
An Extended Mathematical Programming FrameworkI

Michael C. Ferris∗,a, Steven P. Dirkseb, Jan-H. Jaglac, Alexander Meerausb

aComputer Sciences Department, University of Wisconsin, Madison, WI 53706
bGAMS Corporation, 1217 Potomac Street, Washington, DC 20007

cGAMS Software GmbH, Eupener Str. 135{137, 50933 Cologne, Germany

Abstract

Extended mathematical programs are collections of functions and variables

joined together using speci�c optimization and complementarity primitives.

This paper outlines a mechanism to describe such an extended mathematical

program by means of annotating the existing relationships within a model

to facilitate higher level structure identi�cation. The structures, which often

involve constraints on the solution sets of other models or complementar-

ity relationships, can be exploited by modern large scale mathematical pro-

gramming algorithms for e�cient solution. A speci�c implementation of this

framework is outlined that communicates structure from the GAMS mod-

eling system to appropriate solvers in a computationally bene�cial manner.

Example applications are taken from chemical engineering.
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1. Introduction

Chemical engineering applications often involve the modeling and solution

of classical mathematical programs. Indeed, chemical engineering has been a

user of optimization techniques and technology for several decades and many

chemical engineers have made signi�cant contributions to the �eld of opti-

mization, and in several cases have developed software that has had impact

far beyond the chemical engineering discipline. Packages such as DICOPT

(Viswanathan and Grossmann, 1990), BARON (Tawarmalani and Sahini-

dis, 2004), ALPHAECP (Westerlund et al., 1998) and IPOPT (W�achter and

Biegler, 2006) have inuenced the debate on tractability of hard, practical

nonlinear optimization problems, often setting the gold standard for the so-

lution of nonconvex, global optimization problems.

Accessing these solvers, and many of the other algorithms that have been

developed over the past three decades has been made easier by the advent

of modeling languages. A modeling language (Bisschop and Meeraus, 1982;

Fourer et al., 1990) provides a natural, convenient way to represent math-

ematical programs and provides an interface between a given model and

multiple di�erent solvers for its solution. The many advantages of using a

modeling language are well known. They typically have e�cient automatic

procedures to handle vast amounts of data, take advantage of the numerous

options for solvers and model types, and can quickly generate a large number

of models. For this reason, and the fact that they eliminate many errors that

occur without automation, modeling languages are heavily used in practical

applications. Although we will use GAMS (Brooke et al., 1988), the system

2



we are most familiar with, much of what will be said could as well be ap-

plied to other algebra based modeling systems like AIMMS (Bisschop and

Entriken, 1993), AMPL (Fourer et al., 1993), MOSEL (Dash Optimization,

2009), MPL (Maximal Software, 2009) and OPL (Van Hentenryck, 1999).

The extended mathematical programming (EMP) framework exists to

provide these same bene�ts for applications (e.g. disjunctive programming)

that fall outside the classical framework. A high-level description of these

models in an algebraic modeling language, along with tools to automatically

create the di�erent realizations or extensions possible, pass them on to the

appropriate solvers, and interpret the results in the context of the original

model, makes it possible to model more easily, to conduct experiments with

formulations otherwise too time-consuming to consider, and to avoid errors

that can make results meaningless or worse. We believe that further ad-

vances in applications of optimization can be achieved via identi�cation of

speci�c problem structures within a model. The EMP framework provides

an extensible way to achieve this.

Some motivating examples from the �elds of chemical and biological en-

gineering are apparent. For example, the pioneering work of (Clark and

Westerberg, 1990) showed how to model design problems under thermody-

namic equilibrium conditions as a bilevel optimization problem: in this set-

ting the process design is optimized (typically for operating cost) subject

to constraints that involve another optimization problem minimizing Gibbs

free energy, along with more typical constraints involving mass and energy

balance. Similar problems arise in the optimization of the production of

chemicals or biochemicals in metabolic engineering. Of particular note is
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the work of Maranas and colleagues (Burgard and Maranas, 2003; Burgard

et al., 2003), where a bilevel optimization called OptKnock has been devel-

oped to identify the (reaction) deletion strategies that couple the cellular

objective (inner problem) to the bioengineering objective (outer problem)

of maximizing biomass yield or minimizing metabolic adjustment (MOMA).

