Banking, Liquidity, and Bank Runs

in an

Infinite Horizon Economy

Mark Gertler and Nobuhiro Kiyotaki

NYU and Princeton

May 2012

Motivation

Banking distress and the real economy: Two complementary approaches:

- 1. "Macro" (e.g. Gertler and Kiyotaki, 2011)
 - (a) Bank balance sheets affect the cost of bank credit.
 - (b) Losses of bank capital in a downturn raises intermediation costs
- 2. "Micro" (e.g Diamond and Dybvig, 1983)
 - (a) Maturity mismatch opens up the possibility of runs.
 - (b) Runs lead to inefficient asset liquidation and loss of banking services.

Motivation (con't)

- During the crisis both "macro" and "micro" phenomena were at work.
 - (Gorton, 2010, Bernanke, 2010).
- Starting point: Losses on sub-prime related assets depleted bank capital
 - Forced a contraction of many financial institutions.
 - Bank credit costs sky-rocketed
 - Some of the major investment and money funds experienced runs

Motivation (con't)

- Macro models of banking distress:
 - Emphasize balance sheet/financial acceletorator effects
 - Bank runs are excluded.
- Micro models of banks
 - Highly stylized; e.g. two periods
 - Runs often unrelated to health of the macroeconomy.

What We Do

- Develop a simple macro model of banking instability that features both
 - Balance sheet financial/accelerator effects
 - Banks runs
- The model emphasizes the complementary nature of the mechanisms
 - Balance sheet conditions affect whether runs are feasible
 - Two key variables:
 - * Bank leverage ratio (affects degree of maturity mismatch)
 - * Liquidation prices
 - Both depend on macroeconomics conditions

Model Overview

- Baseline Model: Infinite horizon endowment economy with fixed capital
 - Households
 - Bankers
 - Assume bankers issue short term non-contingent debt
 - * Leads to maturity mismatch
- Extended Model: adds idiosyncratic houshehold liquidity risks as in DD
 - Households face uncertain need to make extra expenditures.
 - A way motivate short term demandable bank debt (as in DD)

Intermediated vs. Directly Held Capital

• Capital Allocation

$$K_t^b + K_t^h = \overline{K} = \mathbf{1}$$

- - $K_t^b \equiv$ intermediated capital
 - $K_t^h \equiv$ capital directly held by households

Intermediated vs. Directly Held Capital (con't)

• Technology for intermediated capital

 $date \ t + 1$ $date \ t$ $K^b_t \ ext{capital} \} \ o \ \left\{ egin{array}{c} K^b_t \ Capital \\ Z_{t+1}K^b_t \ ext{output} \end{array}
ight.$

• Rate of return on intermediated capital

$$R_{t+1}^b = \frac{Z_{t+1} + Q_{t+1}}{Q_t}$$

Intermediated vs. Directly Held Capital (con't)

• Technology for capital directly held by households

 $\begin{array}{cc} date \ t & date \ t+1 \\ \\ K^h_t \ capital \\ f(K^h_t) \ goods \end{array} \right\} \rightarrow \left\{ \begin{array}{c} K^h_t \ capital \\ \\ Z_{t+1}K^h_t \ output \end{array} \right.$

 $f(K_t^h) \equiv \text{management cost}; f' > 0, f'' \ge 0.$

• Rate of return on directly held capital

$$R_{t+1}^{h} = \frac{Z_{t+1} + Q_{t+1}}{Q_t + f'(K_t^{h})}$$

• Households directly hold capital due to financial constraints on banks.

NO BANK RUN EQUILIBRIUM

Households

- Deposit contract:
 - Short term (one period)
 - Non-contingent return R_{t+1} (absent a bank run)
 - Sequential service constraint (as in Diamond/Dybvig)
 - * In the event of a run, payoff either R_{t+1} or 0
 - * Depends on place in line.
- Bank runs completely unanticipated.

