the Flow of Funds is that Foreign Direct Investment in US broker-dealers is subtracted
from the total liabilities.
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the data up to that date. This ensures we have real time leverage shocks.9 We note that the

results are robust to using alternate measures as well, such as more complicated seasonal

filtering techniques, but we prefer the current construction for its simplicity. There is strong

evidence of seasonal components in the data — in a regression using the full sample, all

seasonal dummies are highly statistically significant. Note that, due to the high persistence

of the leverage series, using log changes in leverage as shocks is virtually identical to using

log innovations from an AR(1) model. Therefore, we prefer to use log changes rather than

adding the complication of an AR(1) specification.

A plot of broker-dealer leverage and leverage shocks is displayed in Figure 2. The plot

demonstrates that large decreases in broker-dealer leverage are indeed associated with times

of macroeconomic and financial sector turmoil, supporting the idea that sharp decreases in

leverage represent “bad times”where funding is tight and the marginal value of intermediary

wealth is high. We see sharp drops in leverage during the 70’s oil crisis, the ’87 stock market

crash, the collapse of LTCM, and, most notably, in the recent financial crisis. We also

emphasize the pro-cyclical evolution of broker-dealer leverage, which is precisely opposite

to the mechanical effects one expects. To highlight this, we plot leverage growth vs asset

growth for broker-dealers and contrast it with that of households in Figure 3. If there is no

active balance sheet adjustment, we expect the two to be negatively correlated —as asset

values improve, leverage mechanically falls as equity grows, and vice versa. This is exactly

what we see for households. In contrast, broker-dealers display the exact opposite pattern.

Asset growth and leverage growth are positively correlated. Increases in asset values are thus

associated with increases in leverage. This supports our claim that broker-dealers manage

balance sheets aggressively and actively. Table 1 documents the correlation of our leverage

factor with other intermediary indicators. We confirm the strong correlation between the

9We initialize the series in 1968Q1 using data from the previous 10 quarters to compute our shocks.
However, this is robust to starting at later dates to allow for a longer initialization (e.g., starting in 1971Q1
and using 22 quarters to initialize the series).
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leverage factor and asset growth (0.73). Leverage shocks are negatively related to volatility

(-0.37) and the default spread (-0.16), and positively related to the value weighted return on

the financial sector (0.18). Therefore decreases in leverage are associated with a reduction in

broker-dealer assets, spikes in volatility and credit spreads, and decreases in financial sector

equity– all of which are consistent with a high marginal value of wealth for intermediaries.

These findings are also consistent with the “margin spiral”of Brunnermeier and Pedersen

(2009), where both increases in volatility and declines in asset values cause funding conditions

to deteriorate, forcing intermediaries to deleverage.

3.3 Empirical Strategy

We test our leverage factor model in the cross-section of asset returns via a linear factor

model. Equivalently, we propose a stochastic discount factor (SDF) for excess returns that

is affi ne in the financial intermediary leverage factor:

SDFt = 1− bLevFact.

The no-arbitrage condition for asset i’s return in excess of the risk-free rate states:

0 = E[Re
i,tSDFt]

= E[Re
i,t(1− bLevFact)].

Rearranging and using the definition of covariance, we obtain the factor model:

E[Re
i,t] = bCov

(
Re
i,t, LevFact

)
(5)

= λLevβi,Lev, (6)

where βi,Lev = Cov(Re
i,t, LevFact)/V ar(LevFact) denotes the exposure of asset i to broker-

dealer leverage shocks and λLev is the cross-sectional price of risk associated with leverage

shocks.
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For each asset i = 1, ..., N , we estimate the risk exposures from the time-series regression:

Re
i,t = ci + β′i,f ft + εi,t, i = 1, ..., N, t = 1, ..., T (7)

where f represents a vector of risk factors. In order to estimate the cross-sectional price of

risk associated with the factors f , we run a cross-sectional regression of time-series average

excess returns, E [Re
t ], on risk factor exposures:

E
[
Re
i,t

]
= µR,i = a+ β′i,fλf + ξi, i = 1, ..., N (8)

This approach yields estimates of the cross-sectional prices of risk λ and the average cross-

sectional pricing error or zero-beta rate, a. A good pricing model features an economically

small and statistically insignificant intercept (a), statistically significant and stable prices of

risk (λ) across different cross-sections of test assets, and individual pricing errors (ξi) that

are close to zero. We measure the size of the pricing errors in several ways: by the cross-

sectional adjusted R-square statistic which focuses on whether the sum of squared errors

is relatively small (1 − σ2
ξ/σ

2
µR
), by the mean absolute pricing error or MAPE ( 1

N

∑
|ξ|)

which focuses less on outliers than the R-square,10 and by a χ2 statistic that tests whether

the pricing errors are jointly zero —measured by a weighted sum of squared pricing errors

(ξ′cov(ξ)−1ξ ∼ χ2
N−K , where K is the number of factors and cov(ξ) includes the estimation

error in βs)11. The latter is the only formal statistical measure of whether the pricing errors

are “too big,” while the MAPE and R-square are easier diagnostics to interpret from an

economic standpoint. In order to correct the standard errors for the pre-estimation of betas,

we report t-statistics of Shanken (1992) in addition to the t-statistics of Fama and MacBeth

(1973). We also provide confidence intervals for the R-square statistic using bootstrap as the

10We also report the Total MAPE as (|a|+ 1
N

∑
|ξ|) which includes the cross-sectional intercept as a pricing

error.
11Specifically, cov(ξ) = 1

T

(
IN − β (β′β)

−1
β′
)

Σε

(
IN − β (β′β)

−1
β′
)(

1 + λ′Σ−1
f λ

)
, where Σf is the

variance-covariance matrix of the factors and Σε is the variance-covariance matrix of the time-series er-
rors, εi,t.
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sample R-square can be misleading or uninformative due to large sampling errors. We follow

Lewellen, Nagel and Shanken (2010) in computing confidence intervals and relegate the exact

details to their paper. The issue with the sample R-square is the following: even if the “true”

R-square is close to zero, the sample R-square can easily be fairly large. Similarly, even if the

true R-square is close to one, the sample R-square will likely be well below one. Therefore,

a particular sample R-square can in principle correspond to a large range of true R-square

values. We construct the sampling error for any true R-square by simulating a model with

the true value of the R-square. We then compute the sampling error via bootstrap to see

what range of sample R-square could in principle correspond to the given true value. We

step over all true values from zero to one. We are then able to determine, for any given

sample R-square, the range of true R-square statistics that is likely to produce the sample

value. This range forms our confidence interval.

Following the above evaluation criteria, and by applying our single-factor model to a

wide range of test assets, we address the criticisms of traditional asset pricing tests raised

by Lewellen, Nagel and Shanken (2010). First, since we use a one-factor model, we avoid

most of the statistical issues present in asset pricing tests that can mechanically produce

high explanatory power. Our simulations show the probability of a random “noise” factor

replicating our results is zero. Importantly, we also show that the model succeeds beyond the

highly correlated size and book-to-market portfolios: Since the three Fama-French factors

explain almost all time-series variation in these returns, the 25 portfolios essentially have

only 3 degrees of freedom. As Lewellen, Nagel and Shanken point out, pricing this cross-

section with multiple factors is a relatively low hurdle. We will see that our one factor model

prices the cross section of size and book to market sorted portfolios as well as the Fama

French three factor model. In addition, we avoid the pitfall of relying only on this cross

section by including the more challenging momentum portfolios as test assets. We also show

strong pricing performance across U.S. Treasury bond portfolios of various maturities. This
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further strengthens our results since the model should apply to all assets, yet most existing

tests only focus on stocks. Finally, the economic motivation of our factor provides further

support since it implies the price of risk should be significant and positive.

We test specifications of the linear factor model (8) in the cross-section of asset re-

turns. As test assets, we consider the size and book-to-market portfolios and the momen-

tum portfolios, each of which are well known to exhibit large cross-sectional dispersion in

average returns. We also consider the cross-section of bond returns, using returns on Trea-

sury portfolios sorted by maturity as test assets. We compare our single leverage factor

(f = LevFac) to standard benchmark factor models, such as the Fama-French (1993) model

(f = [Rmkt, RSMB, RHML]), where the comparison benchmark will depend on the cross-

section of test assets under consideration. We obtain factor and return data from Kenneth

French’s data library and the Federal Reserve Board’s Data Releases. The data on equity re-

turns and U.S. Treasury returns are obtained from Kenneth French’s data library and CRSP,

respectively. We express all returns and our leverage factor in percent per year (quarterly

percentages multiplied by 4). Our main sample period is Q1/1968-Q4/2009, though we also

display the results for the subsample that excludes the recent financial crisis. The results

over the pre-crisis subsample, Q1/1968-Q4/2005, are marginally weaker than the results for

the full sample, which suggests that the financial crisis was an important event in revealing

the inherent riskiness of some assets.