The problem of parameter estimation (for example in thermodynamic equi-

librium) can also be framed in this manner (Mitsos et al., 2008; Raghunathan

et al., 2006). Such models contain adjustable parameters which cannot be

measured directly, but for which an outer problem can minimize errors in

predictions from an inner model that encodes system dynamics and prop-

erties. Finally, the work by Grossmann and colleagues on generalized dis-

junctive programming (Turkay and Grossmann, 1996; Vecchietti and Gross-

mann, 1999; Vecchietti et al., 2003) involves both nonlinear equations and

optimization primitives coupled with pure logic relations; this has been used

extensively in the synthesis and design of process networks. Application of

these ideas for the reduction of gasoline emissions is given in Furman and

Androulakis (2008). Each of these examples falls naturally within our EMP

framework.

The purpose of this work is to extend the classical nonlinear program

from the traditional model:

min
x
f(x) s.t. g(x) ≤ 0, h(x) = 0, (1)

where f , g and h are assumed su�ciently smooth, to a more general format

that allows new constraint types and problem features to be speci�ed pre-

cisely. Some extensions of this format have already been incorporated into

modeling systems. There is support for integer, semiinteger, and semicon-
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tinuous variables, and some limited support for logical constructs including

special ordered sets (SOS). GAMS , AMPL and AIMMS have support for

complementarity constraints (Ferris and Munson, 2000; Ferris et al., 1999),

and there are some extensions that allow the formulation of second-order

cone programs within GAMS. AMPL has speci�c syntax to model piecewise

linear functions. Much of this development is tailored to particular constructs

within a model. We aim to develop more general annotation schemes to allow

extended mathematical programs to be written clearly and succinctly.

In the following sections we outline a new model type that we refer to as

an extended mathematical program (EMP). This incorporates many of the

extensions mentioned above but also allows a variety of other structures to

be described at a model level and is general enough to easily allow further en-

hancements. We believe such extensions may have bene�ts on several levels.

First, we think this will make the modeler’s task easier, in that the model

can be described more naturally and perhaps at a higher conceptual level.

(Of course, there are several examples of this already in the literature includ-

ing the use of specialized languages such as MPSGE (Rutherford, 1999) to

facilitate general equilibrium models, and specialized (graphical) interfaces

to allow queueing system or process system design.) Second, techniques such

as automatic di�erentiation and problem reformulation (duality constructs,

or speci�c ways to reformulate certain constraints) can more reliably do the

automatic generation of the model. Third, if an algorithm is given additional

structure, it may be able to exploit that in an e�ective computational man-

ner; knowing the problem is a cone program, or the problem involves the

optimality conditions of a nonlinear program can be treated in a variety of
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di�erent ways, some of which may be distinctly superior to others in certain

settings. Indeed, the availability of such structure to a solver may well foster

the generation of new features to existing solvers or drive the development of

new classes of algorithms. To ensure these extensions are available to a large

class of users, we outline within our development a speci�c implementation

within the GAMS modeling system. This prototype is available for gen-

eral use and will enable both chemical engineers and operations researchers

to experiment with new solution strategies based on the provision of extra

structural information provided to a solver.

2. Extended Mathematical Programs

The EMP framework allows annotation to existing functions and vari-

ables within a model. We begin with the example of complementarity, which

in its simplest form, is the relationship between nonnegative variables with

the additional constraint that at least one must be zero. In process optimiza-

tion, complementarity can be used to model (nonsmooth) features such as

the disappearance of phases, distillation, ow reversal, safety valve operation,

and other discrete events (Gopal and Biegler, 1999; Baumrucker et al., 2008).