Households (con't)

• choose $\{C_t^h, D_t, K_t^h\}$ to max:

$$U_t = E_t \left(\sum_{i=0}^{\infty} \beta^i \ln C_{t+i}^h \right)$$

• subject to:

٠

$$C_t^h + D_t + Q_t K_t^h + f(K_t^h) = Z_t W^h + R_t D_{t-1} + R_{t+1}^h Q_{t-1} K_{t-1}^h$$

• fonc yield standard euler equations for D_t and K_t^h .

Bankers

- A measure unity of bankers
- Each has an i.i.d. survival probability of σ
 - \Rightarrow expected horizon is $\frac{1}{1-\sigma}$
- Banker consumes wealth upon exit
- Preferences are linear in "terminal" consumption c^b_{t+i}

$$V_t = E_t \left[\sum_{i=1}^{\infty} \beta [(1 - \sigma) c_{t+1}^b + \sigma \beta V_{t+1}] \right]$$

- Each exiting banker replaced by a new banker.
 - Starts with an endowment w^b .

Bankers (con't)

• Bank balance sheet

$$Q_t k_t^b = d_t + n_t$$

• Net worth n_t for surviving bankers

$$n_t = R_t^b Q_{t-1} k_{t-1}^b - R_t d_{t-1}.$$

• n_t for new bankers

$$n_t = w^b$$

• c_t^b for exiting bankers

$$c_t^b = n_t$$

Limits to Bank Arbitrage

- Agency Problem:
 - After the banker borrows funds at the end of period t, it may divert: a fraction of θ of loans
 - If the bank does not honor its debt, creditors can
 - * recover the residual funds and
 - * shut the bank down.

• Incentive constraint

 \Rightarrow

 $\theta Q_t k_t^b \le V_t$

Solution

• "Leverage" constraint

$$\frac{Q_t k_t^b}{n_t} \le \phi_t$$

• ϕ_t is

- decreasing in θ
- increasing in μ_t

$$\mu_t = \beta E_t [(R_{t+1}^b - R_{t+1})\Omega_{t+1}]$$

where $\Omega_{t+1} > 1$ is the banker's expected shadow value of n_{t+1}

• μ_t is countercyclical $\Rightarrow \phi_t$ is countercyclical.

Aggregation

• Aggregate leverage constraint

$$Q_t K_t^b = \phi_t N_t$$

• Aggregate net worth

$$N_t = \sigma[(R_t^b - R_t)\phi_{t-1} + R_t]N_{t-1}] + W^b$$

• Volatility of N_t depends on ϕ_{t-1} and volatility of R_t^b .

Bank Runs

- Ex ante zero probability of a run.
- Consider the possibility of a run ex post:
- Ex post a "bank run" equilibrium" is possible if:
 - Individual depositors believe that if other households do not roll over their deposits, the bank may not be able to meet its obligations on the remaining deposits.

Conditions for a Bank Run Equilibrium (BRE)

- Timing of events:
 - At the beginning of period t, depositors decide whether to roll over their deposits with the bank.
 - If they choose to "run", the bank liquidates its capital and it sells it to households who hold it with their less efficient technology.
- A run is then possible if:

$$R_t^{b*}Q_{t-1}K_{t-1}^b < R_t D_{t-1}$$

 $R_t^{b*} \equiv$ rate of return on bank assets conditional on liquidation: of bank assets

$$R_t^{b*} = \frac{(Z_t + Q_t^*)}{Q_{t-1}}$$

 $Q_t^* \equiv$ the liquidation price of a unit of the bank's assets.

Conditions for a Bank Run Equilibrium (BREC) (con't)
We can simplify the condition for a BRE:

$$R_t^{b*} < R_t \cdot \frac{D_{t-1}}{Q_{t-1}K_t^b} = R_t(1 - \frac{1}{\phi_{t-1}})$$

with

 \Rightarrow

$$R_t^{b*} = \frac{(Z_t + Q_t^*)}{Q_{t-1}}$$

- Whether a BRE exists depends on (Q_t^*, ϕ_{t-1}, R_t) .
- Q_t^* is procyclical and ϕ_t is highly countercyclical \Rightarrow the liklichood of a BRE is countercyclical.