4 Main Empirical Results

4.1 Cross-Sectional Analysis

Table 3 presents our main results. We test the leverage factor model in the cross-section of

41 test assets simultaneously. The test assets are: 25 size and book-to-market portfolios, 10

momentum sorted portfolios, and 6 Treasury bond portfolios sorted by maturity. Panel A

presents the cross-sectional prices of risk, while Panel B presents several test diagnostics for
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each model. As comparisons, we consider the CAPM, Fama-French model, and multi-factor

models that include the momentum factor as well as the level factor (PC1) —defined as shocks

to the first principal component of the yield curve —which prices the cross-section of bond

returns (Cochrane and Piazzesi, 2009). These factors constitute the relevant benchmark

factors to price the cross-sections considered.

Starting in the first two columns, neither the CAPM nor the Fama-French model is able

to account for the spread in average returns across portfolios. Each has a cross-sectional

intercept that is economically large at over 3% per annum and statistically significant. The

factor prices of risk are not statistically significant, and the pricing errors are large — as

seen by both the low adjusted R-square (10% and 16%, respectively) and the χ2 test which

measures the sum of squared pricing errors. In Panel B, we also break up the mean absolute

pricing error (MAPE) by asset class. We see the Fama-French model does relatively well

on the size and book-to-market portfolios, with a MAPE of about 2% per annum out of a

total average return of about 8% per annum, but does poorly on the momentum and bond

portfolios. The results are substantially better when we add the momentum factor and the

level factor. The adjusted R-square increases to 81%, while the zero-beta rate falls to 66

basis points. The MAPE for each cross-section is fairly low, as is the total MAPE at 1.6%

when we include the intercept, which is also a pricing error.12

The final column shows the results for the leverage factor as a sole pricing factor. The

cross-sectional intercept is extremely low at 12 basis points and the price of risk is positive and

significant. The adjusted R-square is 77%, while the total MAPE is only 1.3%. In addition,

we see that the MAPE for each cross-section is fairly low: 1.2% for the size and book-to-

market portfolios, 1.8% for the momentum portfolios, and 0.4% for the bond portfolios. The

confidence interval for the R-square is [82%, 100%], well above the sample value. At first, it

seems surprising that the lower bound for the confidence interval is higher than the sample

12We define the total MAPE as the average absolute pricing error across all 41 portfolios, plus the cross
sectional intercept.
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adjusted R-square. However, recall that the confidence interval tells us what the most likely

values of the true R-square are, given the sample adjusted R-square we observe. Even if the

true R-square were 100%, we would never observe this due to sampling error. A similar logic

holds for very high values of the R-square, and especially with few factors and many test

assets where sampling error is larger (see Lewellen, Nagel, and Shanken, 2010; Figure 2).

Thus a sample adjusted R-square of 77% with many assets and a single-factor most likely

corresponds to a true R-square of between 82% and 100%, but that is biased downward due

to sampling error. Finally, the χ2 value, while rejected at the 1% level, is still substantially

lower (68) than any of the other models (110), despite the far fewer degrees of freedom

(the statistic associated with the leverage model is χ2
N−2 while that associated with the 5-

factor model is χ2
N−6). In summary, the leverage factor– on its own– does exceptionally well

across these portfolios; the performance relative to the 5-factor benchmark is quite significant

considering the far fewer degrees of freedom.

We plot the predicted vs realized average returns in Figure 1. Aside from the highest

momentum portfolio (Mom10), the test assets line up very close to the 45-degree line. We

contrast this with the Fama-French model and the 5-factor model in Figures 4 and 5. We

further examine which portfolios are mispriced in Table 4, which compares the individual

pricing errors of the leverage and 5-factor models. We notice two patterns: the leverage factor

is not able to price the highest momentum portfolio (pricing error of 7%) and neither model

does well in pricing the “small growth” portfolio (pricing errors of 5% and 3% for the 5-

factor and leverage factor models, respectively). Panel B confirms this result by re-running

the cross-sectional tests with each of these portfolios dropped in turn. We see that the

explanatory power of the 5-factor model increases from 81% to 88% when the small growth

portfolio is dropped; and the explanatory power of the leverage factor model increases from

77% to 87% when the highest momentum portfolio is dropped. Importantly, the leverage

factor model is no longer rejected if either of these portfolios is dropped (the 5-factor model
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remains rejected).

It is worth addressing the price of leverage risk, which we estimate to be 62% per annum.

While we do not pin down the exact magnitude by theory (only that it should be positive),

the number seems economically large. However, note that an inflated price of risk is typical

for most non-traded factors because they contain noise that is un-correlated with returns,

which in turn tends to deflate the beta estimates. To see this, let:

LevFact = LMPt + ωt

where Cov(ωt, Rt) = 0 for any return Rt and LMPt is a leverage mimicking portfolio —the

projection of leverage onto the return space. We will return to the LMP in great detail

in the next section. Since ωt is noise that is orthogonal to the return space, it will inflate

our point estimate of the price of risk. However, since ωt does not affect covariances, it will

not affect our cross-sectional results in terms of R-squares, etc. Specifically, the presence of

ωt will attenuate the time-series β of every asset by a factor of var(LevFac)/var(LMP ).

It is clear, then, that the cross-sectional price of risk will have to be higher by exactly

this amount to compensate. We find this ratio to be about 6, making the price of traded

leverage risk about 10% per annum —a number much more in line with standard traded

factors. Again, it is crucial to understand that the presence of noise like ωt will not impact

the cross-sectional results in any way since those rely solely on covariances, but will affect

the time-series regressions and cross-sectional price of risk estimates. Specifically, the time-

series β’s, t-stats, and R-squares will all be deflated (something we return to later) and the

cross-sectional price of risk will be inflated.

Having seen the cross-sectional results for all assets simultaneously, we now turn to

analyze the cross-sections individually to see more precisely how our leverage factor fares on

each set of test assets. Table 5 gives the results for the 25 size and book-to-market portfolios

as well as the 25 size and momentum portfolios. We use the 25 size and momentum portfolios

since the 10 momentum portfolios would leave too many degrees of freedom for multi-factor
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models; e.g., a 4-factor model with an intercept would have 5 degrees of freedom with 10

portfolios. The results echo and strengthen what we have already seen. For the 25 size and

book-to-market portfolios, the leverage factor outperforms the Fama-French factors in terms

of the cross-sectional intercept (1% vs 16% per annum), adjusted R-square (74% vs. 68%)

and p-value for the χ2 statistic (5.2% vs. 0%). The confidence interval for the R-square

is [70%, 100%] and the MAPE is only 2% per annum. The largest absolute pricing error

for both models is the well known “small growth”portfolio, at 3.7% for the leverage factor

and 4.3% for the Fama-French factors. While the model is still rejected at the 10% level,

it performs substantially better than the Fama-French factors which are tailored to explain

these portfolios. The price of risk is 56% for the leverage factor, which is close in magnitude

to the 62% we estimated in the larger cross-section.

Turning next to the 25 size and momentum portfolios, we compare the leverage factor

to the Fama-French and momentum factors. While the adjusted R-square for the 4 factor

benchmark is substantially higher (84% vs. 51%), the intercept for the 4 factor benchmark

is substantially higher as well (12% vs. 0.3%). The confidence intervals for the R-square are

[72%, 90%] and [40%, 100%], respectively, showing the wide dispersion in R-square values

for the leverage factor. Still, the lower bound of 40% is quite high when comparing to the

CAPM. The χ2 statistic is fairly low, and the p-value is 41%, meaning the model is not

rejected. Given the large challenge these portfolios have posed in the literature, we take our

results as a relative success in explaining a large amount of variation in the average returns

of these portfolios.

Finally, we look at the cross-section of Treasury bond portfolios, sorted by maturities in

Table 6. We take average maturities of 0-1, 1-2, 2-3, 3-4, 4-5, and 5-10 years, as reported in

the CRSP database. We compare the leverage factor with the level factor —or shocks to the

first principal component of the yield curve (PC1), as well as to the standard equity factors

discussed before. With fewer assets, we do not estimate an intercept for the non-traded
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factors, and for traded-factors we report the time-series alphas (equivalently, we impose

the prices of risk to be equal to the factor means). We report individual pricing errors for

each portfolio in Panel A. Panel C gives the MAPE for each model. The average absolute

portfolio return is 1.65%, yet the multi-factor equity models all have MAPEs greater than

0.9%–meaning they do not explain even half of the average returns. In constrast, the

level factor (PC1), has a MAPE of only 23 bps, with an adjusted R-square of 78%.13 The

leverage factor has a MAPE of merely 17 bps and an adjusted R-square of 85%. The p-value

of the χ2 statistic is 10.5%, meaning the leverage factor model is not rejected, whereas the

level factor model is. Moreover, the price of risk, at 53%, is broadly consistent with earlier

esimates. When we do not re-estimate the price of risk (that is we impose the price of risk

to equal 62% as in the full cross-section) the MAPE only increases to 32 bps per annum.14

Thus the leverage factor does an excellent job explaining the cross-section of bond portfolios,

out-performing the standard benchmarks.

4.2 Time-Series Analysis

Table 7 reports the results for the time-series regressions of returns on the leverage factor.