Following this simple example, we show how the annotations can be incor-

porated into optimization problems such as mathematical programs with

complementarity constraints. This format is used by (Yang et al., 2008) in

their optimal (enzymatic) capacity constraint identi�cation (OCCI) method.

Such examples lead to natural extensions including variational inequality

constraints, bilevel programs and mathematical programs with equilibrium

constraints. Further extensions beyond complementarity are given later in
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the paper.

2.1. Complementarity Problems

The necessary and su�cient optimality conditions for the linear program

min
x

cTx

s.t. Ax ≥ b, x ≥ 0

(2)

are that x and some λ satisfy the complementarity realtionships:

0 ≤ c− ATλ ⊥ x ≥ 0

0 ≤ Ax− b ⊥ λ ≥ 0.
(3)

Here, the \⊥" sign signi�es (for example) that in addition to the constraints

0 ≤ Ax− b and λ ≥ 0, each of the products (Ax− b)iλi is constrained to be

zero. An equivalent viewpoint is that either (Ax− b)i = 0 or λi = 0. Within

GAMS, these constraints can be modeled simply as

positive variables lambda, x;

model complp / defd.x, defp.lambda /;

where defp and defd are the equations that de�ne general primal and dual

feasibility constraints (Ax ≥ b, c ≥ ATλ) respectively.

Other linear programs with specialized constraint structure are just as

easy to specify. For example

min
x

cTx

s.t. Ax = b, x ∈ [l, u]

7



has similarly expressed optimality conditions:

0 ≤ (c− ATλ)j if xj = lj

0 = (c− ATλ)j if lj < xj < uj

0 ≥ (c− ATλ)j if xj = uj

0 = Ax− b ⊥ λ free.

(4)

Note that the �rst three complementarity relationships in (4) can be written

more succinctly as (c − ATλ) ⊥ x ∈ [l, u]. This is translated into GAMS

syntax as follows:

variables lambda, x;

x.lo(i) = l(i); x.up(i) = u(i);

model complp / defd.x, defp.lambda /;

Such a problem is an instance of a linear mixed complementarity problem,

for which we use the acronym MCP. Note that the bounds on the variables

x determine the nature of the relationship on c − ATλ at the solution. (It

is possible to introduce explicit multipliers on the constraints x ≥ l and

x ≤ u, and to rewrite the optimality conditions in terms of x, λ, and these

multipliers. The \⊥" notation enables us to write these relationships much

more succinctly.)

Complementarity problems do not have to arise as the optimality condi-

tions of a linear program; the optimality conditions of the nonlinear program

(1) constitute the following MCP:

0 = ∇f(x) + λT∇g(x) + µT∇h(x) ⊥ x free

0 ≤ −g(x) ⊥ λ ≥ 0

0 = −h(x) ⊥ µ free.

(5)
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Many examples are no longer simply the optimality conditions of an op-

timization problem. A speci�c example arises in chemical phase equilibrium.

In this setting, di�erent conditions are satis�ed at an equilibrium depending

on whether we are in vapor, liquid or two-phase state. Letting α represent

the fraction in vapor, the problem is to �nd f(α) ⊥ α ∈ [0, 1] where

f(α) =
n∑
i=1

(xi −Kixi), xi =
zi

Kiα + 1− α
, i = 1, . . . , n

for given data Ki and zi. Gopal and Biegler (1997) have an alternate but

equivalent formulation of this model including the multiphase setting. Ferris

and Pang (1997) catalogue a number of other applications both in engineering

and economics that can be written in a similar format.

It should be noted that robust large scale solvers exist for such problems;

see Ferris and Munson (2000) for example, where a description is given of

the PATH solver.