Liquidation Price

• After a bank run at t :

$$K^h_{t+i} = \overline{K} = \mathbf{1} \
abla i$$

• Household euler eqution for direct capital holding

$$E_t\{\Lambda_{t,t+1}R_{t+1}^{h*}\}=1$$

with

$$R_{t+1}^{h*} = \frac{Z_{t+1} + Q_{t+1}^*}{Q_t^* + f'(1)}$$

where f'(1) is the marginal management cost which as at a maximum at $K_t^h = 1$.

Household Liquidity Risks:

- Suppose the representative family has a continuum of members of measure unity.
- With probability π a member has a need for emergency expenditures.
- Let c_t^m be emergency expenditures by an individual, with $\pi c_t^m = C_t^m$ total expenditures by the family.
 - For an individual with emergency expenditures needs momentary utility is:

$$\log C^h_t + \kappa \log c^m_t$$

- For someone without:

$$\log C_t^h$$

Household Liquidity Risk (con't)

Timing of Events:

- The family chooses C_t^h and its portfolio before learning of the realization of the liquidity risk.
- After choosing D_t , the household divides it evenly amongst it members.
- Emergency expenditures mus be financed by deposits:

 $c_t^m \leq D_t$

- Those who do not use their deposits return them to the family
- The household also sells any unused endowment to other households for deposits

- by l.l.n. outflows of D_t equal inflows during t.

Figure 1: A Recession in the Baseline Model: No Bank Run Case

Figure 3: Ex Post Bank Run in the Baseline Model

Figure 2: A Recession in the Liquidity Risk Model: No Bank Run Case

Figure 4: Ex Post Bank Run in the Liquidity Risk Model

Some Remarks About Policy

- As in Diamond/Dybivg a role for deposit insurance.
 - Eliminates bank run equilibrium
 - But may have moral hazard effects on risk-taking.
- Can offset with capital requirements
 - Reduces risk-taking
 - Reduces the liklelihood of a bank run equilibrium
 - But if bank equity capital costly to raise, can increase intermediation costs.
- Alernative: commitment to lender-of-last resort policies
 - Stabilizing liquidation prices reduces likliehood of bank runs
 - Examples: lending againt good collateral
 - Asset purchases a good quality securities (e.g. AMBS)

Table 1: Parameters

Baseline Model				
β	0.99	Discount rate		
σ	0.95	Bankers survival probability		
θ	0.35	Seizure rate		
α	0.1	Household managerial cost		
\bar{K}^h	0.096	Threshold capital for managerial cost		
γ	0.72	Fraction of depositors that can run		
ρ	0.95	Serial correlation of productivity shock		
Z	0.0161	Steady state productivity		
ω^b	0.0019	Bankers endowment		
ω^h	0.045	Household endowment		
Additional Parameters for Liquidity Model				
κ	62.67	Preference weight on c_m		
\bar{c}^m	0.01	Threshold for c_m		
π	0.03	Probability of a liquidity shock		
γ_L	0.67	Fraction of depositors that can run		

Steady State for No Bank-Run Equilibrium				
	Baseline	Liquidity		
K	1	1		
\mathbf{Q}	1	1		
C^h	0.0541	0.0184		
C^m	0	0.0348		
C^b	0.0087	0.0088		
K^h	0.0594	0.0545		
K^b	0.9406	0.9455		
ϕ	8	8		
R^b	1.0644	1.0624		
R^h	1.0404	1.0404		
R	1.0404	1.0384		
Steady State for Bank-Run Equilibrium				
	Baseline	Liquidity		
Κ	1	1		
Q^*	0.6340	1		
C^h	0.0520	0.0515		
C^m	0	0.01		
C^b	0.0019	0.0019		
K^h	1	1		
K^b	0	0		
ϕ				
R^b	1.1016	1.1068		
R^h	1.0404	1.0404		
R				