For each cross-section, we report the average returns, betas, t-stats, and R-squares for the

time-series regression of each portfolio. Starting with the size and book to market portfolios,

we see that the average returns increase from low to high book-to-market portfolios, and

generally decrease from small to large (a notable exception is the “small growth”portfolio,

which only offers 1% per annum). The leverage betas typically echo this pattern, increasing

from left to right as book-to-market increases, and decreasing from top to bottom as market

capitalization increases. The t-stats for the betas show the same patterns —for higher book-

13In this case, without an intercept, we define the R2 as 1− (Σξ2i )
(Σ(µR,i−µR,i)2)

, for the model µR,i = λfβi,f+ξi,

where µR,i is the average excess return return on asset i, and µR,i = 1
N

∑
µR,i is the average mean return

across assets.
14This is important to check since with few assets and a relatively small spread in average returns, it may

be possible to fit this cross-section with an “unreasonable”price of risk.
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to-market portfolios whose average returns are large, the leverage betas are significantly

different from zero, while for portfolios whose average returns are smaller, and closer in

magnitude to zero, the leverage betas are not statistically different from zero. There is

only one portfolio with an average return above 6% per annum whose leverage beta is not

significant at 10% levels, and there are no portfolios with an average return above 10% per

annum whose leverage beta is not significant at 1% levels. The next panel shows the time-

series R-squares which increase from left to right and from top to bottom. The values are

typically low, as is common for non-traded factors.

We see similar patterns for the momentum and bond portfolios. Betas and t-stats typ-

ically increase along with average returns. A notable exception is the highest momentum

decile (the “past winners”portfolio). The leverage factor beta is too small, and the t-stat

is only 1.08. This is consistent with Figure 1, which graphically shows this is the most

mis-priced portfolio for the leverage factor. The bond portfolios typically have larger t-stats

and R-squares.

The apparently low R-squares are again consistent with noise or other uncorrelated mea-

surement error in the leverage factor, as noted above. We do not propose to explain all the

movements in leverage over our sample period, which may occur for a number of other rea-

sons unrelated to the intermediary SDF. The presence of such noise will lower the t-stats and

the R-square in time-series regressions. However, it will not change our pricing results since

it does not affect return covariances.15 The literature often worries about the significance

of the time-series betas since one would like to see statistically significant exposures to the

portfolios in question. The argument is that if the betas are not well estimated they may

be spuriously explaining the cross-section of returns. Our results speak clearly against such

spurious relationships: First, we correct for the estimation in betas in our cross-sectional

15One can easily show this by adding noise to the market portfolio, and running repeated cross-sectional
pricing tests. While the time-series results can look as noisy as one wants, the cross-section results remain
unchanged on average as the noise has no covariance with returns.
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tests and still find statistically significant prices of risk. Second, and most importantly, if

one indeed believes that the betas are spuriously explaining the average returns, one needs

to evaluate its likelihood– that is, the probability of betas lining up in just the right way to

explain the large spread in average returns across 41 assets. The next subsection will provide

simulation evidence to show that the odds of this happening are essentially zero.

4.3 Additional Robustness Tests

To demonstrate the robustness of our results, and to highlight their strength, we show that

they are almost certainly not due to chance. Specifically, we simulate a noisy factor by

randomly drawing from the empirical distribution of the leverage factor with replacement.

We construct this noise factor to have the same length as our original leverage factor (168

quarters) and use it in our cross-sectional pricing tests. Clearly, since this factor is drawn at

random, it should not have any explanatory power in the cross-section of expected returns.

We repeat this exercise 100,000 times, and ask how likely it is that a “random”factor would

perform as well as our leverage factor in a cross-sectional test. The results in Table 8 show

that the probability of randomly achieving an R-square as high as we do, a MAPE as low as

we do, and an intercept as low as we do with the observed leverage factor, are 0.01%, 0.00%,

and 0.19%, respectively. Taking these together, there is essentially no chance that the low

pricing errors we see are due to chance.16

Table 8 also shows the robustness of the results to different starting dates. We show that

the results are essentially unchanged whether we start in the years 1966-1972.17 Similarly,

the results in the last column show that the leverage factor does well in the pre-crisis sample

(1968-2005). The R2 drops from 77% to 67% and the intercept stays low at 37 bps per

16We also construct the “noise” factor using random draws from a normal dstribution. The results are
very similar —with the p-values being essentially zero.
17In unreported results, we show this is also not affected by starting at different quarters within any of

these years. In other words, the results are essentially the same for a 20-quarter window around our start
date.
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annum. We argue that the better performance using the full sample is supportive of our

interpretation of the leverage factor– we would expect an intermediary-based factor to reveal

stronger risk exposures when we include the financial crisis.

5 The Leverage Factor Mimicking Portfolio

In order to conduct additional tests, we project the leverage factor onto the space of traded

returns to form a "leverage factor mimicking portfolio" (LMP)– a traded portfolio that

mimicks the leverage factor. This approach has several advantages and allows several new

insights. First, since the LMP is a traded return, we can run tests using higher frequency data

and a longer time series. This avoids the concerns that our results rely on the post-1968 time

period or that our results may not hold at a higher frequency. Indeed, we confirm that our

findings hold at a monthly frequency going back to the 1930s. Second, we can run individual

time-series alpha tests without having to estimate the cross-sectional price of risk, which is

not unambiguously pinned down by the intermediary asset pricing theories discussed earlier.

We confirm our strong pricing results using time-series alpha tests, including the ability of

our factor to help price the three Fama-French factors and momentum factor. Third, we can

take a mean-variance approach to our results (see, e.g. Hansen and Jagannathan, 1991). We

find that the LMP has the largest Sharpe ratio of any of the traded factors considered and

it is close to the maximum possible Sharpe ratio using any combination of the three Fama-

French factors and momentum factor. Finally, we use the entire cross-section of CRSP stock

returns to construct portfolios based on real time leverage factor betas and find substantial

dispersion in average returns that line up well with the post-formation leverage betas.
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5.1 Construction of the LMP

To construct the LMP, we project our non-traded broker-dealer leverage factor onto the

space of excess returns. Specifically, we run the following regression:

LevShockt = a+ b′[BL,BM,BH, SL, SM, SH,Mom]t + εt, (9)

where [BL,BM,BH, SL, SM, SH,Mom] are the excess return of the six Fama-French bench-

mark portfolios on size (Small and B ig) and book-to market (Low, M edium and H igh) in

excess of the risk-free rate and Mom is the momentum factor. We choose these returns for

their well-known ability to summarize a large amount of return space: Ideally, the error εt is

orthogonal to the space of returns so that the covariance of any asset with leverage shocks is

identical to its covariance with the LMP, defined as the fitted value of the regression.18 Most

of our results are strengthened if we also include a long maturity bond portfolio. However,

our bond data is only available starting in 1952 and one of our main goals is to use use a

longer history to provide out of sample evidence for our results. We thus do not include a

bond portfolio in the results. We normalize the weights, b′, to sum to one, which is without

loss of generality and is more convenient in terms of units. The factor mimicking portfolio

return is given by:

LMPt = b̃′[BL,BM,BH, SL, SM, SH,Mom]t,

where we estimate b̃ = b
Σb
= [−0.25,−0.11, 0.62,−0.64, 1.37,−0.48, 0.47] via ordinary least

squares over the sample 1968-2009. While the LMP loads positively on momentum, the

loadings on the other factors are less clear. On net, we do see a higher loading on value

as opposed to growth. However, there is no substantial difference between small and large

loadings. We find that the correlation between our original leverage factor and the LMP is

0.37.
18Note that, by construction Cov(LevShockt, R

e
t ) = Cov(LMPt, R

e
t ) +Cov(εt, R

e
t ) = Cov(LMPt, R

e
t ),for

all Ret ∈ span{[BV,BN,BG, SV, SN, SG,Mom]t}. Since the benchmark factors span a large amount of
return space, the covariance of a return with the LMP is expected to be close to its covariance with leverage.
However, we acknowledge that some information may be lost in this procedure.
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5.2 Pricing Results Using the LMP

We investigate the pricing performance of the LMP using the stock and bond portfolios

of the previous section as test assets. As before, we begin our tests using quarterly data

from 1968-2009, but instead of conducting cross-sectional regressions, we use the time-series

alphas for each portfolio. This avoids freely choosing the cross-sectional price of risk, since

it imposes that the factor risk premium must equal the sample mean of the factor return.

For brevity, we report the mean absolute pricing error (MAPE) by each asset class rather

than at the individual portfolio level. These results are given in Panel A of Table 9. For

comparison, we also report the annualized average absolute return to be explained in the

first column. Note that in this case the pricing error is simply the time-series alpha. We also

report the GRS F-statistic that tests whether the alphas are jointly zero. We find that the

LMP has an average annual alpha of 1.19%, compared with 2.24% and 1.13% using the Fama-

French and Fama-French plus momentum factors, respectively. The LMP MAPE is small

relative to the 6.33% return to be explained, and nearly as small as the 4-factor benchmark.

In terms of portfolios, we see the LMP does well on the size and book-to-market portfolios

and especially the bond portfolios (MAPE of 1.15% and 0.59% out of 7.68% and 3.04%,

respectively). On the momentum portfolios, the LMP MAPE of 1.66% is low relative to

the Fama-French MAPE of 4.36%, and is fairly close the the 4-factor MAPE of 1.46%. The

GRS statistic is 2.57 for the LMP, 2.28 for the 4-factor model, and 4.48 for the Fama-French

model, though each model is decisively rejected.