2.2. Mathematical Programs with Complementarity Constraints

A mathematical program with complementarity constraints embeds a

parametric MCP into the constraint set of a nonlinear program as indicated

in the following problem:

min
x∈Rn,y∈Rm

f(x, y) (6)

s.t. g(x, y) ≤ 0 (7)

0 ≤ y ⊥ h(x, y) ≥ 0. (8)

The objective function (6) needs no further description, except to state that

the solution techniques we are intending to apply require that f (g and h) are

at least once di�erentiable, and for many modern solvers twice di�erentiable.
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The constraints (7) are intended to represent standard nonlinear pro-

gramming constraints. Clearly, these could involve equalities with a slight

increase in exposition complexity.

The constraints that are of interest here are the complementarity con-

straints (8). Essentially, these are parametric constraints (parameterized by

x) on the variable y, and encode the structure that y is a solution to the

nonlinear complementarity problem de�ned by h(x, ·). Within the GAMS

modeling system, this can be written simply and directly as:

model mpecmod / deff, defg, defh.y /;

option mpec=nlpec;

solve mpecmod using mpec minimizing obj;

Here it is assumed that the objective (6) is de�ned in the equation de�, the

general constraints (7) are de�ned in defg and the function h is described

by defh. The complementarity relationship is de�ned by the bounds on y

and the orthogonality relationship shown in the model declaration using \.".

AMPL provides a slightly di�erent but equivalent syntax for this, see Ferris

et al. (1999). The problem is frequently called a mathematical program with

complementarity constraints (MPCC). Several applications of this format

within chemical engineering were given above.

Some solvers can process complementarity constraints explicitly. In many

cases, this is achieved by a reformulation of the constraints (8) into the clas-

sical nonlinear programming form given within (1). GAMS Development

Corporation (2008) outline a variety of ways to carry this out, all of which

have been encoded in a solver package called NLPEC. Similar strategies are

outlined in section 3 of Baumrucker et al. (2008). While there are large
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numbers of di�erent reformulations possible, the following parametric ap-

proach, coupled with the use of the nonlinear programming solver CONOPT

or SNOPT, has proven e�ective in a large number of applications:

min
x∈Rn,y∈Rm,s∈Rm

f(x, y)

s.t. g(x, y) ≤ 0

s = h(x, y)

y ≥ 0, s ≥ 0

yisi ≤ µ, i = 1, . . . ,m.

Note that a series of approximate problems are produced, parameterized

by µ > 0; each of these approximate problems have stronger theoretical

properties than the problem with µ = 0 (Ralph and Wright, 2004). A solution

procedure whereby µ is successively reduced can be implemented as a simple

option �le to NLPEC, and this has proven remarkably e�ective. Further

details can be found in the NLPEC documentation (GAMS Development

Corporation, 2008). The approach has been used to e�ectively optimize

the rig in a sailboat design (Wallace et al., 2006) and to solve a variety of

distillation optimization problems (Baumrucker et al., 2008).

It is also possible to generalize the above complementarity condition to a

mixed complementarity condition; details can be found in Ferris et al. (2005).

Underlying the NLPEC \solver package" is an automatic conversion of the

original problem into a standard nonlinear program which is carried out at a

scalar model level. The technology to perform this conversion forms the core

of the codes that we use to implement the model extensions of the sequel.
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2.3. Variational Inequalities

A variational inequality VI(F,X) is to �nd x ∈ X:

F (x)T (z − x) ≥ 0, for all z ∈ X.

Here X is a closed (frequently assumed convex) set, de�ned for example as

X = {x | x ≥ 0, h(x) ≤ 0} . (9)

Note that the �rst-order (minimum principle) conditions of a nonlinear pro-

gram

min
z∈X

f(z)

are precisely of this form with F (x) = ∇f(x). For a concrete example, note

that these conditions are necessary and su�cient for the optimality of a linear

programming problem: solving the linear program (2) is equivalent to solving

the variational inequality given by

F (x) = c, X = {x | Ax ≥ b, x ≥ 0} . (10)

In this case, F is simply a constant function. While there are a large num-

ber of instances of the problem that arise from optimization applications,

there are many cases where F is not the gradient of any function f . For

example, asymmetric tra�c equilibrium problems have this format, where

the asymmetry arises for example due to di�erent costs associated with left

or right hand turns. A complete treatment of the theory and algorithms in

this domain can be found in Facchinei and Pang (2003).

