Welfare Analysis of Currency Regimes with Defaultable Debts

Aloisio Araujo (EPGE/FGV and IMPA) Marcia Leon (Banco Central do Brasil) Rafael Santos (Banco Central do Brasil)

May 2012

Presentation

- 1. Motivation
- 2. The Cole-Kehoe Model
- 3. The Model with Local-Currency Debt
- 4. The Model with Common-Currency Debt
- 5. Computed Model Results
- 6. Conclusions

1. MOTIVATION

Use the self-fulfilling debt crisis model of Cole-Kehoe to evaluate financial aspects of currency regimes:

- Dollarization
- Common Currency
- Local Currency

The optimal currency regime depends on:

- Correlation of External Shocks (Refinancing Risks) among countries of a monetary union
- Risk of Political Inflation

2 - The Cole-Kehoe Model Review of Economic Studies(2000)

It has two parts:

a) a dynamic, stochastic general equilibrium model, with probability π of a self-fulfilling debt crisis occurring;

b) a simulation exercise to obtain the debt-crisis zone and the welfare levels for an economy under a possible speculative attack on its public debt.

- One good: $f(k_t)$;
- Three participants:

(i) national consumers;(ii) international bankers; and(iii) the government.

• One **sunspot** ζ_t : bankers' confidence that government will not default; i.i.d., uniform [0,1] and P [$\zeta_t \leq \pi$] = π

- ζ_t also indicates the **refinancing risk** faced by indebted economies.
- Foreign-currency debt, B_t : in the hands of int'l bankers; probability π of no rollover in the crisis zone; if there is default, it is full. ($Z_t = 0$). No default ($Z_t = 1$).

(i) Consumer's problem_{∞} $\max_{c_t,k_{t+1}} E \sum_{t=0}^{\infty} \beta^t \left[\varrho c_t + v \left(g_t \right) \right]$

s.t.
$$c_t + k_{t+1} - k_t \le (1 - \theta) [a_t f(k_t) - \delta k_t]$$

 $k_0 > 0$

 a_t - productivity factor

If the government has defaulted, then $a_t = \alpha$, $0 < \alpha < 1$. Otherwise, $a_t = 1$.

(ii) International bankers' problem

$$\max_{x_t, b_{t+1}} E \sum_{t=0}^{\infty} \beta^t x_t$$

s.t.

$$x_t + q_t^* b_{t+1} \le \overline{x} + z_t b_t$$

 $b_0 > 0$

 q_{t}^{*} - price, at *t*, of one-period government bond that pays one good, if there is no default.

(iii) Government

Benevolent and with no commitment.

Decision variables: B_{t+1}, z_t, g_t

Budget constraint

$$g_t + z_t B_t \leq \theta \left[a_t f(k_t) - \delta k_t\right] + q_t^* B_{t+1}$$

Strategic behavior since foresees q_{t}^{*} , c_{t} , k_{t+1} , g_{t} , z_{t} , a_{t}

• Timing of actions within a period

a) ζ is realized and state $S = (K, B, a_{-1}, \zeta)$ b) government, given $q^* = q^*(S, B')$, chooses B'c) bankers decide whether to purchase B'

- d) government chooses Z and g
- e) consumers, given a(S,Z), choose C and K'

- An Equilibrium
- a) Characterization of consumers and bankers behavior

Consumers: k' takes three values: $k^n > k^{\pi} > k^d$ depending on E[a'] k^{n} , E[a'] = 1; k^{π} , $E[a'] = 1 - \pi + \pi \alpha$; k^{d} , $E[a'] = \alpha$ q^* takes three values: β , β (1- π), 0 Bankers: depending on E[z'] since $q^* = \beta E[z']$ $\beta, E[z'] = 1; \beta(1-\pi), E[z'] = 1 - \pi; 0, E[z'] = 0$

b) Definition: Crisis Zone with probability π

Debt interval that a crisis can occur with probability π . For one-period gov't bonds and $S = (k^{\pi}, B, 1, \zeta)$: $(\overline{b}(k^n), \overline{B}(k^{\pi}, \pi)]$

c) Government choices:

3 – Local-currency debt model Araujo and Leon (RBE, 2002)

- Public debt denominated in two currencies: for eign, B_t , and local, D_t
- A full default on B_t may be avoided through a partial default on debt denominated in local currency, D_t
- *D_t* only in the hands of national investors; credit rollover always.
- Government decision variable to partial default, υ . No partial default, local bond pays one good ($\upsilon = 1$). Otherwise, it pays less than one good, ($\upsilon = \phi$), $\phi < 1$.

3 – Local-currency debt model

- Cost of partial default: productivity falls to $\alpha^{\phi} > \alpha$ If z = 0 (full default on B_t), then $a = \alpha$ forever If $\mathcal{U} = \phi$ (partial default on D_t), then $a = \alpha^{\phi}$ forever
- Intense speculative attack:

If $\zeta_t < \pi^d$, then z = 0 and full default on B_t

Moderate speculative attack:

If $\pi^{d} < \zeta_{t} < \pi^{up}$, then z = 1 and a fraction φ of B_{t} is renewed and there is partial default on D_{t} to avoid a full default on B_{t} .