Panel B presents cross-sectional results using the LMP and gives important out of sample

evidence. Using the constant weights we estimate, we compute cross-sectional tests with the

LMP using monthly data going back to 1936.19 The cross-sectional R-square for the LMP

19While the underlying data are available starting in 1926, we find that none of the benchmark factor
models work well including this period. Since the LMP is projected onto these underlying benchmark
factors, it can not perform any better than the factors themselves. Therefore including the Great Depression
does not lend itself to a meaningful comparison, since all models do relatively poorly. Thus, we skip the first
10 years of data and start in 1936. The R-squared from the 4-factor benchmark model nearly doubles from
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is 63% vs. 81% for the 4-factor model and 53% for the Fama-French model. The cross-

sectional intercepts are 3%, 15%, and 28% per annum, respectively. Thus, the LMP performs

well in comparison to the benchmarks in terms of relatively a relatively high R-square and

much lower intercept. The performance is particularly impressive since the weights used

are constant and the LMP cannot by definition outperform the 4-factor benchmark on an

R-square basis. Our empirical results thus continue to hold over the longer time-span and at

the higher monthly frequency, providing out of sample robustness for our results. Overall,

the LMP alone performs comparably to the Fama-French and momentum factors.

Lastly, we compute time-series alphas on the Fama-French and momentum factors them-

selves, asking whether the LMP can price these portfolios. We use both the main sample

period (1968-2009) and the earlier sample (1936-2009) and report these results in Table 10.

In the main sample, the time-series alphas are all relatively low, with the exception of mo-

mentum, which has an alpha of 4% per annum (about half of the 8% average momentum

return), but which is not statistically significant. In the earlier sample, the momentum alpha

is larger at 5% per annum (out of a total momentum portfolio return of 8%) and is statis-

tically significant, while the alphas on the Fama-French portfolios are all under 1% and are

not statistically significant.

One may be concerned that, as the LMP is simply a linear combination of portfolio

returns with strong pricing abilities, the mimicking portfolio will also mechanically inherit

this ability. We show that this is not the case using two approaches. First, the LMP alone

does nearly as well in terms of pricing as the three Fama-French factors and the momentum

factor combined. Second, using the simulation technique discussed earlier, we generate a

“random” LMP by drawing from the empirical distribution of our leverage factor (with

replacement) and projecting the resulting random factor onto the benchmark portfolios.

We do this 100,000 times and report the probability that the resulting portfolio is able to

46% to 81% going from the 1926 to 1936 starting dates. We also do not use bonds as test assets since the
bond data is not available in this time period.
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replicate the LMP’s pricing ability (see Table 8). The likelihood of seeing an R-square as

high as we see is 0.2%, a MAPE as low as we see is 0%, and a Sharpe ratio as high as we

see is 1.6%. Thus, it is extremely unlikely that the LMP is spuriously picking up the pricing

information of the benchmarks.

5.3 Mean-Variance Properties of the LMP

We now turn to the mean-variance properties of our mimicking portfolio. Figure 6 plots

the effi cient frontier implied by the six Fama-French benchmark portfolios, the Fama-French

three factors, and the momentum factor. We display the location of each benchmark factor

in this space, as well as the line connecting each factor to the origin. Note that the slopes of

the lines give the Sharpe ratios of the factors. Recall that a traded return is on the effi cient

frontier if and only if it is the projection of the stochastic discount factor onto the return

space, which follows from the Hansen and Jagannathan (1991) bounds.

Figure 6 also plots the portfolio that gives the largest possible Sharpe ratio (0.35) of

any linear combination of the three Fama-French factors and momentum factor, labeled P .

Note that at 0.29, the Sharpe ratio of the leverage mimicking portfolio is much higher than

those of the market (0.13), SMB (0.05), HML (0.15), or even the momentum (0.20) factor

(see Table 11). In fact, the LMPs Sharpe ratio is comparable to the Sharpe ratio of P .

The annualized (monthly multiplied by
√
12) LMP Sharpe ratio is about 1, compared to the

maximum possible Sharpe ratio of 1.2. Since the true mean-standard deviation space will in

general be much tighter than its sample counterpart, the close proximity of the LMP to the

sample mean-standard deviation frontier is an impressive additional piece of evidence that

our leverage factor provides a good approximation to the stochastic discount factor.

5.4 Leverage Beta Sorting

Finally, we follow Fama and French (1993) and form portfolios based on pre-ranking betas,

where betas are computed using past 10-year rolling window regressions. We form portfolios
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based on ex-ante leverage betas and show the resulting portfolios have a large spread in

average returns. Specifically, at each quarter (the formation date), we sort the universe of

AMEX, NASDAQ, and NYSE stocks from CRSP based on their estimated leverage betas

over the past 10 years (40 quarters), which we call pre-ranking betas. We compute leverage

betas by regressing quarterly firm level excess returns (over the 3-month risk-free rate) on the

leverage factor. Since the leverage factor is constructed in real time, this procedure would

have been available to an investor in real time as well. We drop the smallest 10% of firms

at formation date to avoid having thinly traded, illiquid firms bias our results. Other filters,

such as dropping stocks with share price under $5, produce qualitatively similar results.

We require at least 5 years (20 quarters) of non-missing returns for each stock, making our

holding period 1973-2009. We group stocks based on pre-ranking betas and form value-

weighted portfolios, though our results are qualitatively unchanged using equal-weighted

portfolios. We do this each quarter and report the average returns and post formation

leverage betas of each group, as well as the average return and beta of a high-minus-low

portfolio spread.

Our results, presented in Table 12 Panel A, can most easily be seen by forming 3 portfo-

lios based on pre-ranking betas (using, e.g., 5 portfolios produces stronger, but qualitatively

similar results as shown in Panel B). Using 3 groups also makes the results directly com-

parable to the procedure used to construct the Fama-French factors. The leverage betas,

average returns, and Sharpe ratios increase mechanically over the low, medium, and high

pre-ranked leverage beta portfolios. The resulting high minus low portfolio has an annualized

spread of 2.8%, which is roughly comparable to that of the SMB and HML factors (3.6%

and 4.4% in this sample, respectively). Moreover, the leverage high minus low portfolio has

a positive and significant leverage beta, with a t-stat of 2.01. The CAPM alpha is 2.6% per

annum, which is nearly as large as the average return of 2.8%. However, the CAPM alpha

is not statistically significant, suggesting that while there is a spread in returns that is not
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explained by the CAPM, the portfolio construction is still fairly noisy.

The high minus low leverage portfolio does not, however, replace the leverage factor in

our empirical tests because sorting on non-traded, quarterly factor covariances is a noisy

procedure. It is well known that sorting on characteristics is less noisy than sorting on co-

variances, making factors formed on covariance sorts less equipped to capture the underlying

discount factor variation. In other words, even if past covariances are perfectly measured,

they may not measure future conditional covariances well, and in particular characteristics

often give a better proxy. This problem is, however, much worse in our case, since our factor

is non-traded and our data is only of quarterly frequency, meaning estimated covariances

with returns are even noisier. The evidence is consistent with such noise: While the cor-

relation between our non-traded leverage factor and the LMP formed earlier is 0.37, the

correlation with the high minus low leverage beta portfolio is only 0.18. We therefore take

the evidence that the high minus low leverage beta portfolio produces a positive average

return as additional supporting evidence for our model.20

In sum, the evidence from the cross-section of individual stock returns lends additional

support to our finding that a higher covariance with broker-dealer leverage is associated

with higher expected return. Using the entire universe of traded stocks avoids the criticism

that leverage betas only explain the average returns across the portfolios we have analyzed,

providing an important additional diagnostic despite the many challenges associated with

the procedure.

20In unreported results, we also find that sorting stocks based on LMP betas provides even more support.
Using the LMP allows us to use monthly data and a longer time-series (1936-2009) to compute more accurate
betas. The spread in returns in this case is economically larger. However, since the LMP is constructed using
the full sample, the strategy is not implementable in real time for an investor, in contrast to the strategy
employed above.

29



6 Discussion of Results

6.1 Challenges and Directions for Theory

While we have demonstrated that our leverage factor possesses strong pricing ability across

a wide variety of assets and asset classes, we have not provided a formal model that links

leverage risk exposure to expected asset returns. A number of theories reviewed in Section 2

are broadly consistent with our results– but our empirical findings pose challenges to each

of these theories. Of course, any theoretical model, when taken literally, cannot match every

aspect of the data. Yet, it may be helpful to see where the limitations of the existing theories

lie in light of our empirical findings. Thus, much like the theories guided our empirical tests

in linking financial intermediaries to asset prices, we now hope that our empirical results

will help guide future theoretical work in grappling with the facts. We analyze each theory

in turn and discuss the potential clashes.

We noted that broker-dealer leverage may measure the tightness of borrowing constraints

or funding liquidity (Brunnermeier and Pedersen, 2009). This interpretation gives rise to

pro-cyclical leverage (“the margin spiral”) and is potentially an important source of macro-

economic risk. However, our findings present two challenges to the mechanics of the margin

spiral. First, we find that leverage shocks are largely uncorrelated with the shocks to the

Pastor-Stambaugh (2003) liquidity factor– a measure of innovations to market liquidity–

challenging the theoretical predictions that funding liquidity and market liquidity are inter-

twined.21 Second, our results hold well across different time periods, including both good

times and crises. It seems less likely that broker-dealers are borrowing constrained when

times are good; yet we pick up important risk exposures over these periods also.

Broker-dealer leverage may also be a signal for the wealth of the financial system, con-

sistent with models where the return on financial sector wealth determines expected returns

(He and Krishnamurthy, 2009). As the wealth of the financial sector increases, demand for

21Results available upon request.
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services from broker-dealers increases leading them to leverage up capital. However, this in-

tuition assumes that broker-dealer leverage is never constrained, which is inconsistent with

our understanding of the events during the financial crisis. Moreover, direct measures for

financial sector wealth, such as the value-weighted equity return of financial institutions, do

not seem to perform as well as leverage in explaining the cross-section of average returns.

6.2 Further Economic Interpretation of Funding Constraints

We have argued based on theory that leverage may measure funding constraints faced by

the financial sector. Here we provide additional supporting evidence that our leverage factor

measures funding constraints. As Frazzini and Pedersen (2011) show, investors who face

funding constraints will tend to prefer high-beta assets that do not require leverage, thus

bidding up their price and creating a spread between high- and low-beta assets. To see

this, consider the portfolio choice of an investor who can hold either a high-beta stock or

a low-beta bond combined with an instantaneous risk-free asset– for simplicity, assume the

investor can hold only one of the risky assets and has no other wealth. Modern portfolio

theory guides the investor to hold the asset with the highest Sharpe ratio, combining it

with risk-free borrowing or lending, depending on risk aversion. However, if the investor is

suffi ciently risk tolerant and cannot take leverage or is funding constrained, she will prefer

to hold the stock because it provides a higher expected return without the use of leverage.

Therefore, a spread arises between the leveraged bond and the stock, which co-moves with

the tightness of funding conditions– as funding constraints tighten investors bid up the prices

of riskier assets relative to safer assets. Using this logic, Frazzini and Pedersen argue that

stocks sorted on market betas should display a spread in returns that co-moves with funding

conditions. If our leverage factor measures funding constraints, this spread should also be

related to our leverage factor.

To construct beta sorted portfolios, we follow the procedure in Fama and French (1992).
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Specifically, in June of each year, we sort the universe of AMEX, NASDAQ, and NYSE

stocks from CRSP based on past market betas and form 10 portfolios. We use 10-year betas

(120 months) and require 60 months of observations for a firm to be included. This is in

contrast to Fama and French (1992) who use 5-year betas (60 months) and require 24 months

of data. We find that using the longer history for the estimation of betas produces a wider

spread in returns and a substantially greater Sharpe ratio for the low minus high portfolio.22

As before, we drop the lowest decile of firms based on market capitalization on formation

date to avoid illiquid, thinly traded firms whose returns may be unreliable, although this is

not crucial for our results. We then compute excess returns on the sorted portfolios over the

following year. We rescale each of these portfolios to have a market beta of 1. That is, we

leverage up the low-beta securities and combine the high-beta securities with the risk-free

asset in such a way that the ex-post market betas of all 10 portfolios are 1. Note that

since these are excess returns, multiplying each portfolio by a constant still gives us excess

returns and hence these are valid test assets. We find results consistent with the previous

literature: the annual spread between a leveraged low-beta security and a high-beta security

(low-minus-high) is about 7% per annum (see Table 13, Panel A). We also see average returns

and Sharpe ratios that are decreasing from low to high.

Consistent with our interpretation of the leverage factor, the correlation between the

leverage factor and the low-minus-high beta portfolio is positive, 0.22. That is, as funding

tightens and leverage decreases, low-beta stocks that require high leverage underperform

high-beta stocks. The correlation is sizable given that the correlation between the leverage

factor and the leverage mimicking portfolio is 0.37. This finding complements the results

in Table 1 where we show that the leverage factor is correlated with variables commonly

associated with funding constraints (volatility, Baa-Aaa spread, and asset growth). Note

that the leveraged, low-beta portfolios all have large and statistically significant betas and

22Our results are weaker but qualitatively similar when we use sorts based on 5-year betas.
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relatively high time-series R-square values, all of which decrease as we move toward the high

beta portfolios.

We next test our leverage factor in the cross-section of the beta sorted portfolios. The

results are presented in Panels B and C of Table 13. Consistent with our previous results,

the leverage model produces a high cross-sectional R-square of 73% and the cross-sectional

price of risk associated with the leverage factor is positive and significant. However, at 33%

the price of risk is relatively low compared to our earlier estimates. When we estimate the

model without an intercept, the price of risk increases to 50%, more in line with our earlier

estimates, but the R-square falls to 51%. In either case, the model is not rejected. We also

compare the pricing error of the leverage model with that of the Fama-French three-factor

model and Fama-French-Carhart four-factor model. The one-factor leverage model with no

intercept has an average absolute pricing error of 1.33% (out of 6.41% to be explained),

which compares with 1.36% and 0.61% for the three and four-factor models, respectively.

Note that we chose to exclude the beta sorted portfolios from our main test portfolios be-

cause they are largely subsumed by standard risk factors for US equities (the 4-factor alphas

are essentially zero and the 4-factor time-series R-squares are high). In other words, they

add no additional degrees of freedom to our main test assets. This is in line with Kogan and

Papanikolaou (2012) who show that the variation in beta sorted portfolios is related to the

variation in book-to-market sorted portfolios and a common principal component explains

both. However, the beta sorted portfolios do serve to enhance the economic interpretation

of our leverage factor as one related to funding constraints.

7 Conclusion

In this paper, we focus on measuring the SDF of a representative financial intermediary using

the aggregate leverage of security broker-dealers. Our approach is motivated by a growing

theoretical literature that has proposed a number of linkages between financial intermedi-
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aries and aggregate asset prices. Specifically, the leverage of broker-dealers can be expected

to reflect the marginal value of wealth of intermediaries because it may proxy for funding

constraints or intermediary wealth. Since financial intermediaries trade in many markets,

have low transactions costs, optimize frequently, and use extensive models to make invest-

ment decisions, these theories predict that the SDF based on a representative intermediary

should have greater empirical success than its conventional counterparts.

Our empirical results are remarkably strong. We show that broker-dealer leverage as

the single risk factor outperforms the Fama-French model in the cross-section of size and

book-to-market sorted portfolios, outperforms the level factor in the cross-section of bond

portfolios, and compares well to the benchmark tailored to explain the cross-section of size

and momentum sorted portfolios. Furthermore, the leverage factor prices the combined cross-

section of all the above portfolios remarkably well. The success of the leverage factor across all

these cross-sections is measured in terms of high adjusted R-square statistics, low values for

the χ2 statistic based on the sum of squared pricing errors, small and statistically insignificant

cross-sectional pricing errors, and cross-sectional prices of risk that are statistically significant

and consistent across portfolios. When taking all these criteria into account, our single

factor performs as well as standard 4 and 5-factor models tailored to price the cross-sections

considered, and provides an economic explanation for their average returns. We also provide

a battery of additional tests that confirm the robustness of our results.

Our study is a first step in exploring how the marginal value of wealth of intermediaries

can be used as a pricing kernel. We see the search for additional measures of the intermediary

SDF as a fruitful area for further reasearch. We also regard empirical tests that distinguish

between competing theories, and, ultimately, a cohesive theory that can quantitatively match

the empirical facts as particularly promising areas for future work.
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Figure 1: Realized vs. Predicted Mean Returns: Leverage Factor. We plot the realized mean
excess returns of 35 equity portfolios (25 Size and Book-to-Market Sorted Portfolios and 10
Momentum Sorted Portfolios) and 6 Treasury bond portfolios (sorted by maturity) against
the mean excess returns predicted by our single-factor financial intermediary leverage model,
estimated without an intercept (E[Re] = βlevλlev). The sample period is Q1/1968-Q4/2009.
Data are quarterly, but returns are expressed in percent per year.
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Figure 2: We plot the log leverage and the leverage factor (changes in log leverage) of
security broker-dealers, Q1/1968-Q4/2009. We normalize each series to have zero mean and
unit variance for convenience. The labels indicate macro / financial sector events associated
with large changes in leverage and financial sector turmoil. “Oil” is the oil crisis of March
1973, “’87 Crash” is the stock market crash of 1987, “Peso” is the Peso currency crisis of
December 1994, “LTCM” is the collapse of Long Term Capital Management in fall 1998,
“Sep 11” represents the attacks on the world trade center in September 2001, “Enron” is
the Enron scandal and subsequent SEC regulation, “Iraq War”is the decision by congress
to invade Iraq, and “Lehman”is the collapse of Lehman Brothers and the ensuing market
turmoil in fall 2008. Non-labeled gray areas indicate recessions, based on NBER dates.
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Figure 3: We plot leverage growth vs asset growth for households and broker-dealers. In both
cases, leverage is defined as (Total Assets)/(Total Assets - Total Liabilities). A downward
sloping line (households) indicates passive balance sheet management, as increasing asset
values mechanically decreases leverage and vice versa. An upward sloping line (broker-
dealers) indicates active balance sheet management, whereby increases in asset values are
associated with increases in leverage. Data are quarterly, 1968-2009 from the Flow of Funds.