3 – Local-currency debt model

Political Inflation

If $\pi^{up} < \zeta_t < \pi^{up\psi}$, then z = 1 and total B_t is renewed, but there is partial default on D_t .

• Risk of political inflation, π^p

$$\pi^{p} = \pi^{up\psi} - \pi^{up}$$

- Partial default revenues:
 - \rightarrow to avoid full default on B_t ; or
 - \rightarrow for political purposes (risk of political inflation)

3 – Local-currency debt model

An equilibrium is analogous to the original C-K

• Consumers' new budget constraint:

$$C_t + k_{t+1} - k_t + q_t d_{t+1} \leq (1 - \theta) \left[a_t f(k_t) - \delta k_t\right] + \upsilon_t d_t$$

besides C_t and k_{t+1} also chooses d_{t+1}

• Government new budget constraint:

$$g_t + z_t B_t + v_t D_t \leq \theta [a_t f(k_t) - \delta k_t] + q_t^* B_{t+1} + q_t D_{t+1}$$

besides B_{t+1}, Z_t and g_t also chooses D_{t+1} and υ_t

4. Common-currency debt model

- *I* countries in a monetary union and a central government
- Each country *i* issues debt in common currency, D_t^i
- Possibility of a partial default on common-currency debt, which depends on decision process.
- Partial-default decision: Member-countries vote: υⁱ; and Union decision: υ^u

4. Common-currency debt model

- Two decision processes are considered:
 - 1) The right of veto: $\upsilon^{u} = \phi \Leftrightarrow \upsilon^{i} = \phi$, for all i
 - 2) Political influence over the union's central bank: Each member implements its decision with probability $\mathbf{pw^{i}}$ and $\Sigma \mathbf{pw^{i}} = 1$.
- Correlation of external shocks, ρ

The external shock (refinancing risk), ζ^{i} , of each country *i* correlates with the one from the other countries.

- Numerical Findings follow from the welfare analysis of alternative currency regimes, depending on the risk of political inflation, π^p, and the correlation of external shocks (refinancing risks), ρ.
- A country (country A) has to decide either to maintain its local-currency regime, or to join a common-currency regime with a partner country (country B), or to dollarize by adopting the currency of a third country.
- Country B is assumed to have all parameters equal to those of country A, except for a possible change in the risk of political inflation.

Numerical Finding 1

The bigger the risk of political inflation, the larger the region where dollarization maximizes welfare. (See Figure 2)

• Numerical Finding 2

The larger the correlation of external shocks ρ , the larger the region where common-currency maximizes welfare. (See Figure 2)

• Numerical Finding 3

As π^{pB} decreases the range for ρ in which the commoncurrency regime is optimal increases over the *Dollar* region and decreases over the *Local-Currency* region. (*Compare Figures 2 and 3*)

Note: In Figure 2, the risk of political inflation of country B, π^{pB} , is 0.7 and, in Figure 3, is zero.

• Numerical Finding 4

For high levels of the risk of political inflation in country A, π^{pA} , the region where dollarization is preferred increases as p^{wA} increases.

(See Figure 4)

Optimal Monetary Arrangement (n=2) Decision process: Right of Veto Risk of political inflation in the other country (B): 0.7 and 0

External Shocks Correlation (p)

Optimal Monetary Arrangement (n=2) Political Weight in the decision process: 0, 0.4 and 0.8 Risk of political inflation in the other country (B): 0.7

6. Conclusions

• Choices of currency regimes considering financial aspects:

Low risk of political inflation and low external correlation \implies Local-currency regime

High risk of political inflation and high external correlation \Rightarrow Common-currency regime

High risk of political inflation and low correlation \implies Dollarization

THANK YOU FOR YOUR ATTENTION

Benchmark: the Brazilian economy (1998/2001)

Length (Years)	Model	Brazil (98-01)
A∨erage Maturity	1	∈[.4;2.2]
A∨erage Duration	1	∈ [.2;.9]
Variables Relati∨e to GDP	Model	Brazil (98-01)
External Debt	45	∈ [31;45]
External Public Debt	45	∈ [9;24]
Local Currency Public Debt	30	∈ [27;31]
Capital Outflow	4	-
Investment	16	∈ [20;22]
Pri∨ate consumption	60	∈ [61;62]
Public Expenditure	20	19

Parameters	Model
β	0.95
θ	0.30
v (g)	ln(g)
f (k)= k^{λ}	k ^{0.4}
δ	0.05
α	0.95
α_{ϕ}	0.998
φ	0.62
φ	0.85
π^d	0.04
π^{i}	0.04
π ^p	∈[0;0.9]
ρ	∈[-0.3;1]

is the correlation between moderate attacks, conditional to the no occurrence of an intense one.