39



4 2 0 2 4 6 8 10 12 14
4

2

0

2

4

6

8

10

12

14

S1B1

S1B2
S1B3

S1B4

S1B5

S2B1

S2B2

S2B3
S2B4

S2B5

S3B1

S3B2S3B3
S3B4

S3B5

S4B1 S4B2

S4B3

S4B4
S4B5

S5B1

S5B2
S5B3

S5B4

S5B5

Mom 1

Mom 2

Mom 3Mom 4
Mom 5

Mom 6Mom 7

Mom 8Mom 9

Mom10

01yr

510y
12yr23yr34yr45yr

Predicted Expected Return

R
ea

liz
ed

 M
ea

n 
R

et
ur

n

Figure 4: Realized vs. Predicted Mean Returns: Fama-French Factors. We plot the realized
mean excess returns of 35 equity portfolios (25 Size and Book-to-Market Sorted Portfolios
and 10 Momentum Sorted Portfolios) and 6 Treasury bond portfolios (sorted by maturity)
against the mean excess returns predicted by the Fama-French 3-factor benchmark (Mkt,
SMB, HML). The sample period is Q1/1968-Q4/2009. Data are quarterly, but returns are
expressed in percent per year.
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Figure 5: Realized vs. Predicted Mean Returns: 5-Factor Benchmark. We plot the realized
mean excess returns of 35 equity portfolios (25 Size and Book-to-Market Sorted Portfolios
and 10 Momentum Sorted Portfolios) and 6 Treasury bond portfolios (sorted by maturity)
against the mean excess returns predicted by a 5-factor benchmark model (Mkt, SMB, HML,
MOM, PC1). PC1 represents shocks to the first principal component of the yield curve, which
prices the cross-section of bond portfolios. The sample period is Q1/1968-Q4/2009. Data
are quarterly, but returns are expressed in percent per year.
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Figure 6: The hyperbola plots the sample mean-standard deviation frontier (“the effi cient
frontier”) for the six Fama-French benchmark portfolios, the Fama-French factors (Mkt,
SMB, HML), and the momentum factor. LMP is the leverage mimicking portfolio (see text
for description), Mkt, SMB, HML are the Fama-French factors, Mom is the momentum
factor, and P is the linear combination of Mkt, SMB, HML, and Mom that produces the
highest possible Sharpe ratio in sample, P = max

a,b,c,d
{Sharpe[aMkt+bSMB+cHML+dMom]}.

Data are monthly from 1936-2009.
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Table 1: Broker-dealer leverage is pro-cyclical. We display the correlation of U.S. broker-
dealer leverage growth with a selection of variables, including the log asset growth of U.S.
broker-dealers, market volatility (constructed quarterly using weekly data of the value-
weighted market return), the Baa-Aaa spread, and the value-weighted stock return of the
U.S. financial sector. The sample is Q1/1968-Q4/2009.

Correlation of Broker-Dealer Leverage Factor with:
Log Broker-Dealer Market Baa-Aaa Financials
Asset Growth Volatility Spread Stock Return

ρ 0.73 -0.37 -0.16 0.18
p-value 0.00 0.00 0.03 0.02
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Table 2: Assets and Liabilities of Security Brokers and Dealers as of the end of Q4/2010. The
remaining assets and liabilities from the FOCUS reports implicitly appear as miscellanuous
assets and liabilities in the Flow of Funds. The amounts are in billions of dollars, not
seasonally adjusted. (Source: U.S. Flow of Funds Table L.129., released March 10, 2011)
Assets from Flow of Funds (billions) Liabilities from Flow of Funds (billions)
Cash (including seggregated cash) $96.9 Net repo $404.7
Credit market instruments $557.6 Corporate and foreign bonds $129.7
Commercial paper $36.2 Trade payables $18.1
Treasury securities (net of shorts) $94.5 Security credit $936.6
Agencies $149.8 Taxes payable $3.6
Municipal securities $40.0 Miscellaneous liabilities* $480.7
Corporate and foreign bonds $185.6 Payables to brokers and dealers
Other (syndicated loans etc) $51.4 Securities sold not yet purchased

Corporate Equities $117.2 Payables
Security credit $278.2 Subordinated liabilities
Miscellaneuous assets* $1,025.3
Receivables
Reverse repos
Options and Arbitrage
Commodities
Investments not readily marketable
Securities borrowed
Secured demand notes
Membership in exchanges
Affi liates, subsidiaries,
and associated partnerships

Property, furniture, equipment, etc.
TOTAL $2,075.1 TOTAL $1,973.4
*Sub-categories implicit in FOCUS Reports

44



Table 3: Main Table: Pricing the Size, Book to Market, Momentum, and Bond Portfolios
Pricing results for the 25 size and book-to-market and 10 momentum portfolios, and 6 Treasury bond portfolios sorted by

maturity. Each model is estimated as E[Re] = λ0 + βfacλfac. FF denotes the Fama-French 3 factors, Mom the momentum

factor, PC1 the first principal component of the yield curve, LevFac our leverage factor. Panel A reports the prices of risk

with Fama-MacBeth and Shanken t-statistics, respectively. Panel B reports test diagnostics, including mean absolute pricing

errors (MAPE) by portfolio group, adjusted R-Squares with corresponding confidence intervals (C.I.), and a χ2 statistic that

tests whether the pricing errors are jointly zero. E[Re] gives the average excess return to be explained. Data are quarterly,

1968Q1-2009Q4. Returns and risk premia are reported in percent per year (quarterly percentages multiplied by 4).

Panel A: Prices of Risk
CAPM FF FF,Mom FF,Mom,PC1 LevFac

Intercept 3.39 3.16 1.06 0.66 0.12
t-FM 3.55 4.09 1.51 1.14 0.06

t-Shanken 3.54 4.03 1.34 1.01 0.04
LevFac 62.21
t-FM 4.62

t-Shanken 3.12
Mkt 3.06 2.30 4.54 4.89
t-FM 0.99 0.80 1.59 1.71

t-Shanken 0.99 0.80 1.58 1.70
SMB 1.76 1.57 1.63
t-FM 0.93 0.83 0.87

t-Shanken 0.93 0.82 0.86
HML 3.33 4.37 4.34
t-FM 1.45 1.90 1.89

t-Shanken 1.45 1.86 1.85
MOM 7.82 7.75
t-FM 2.94 2.91

t-Shanken 2.92 2.89
PC1 14.99
t-FM 1.03

t-Shanken 0.93
Panel B: Test Diagnostics

MAPE E[Re] CAPM FF FF,Mom FF,Mom,PC1 LevFac
Size B/M 7.86 2.62 1.81 1.05 1.01 1.16

MOM 5.80 3.05 3.75 1.47 1.48 1.79
Bond 1.65 1.83 1.59 0.17 0.17 0.37

Intercept 3.39 3.16 1.06 0.66 0.12
Total 6.45 6.00 5.41 2.08 1.66 1.31

AdjR2 0.10 0.16 0.81 0.81 0.77
C.I.AdjR2 [0.02, 0.30] [0.02, 0.36] [0.74, 0.88] [0.72, 0.88] [0.82, 1]

T 2(χ2
N−K) 174.48 167.46 111.45 110.19 67.87

P-Value 0.0% 0.0% 0.0% 0.0% 0.3%
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Table 4: Pricing Errors: Pricing the Size, Book to Market, Momentum, and Bond Portfolios
We report pricing errors (E[Re] − λ0 − βfacλfac) in percent per year for our leverage factor model and 5-factor benchmark

(Mkt, SMB, HML, Mom, PC1) corresponding directly to the previous table. Panel B reports our cross-sectional results when

we drop the two most mispriced portfolios: the small-growth (S1B1), and the past winners portfolio (Mom10).

Panel A: Individual Pricing Errors
Size and Book-to-Market Portfolios

Low Book-to-Market High
E[Re]: Average Returns

Small 1.15 8.52 9.17 11.38 13.16
4.14 7.67 9.91 10.55 11.54

Size 4.56 8.00 8.43 9.54 12.46
6.09 6.07 7.72 9.01 9.57

Big 4.47 5.93 4.93 5.72 6.83
Leverage Pricing Errors

Small -3.27 2.31 0.43 1.40 1.39
0.73 -0.42 0.46 -0.10 -2.10

Size 0.76 0.79 0.09 0.49 1.88
2.57 -1.24 -0.11 -0.27 -0.53

Big 1.20 1.18 -0.59 -2.51 -2.11
5-Factor Pricing Errors

Small -5.26 0.47 -0.05 0.89 0.78
-0.64 0.97 1.46 0.50 0.00

Size 0.52 0.48 0.43 0.02 1.88
2.76 -0.43 -0.28 0.03 -0.45

Big 1.30 -0.18 -2.32 -2.14 -1.06
Momentum Portfolios Bond Portfolios

E[Re] LevFac 5-Fac E[Re] LevFac 5-Fac
Mom 1 -3.75 -2.46 -2.96 0-1yr 0.70 0.15 -0.17
Mom 2 3.06 -1.00 1.71 1-2yr 1.28 -0.56 -0.43
Mom 3 4.80 -0.03 3.52 2-3yr 1.70 -0.02 -0.08
Mom 4 5.10 -0.63 1.02 3-4yr 1.95 -0.27 -0.03
Mom 5 4.15 -2.15 -0.27 4-5yr 2.00 -0.52 -0.05
Mom 6 5.11 -1.67 -0.10 5-10y 2.29 -0.70 -0.24
Mom 7 5.29 -1.23 -1.23
Mom 8 7.19 0.63 -0.57
Mom 9 7.61 0.81 -1.61
Mom 10 11.93 7.25 1.81

Panel B: Pricing Resuts Dropping Largest Pricing Error Portfolios
All Portfolios Drop Small Growth Drop Mom 10 Drop Both
5-Fac LevFac 5-Fac LevFac 5-Fac LevFac 5-Fac LevFac

MAPE 1.00 1.20 0.78 1.13 0.94 1.01 0.74 0.93
AdjR2 0.81 0.77 0.88 0.79 0.82 0.87 0.89 0.87
T 2(χ2) 110.19 67.87 72.42 42.95 85.15 45.78 55.27 27.40
P-Value 0.0% 0.0% 0.0% 26.8% 0.0% 18.1% 0.9% 87.5%
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Table 5: Equity Portfolios
Pricing results for the 25 size and book-to-market (left panel) and 25 size and momentum portfolios (right panel). Each model

is estimated as E[Re] = λ0+βfacλfac. FF denotes the 3 Fama-French factors, Mom the momentum factor, LevFac our leverage

factor. Panel A reports the estimated risk premia, along with Fama-MacBeth and Shanken t-statistics, respectively. Panel B

reports test diagnostics, including mean absolute pricing errors (MAPE), the largest absolute pricing error (MAX), adjusted

R-Squares with corresponding confidence intervals (C.I.), and a χ2 statistic testing whether the pricing errors are jointly zero.

E[Re] gives the average excess return to be explained. Data are quarterly, 1968Q1-2009Q4. Returns and risk premia are

reported in percent per year (quarterly percentages multiplied by 4).

Panel A: Prices of Risk
25 Size and Book-to-Market Portfolios 25 Size and Momentum Portfolios

CAPM FF LevFac CAPM FF,Mom LevFac
Intercept 12.11 15.58 1.00 3.51 11.72 0.31

t-FM 2.99 3.84 0.25 3.41 1.72 0.07
t-Shanken 2.97 3.57 0.18 3.37 1.60 0.04
LevFac 55.78 69.66
t-FM 3.30 3.66

t-Shanken 2.34 2.28
Mkt -3.81 -10.19 -5.88 -4.76
t-FM -0.80 -2.09 -1.17 -0.64

t-Shanken -0.79 -1.98 -1.16 -0.60
SMB 1.85 2.39
t-FM 0.98 1.12

t-Shanken 0.97 1.10
HML 5.76 -4.01
t-FM 2.42 -1.00

t-Shanken 2.38 -0.95
MOM 8.40
t-FM 3.19

t-Shanken 3.18
Panel B: Test Diagnostics

25 Size and Book-to-Market Portfolios 25 Size and Momentum Portfolios
MAPE: E[Re] CAPM FF LevFac E[Re] CAPM FF,Mom LevFac
Intercept 12.11 15.58 1.00 3.51 11.72 0.31

Total 7.86 14.41 16.69 2.09 7.17 6.48 12.83 2.47
MAX 13.16 5.71 4.33 3.72 16.15 9.99 4.54 7.01

AdjR2 0.03 0.68 0.74 0.05 0.84 0.51
C.I.AdjR2 [0, 0.28] [0.48, 0.82] [0.70, 1] [0, 0.30] [0.72, 0.90] [0.40, 1]

T 2(χ2
N−K) 71.99 55.38 34.98 75.83 50.70 23.88

P-Value 0.0% 0.0% 5.2% 0.0% 0.0% 41.1%
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Table 6: Treasury Bonds
Pricing results for the 6 Treasury Bond portfolios sorted by maturity. Each model is estimated as E[Re] = βfacλfac, without

an intercept. FF denotes the Fama-French 3 factors, Mom the momentum factor, PC1 the first principal component of the

yield curve, LevFac our leverage factor. For the traded factors, we report time-series α’s as pricing errors, since there are only 6

test assets. The last column, LevFac NRE (not re-estimated), gives pricing errors for the leverage factor using the price of risk

from the larger cross section of stocks and bonds. Panel B reports the estimated risk premia, along with Fama-MacBeth and

Shanken t-statistics, respectively. Panel C reports test diagnostics, including mean absolute pricing errors (MAPE), the largest

pricing error (MAX), adjusted R-Squares with corresponding confidence intervals (C.I.), and a χ2 statistic testing whether the

pricing errors are jointly zero. E[Re] gives the average excess return to be explained. Data are quarterly, 1968Q1-2009Q4.

Returns and prices of risk are reported in percent per year (quarterly percentages multiplied by 4).

Panel A: Pricing Errors
E[Re] CAPM FF FF,Mom PC1 LevFac Lev NRE

0-1yr 0.70 0.65 0.61 0.58 0.36 0.33 0.27
1-2yr 1.28 1.16 1.08 0.84 0.31 0.28 0.10
2-3yr 1.70 1.54 1.47 1.04 0.22 0.12 -0.15
3-4yr 1.95 1.77 1.73 1.13 0.11 -0.05 -0.40
4-5yr 2.00 1.84 1.85 1.03 -0.13 -0.19 -0.58
5-10y 2.29 2.01 2.11 0.96 -0.27 -0.03 -0.44

Panel B: Prices of Risk
PC1 LevFac Lev NRE

LevFac 52.90 62.21
t-FM 2.28 NA

t-Shanken 1.65 NA
PC1 31.52
t-FM 2.27

t-Shanken 2.14
Panel C: Test Diagnostics

MAPE: E[Re] CAPM FF FF,Mom PC1 LevFac Lev NRE
Total 1.65 1.50 1.47 0.93 0.23 0.17 0.32
MAX 2.29 2.01 2.11 1.13 0.36 0.33 0.58

AdjR2 0.78 0.85
C.I.AdjR2 [0.28, 0.90] [0.48, 1]

T 2(χ2
N−K) 17.96 9.10

P-Value 0.3% 10.5%
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Table 7: Time Series Regressions
Time series regressions of excess returns on the leverage factor Rei,t = ci + βi,LevLevFact + εi,t. Data are quarterly, 1968Q1-

2009Q4. Returns are reported in percent per year (quarterly percentages multiplied by 4). Leverage betas are multiplied by

100 for convenience.

Size and Book-to-Market Portfolios
Low Book-to-Market High
E[Re]: Average (Annualized) Returns

Small 1.15 8.52 9.17 11.38 13.16
4.14 7.67 9.91 10.55 11.54

Size 4.56 8.00 8.43 9.54 12.46
6.09 6.07 7.72 9.01 9.57

Big 4.47 5.93 4.93 5.72 6.83
βLev: Leverage Betas (x 10−2)

Small 6.92 9.79 13.86 15.85 18.72
5.29 12.82 15.01 16.93 21.73

Size 5.92 11.41 13.22 14.35 16.81
5.48 11.55 12.41 14.72 16.04

Big 5.06 7.45 8.68 13.03 14.19
T-Stats

Small 0.72 1.21 1.93 2.33 2.44
0.62 1.79 2.40 2.78 3.18

Size 0.76 1.81 2.32 2.53 2.67
0.78 1.93 2.23 2.70 2.55

Big 0.93 1.51 1.90 2.81 2.79
R2: R-Square

Small 0.31% 0.87% 2.18% 3.14% 3.43%
0.23% 1.89% 3.32% 4.43% 5.73%

Size 0.34% 1.91% 3.12% 3.70% 4.10%
0.36% 2.17% 2.89% 4.17% 3.74%

Big 0.52% 1.34% 2.12% 4.52% 4.46%

Momentum Portfolios Bond Portfolios
E[Re] βLev T-Stat R2 E[Re] βLev T-Stat R2

Mom 1 -3.75 -2.26 -0.24 0.03% 0-1yr 0.70 0.69 1.89 2.63%
Mom 2 3.06 6.32 0.85 0.43% 1-2yr 1.28 1.89 1.46 2.56%
Mom 3 4.80 7.56 1.23 0.89% 2-3yr 1.70 2.98 2.04 3.30%
Mom 4 5.10 9.01 1.64 1.58% 3-4yr 1.95 3.79 2.06 3.58%
Mom 5 4.15 9.94 1.98 2.30% 4-5yr 2.00 4.14 2.00 3.82%
Mom 6 5.11 10.71 2.07 2.49% 5-10y 2.29 4.39 1.68 3.36%
Mom 7 5.29 10.30 2.26 2.98%
Mom 8 7.19 10.37 2.23 2.89%
Mom 9 7.61 10.73 2.09 2.55%
Mom10 11.93 7.33 1.08 0.69%
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Table 8: Robustness
Panel A shows robustness of our main measure to several starting dates. End dates are 2009Q4 except the last column which

excludes the financial crisis, ending in 2005Q4. Panel B asks how likely a “noise” factor could produce our results. We run

100,000 simulations where we draw randomly from the empirical distribution of our leverage factor. We re-do all our tests,

including constructing the LMP (Leverage Mimicking Portfolio). For each statistic, we report the probability that the random

factor does as well as our leverage factor (i.e., the probability the random factor has an R2 as large as our leverage factor or an

intercept as small as our leverage factor, or both jointly in “Joint” column).

Panel A: Robustness to Various Start Dates
Years 1966- 1967- 1968- 1969- 1970- 1971- 1972- 1968-2005

Intercept 0.46 0.37 0.12 0.19 0.67 1.53 1.29 -0.37
Adj R2 0.72 0.74 0.77 0.77 0.79 0.76 0.79 0.67
T 2(χ2) 60.49 64.20 67.87 72.00 74.72 69.07 61.83 67.61
P-Value 2% 1% 0% 0% 0% 0% 1% 0%
Panel B: Robustness —What are the odds a random factor could produce our results?

R2 MAPE Intercept Joint R2-Int
Noise Factor P-value 0.01% 0.00% 0.19% 0.00%

R2 MAPE Sharpe Joint R2-Sharpe
Noise LMP P-value 0.18% 0.00% 1.63% 0.05%
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Table 9: The Leverage Mimicking Portfolio (LMP): Comparing Models
We give the time-series alphas generated by each model (LMP, Fama-French, and Fama-French plus momentum), MAPE

represents the mean absolute pricing error given in percent per annum (ie, MAPE= 1
N

∑N
i=1 |αi|). SBM represents the 25 size

and book-to-market portfolios, MOM the 10 momentum, and Bond the 6 bond portfolios. The first column (MEAN) gives the

absolute average return to be explained. We also report the GRS F-statistic that the alphas are jointly zero and its associated

p-value. The sample period is Jan. 1968 - Dec. 2009. The last panel compares cross-sectional results using each of the factor

models. We confirm our pricing results using monthly data going back to 1936. For the 1936-2009 sample, we only use the size

and book-to-market and momentum portfolios, since the bond data are not available.

Panel A: Time-Series Alphas
MAPE Mean LMP FF,MOM FF
SBM 7.86 1.15 1.04 1.57
MOM 5.80 1.66 1.46 4.36
Bond 3.04 0.59 0.93 1.47

Total 6.33 1.19 1.13 2.24

Model Fit LMP FF,MOM FF
GRS 2.57 2.28 4.48

P-value 0 0 0

Panel B: Cross-Sectional Results
Across Time-Periods

Time-Period LMP FF,MOM FF
1968-2009, Intercept -0.32 1.06 3.12
Quarterly AdjR2 0.78 0.81 0.16

1936-2009, Intercept -3.00 14.74 27.97
Monthly AdjR2 0.63 0.81 0.52
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Table 10: Pricing the benchmark factors with the Leverage Mimicking Portfolio (LMP)
We run time-series regressions of the four benchmark factors, Market, SMB, HML, and Momentum, on the LMP. We report

the quarterly results for our main sample 1968-2009, as well as monthly results that begin in 1936. We provide the average

mean return to be explained, along with the time-series regression statistics. Mean returns and alphas are reported in annual

percentage terms for consistency.

Model: Re
t = α + βLMPt + εt

Quarterly Data: 1968-2009
E[Re] Alpha T-Alpha Beta T-Beta R2

Mkt 5.44 0.08 (0.03) 0.52 (2.90) 0.10
SMB 3.07 1.72 (0.75) 0.13 (1.19) 0.02
HML 4.06 -0.22 (-0.74) 0.44 (2.92) 0.12
Mom 7.99 4.24 (1.08) 0.36 (1.85) 0.06

Monthly Data: 1936-2009
E[Re] Alpha T-Alpha Beta T-Beta R2

Mkt 6.93 -0.22 (-0.90) 0.81 (20.17) 0.30
SMB 2.44 0.89 (0.72) 0.16 (5.25) 0.03
HML 5.04 0.66 (0.02) 0.47 (17.87) 0.30
Mom 8.03 5.08 (2.86) 0.29 (6.82) 0.05

Table 11: Mean-Standard Deviation Analysis
We give the monthly mean, standard deviation, and Sharpe ratios of the Fama-French three factors, momentum factor, leverage

mimicking portfolio (LMP), and the maximum possible Sharpe ratio from any combination of the Fama-French three factors

and momentum factor. We provide the annual Sharpe ratio by multiplying by
√

12. Data are monthly from Jan. 1936 - Dec.

2009.

E[Re] σ[Re] Sharpe Ratio Annualized Sharpe
Market 0.57 4.30 0.13 0.46
SMB 0.15 2.86 0.05 0.18
HML 0.40 2.75 0.15 0.50
Mom 1.32 6.48 0.20 0.70
LMP 1.92 3.23 0.29 0.99
Max Sharpe 0.35 1.20
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Table 12: Leverage Beta Sorts
We sort the entire universe of CRSP stocks into portfolios based on pre-ranking leverage betas, found by regressing quarterly

firm-level excess returns (over the 3-month risk-free rate) on our leverage factor. We use 10 years (40 quarters) for pre-sorting

regressions. We exclude the smallest 10% of firms based on market capitalization on formation date and exclude firms that do

not have at least 20 quarters of past return data on formation date. We report the mean, standard deviation, Sharpe ratio,

post-formation leverage beta and t-stat as well as the CAPM α and associated t-stat. We report numbers in percent per year.

Leverage betas are multiplied by 100 for convenience. Our holding period is 1973-2009.

Panel A: 3 Sorted Leverage Portfolios
Low Med High High-Minus-Low

E[R] 5.17 5.94 7.99 2.82
σ[R] 19.63 16.99 21.01 13.44

E[R]/σ[R] 0.26 0.35 0.38 0.21
Leverage β 3.81 7.76 11.39 7.58

t-β 0.61 1.54 1.86 2.01
CAPM α -0.53 1.08 2.12 2.64

t-α -0.56 1.38 1.48 1.17

Panel B: 5 Sorted Leverage Portfolios
1 (Low) 2 3 4 5 (High) 5-1

E[R] 4.91 5.62 5.81 7.12 8.78 3.87
σ[R] 22.76 17.80 17.14 18.73 24.06 18.56

E[R]/σ[R] 0.22 0.32 0.34 0.38 0.36 0.21
Leverage β 0.86 6.02 7.52 10.91 10.61 9.74

t-β 0.12 1.07 1.50 2.01 1.52 1.83
CAPM α -1.31 0.35 0.76 1.82 2.17 3.48

t-α -0.79 0.42 0.93 1.51 1.20 1.13
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Table 13: “Betting Against Beta”Portfolios
We sort CRSP stocks on 10 year pre-ranking market betas. We lever up low-beta stocks so that each portfolio has a market

beta of 1. The resulting portfolios co-move with funding conditions since leverage constrained investors will bid up high beta

securities (Frazzini and Pedersen (2011)). See text for complete description. FF represents the Fama-French factors, FF,Mom

adds the momentum factor. The holding period is 1968-2009. All data are quarterly but returns and Sharpe ratios are presented

as annualized numbers (multiplied by 4 and 2, respectively).

Panel A: Time-Series Regressions: Re
i,t = ci + βLev,iLevFact + εi,t

E[Re] Sharpe βLev(x 10−2) T-stat R2

BAB1 10.98 0.46 19.45 2.93 4.90%
BAB2 8.94 0.40 21.71 3.50 6.88%
BAB3 7.29 0.36 16.41 2.91 4.84%
BAB4 6.87 0.35 11.33 2.01 2.38%
BAB5 6.68 0.34 11.67 2.11 2.60%
BAB6 4.67 0.25 12.91 2.41 3.38%
BAB7 5.68 0.30 10.19 1.89 2.10%
BAB8 4.68 0.25 8.90 1.67 1.66%
BAB9 4.29 0.22 3.97 0.72 0.31%
BAB10 3.99 0.20 3.51 0.62 0.23%
1 —10 6.99 0.36 15.94 2.90 4.82%

Panel B: Cross-Sectional Prices of Risk
LevFac LevFac, NoInt

Intercept 2.48
t-FM 0.77

t-Shanken 0.66
LevFac 32.75 49.62
t-FM 2.06 2.48

t-Shanken 1.78 1.84
Panel C: Cross-Sectional Test Diagnostics

MAPE: E[Re] FF FF,Mom LevFac LevFac, No Int
Intercept 2.48

Total 6.41 1.36 0.61 3.29 1.33
MAX 10.98 4.06 1.81 2.14 2.32

AdjR2 0.73 0.51
C.I.AdjR2 [0.42, 1] [0.20, 1]

T 2(χ2) 7.38 6.62
P-Value 49.61% 67.65%
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