Variational inequalities are intimately connected with the concept of a

normal cone to a set S, for which a number of authors have provided a rich
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calculus. Instead of overloading a reader with more notation, however, we

simply refer to the seminal work in this area, Rockafellar and Wets (1998).

While the theoretical development of this area is very rich, the practical

application has been somewhat limited. The notable exception to this is in

tra�c analysis, see Harker (1993).

It is well known that such problems can be reformulated as complemen-

tarity problems when the set X has the representation (9) by introducing

multipliers λ on the constraints h:

0 ≤ F (x) + λT∇h(x) ⊥ x ≥ 0

0 ≤ −h(x) ⊥ λ ≥ 0.

If X has a di�erent representation, this construction would be modi�ed ap-

propriately. In the linear programming example (10), these conditions are

precisely those already given as (3).

When X is the nonnegative orthant, the VI is just an alternative way to

state a complementarity problem. However, when X is a more general set,

it may be possible to treat it di�erently than simply introducing multipliers,

see Cao and Ferris (1996) for example. In particular, when X is a polyhedral

set, algorithms may wish to generate iterates via projection onto X.

A simple two dimensional example may be useful to improve understand-

ing. Let

F (x) =

 x1 + 2

x1 + x2 − 3

 , X = {x ≥ 0 | x1 + x2 ≤ 1} ,

so that F is an a�ne function, but F is not the gradient of any function

f : R2 → R. For this particular data, VI(F,X) has a unique solution
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x = (0, 1). Such a variational inequality can be described in GAMS via the

model statement

model vi / F, defh /;

solve vi using emp;

combined with an annotation �le that indicates certain equations are to be

treated di�erently by the EMP tool. In this case, the \empinfo" �le

viFunc

F(’1’) x(’1’)

F(’2’) x(’2’)

identi�es that the model equations F de�ne a function F that is to be part

of a variational inequality, while the equations defh de�ne constraints of X.

Details on speci�c syntax can be found in GAMS Development Corporation

(2009).

2.4. Bilevel Programs

Mathematical programs with optimization problems in their constraints

have a long history in operations research including Bracken and McGill

(1973); Fortuny-Amat and McCarl (1981); Bard (1998). Hierarchical opti-

mization has recently become important in chemical engineering for a number

of di�erent applications as outlined in the introduction. New codes are be-

ing developed that exploit this structure, at least for simple hierarchies, and

attempt to de�ne and implement algorithms for their solution.

The simplest case is that of bilevel programming, where an upper level

problem depends on the solution of a lower level optimization. For example:
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min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

y solves min
y

v(x, y) s.t. h(x, y) ≤ 0.

This problem can be reformulated as an MPCC by replacing the lower

level optimization problem by its optimality conditions:

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

0 = ∇yv(x, y) + λT∇yh(x, y) ⊥ x free

0 ≤ −h(x, y) ⊥ λ ≥ 0.

This approach then allows such problems to be solved using the NLPEC

code, for example. However, there are several possible de�ciencies that should

be noted. Firstly, the optimality conditions encompassed in the complemen-

tarity constraints may not have a solution, or the solution may only be nec-

essary (and not su�cient) for optimality. Secondly, the MPCC solver may

only �nd local solutions to the problem. The quest for practical optimality

conditions and robust global solvers remains an active area of research. Im-

portantly, the EMP tool will provide the underlying structure of the model

to a solver if these advances determine appropriate ways to exploit this.

We can model this bilevel program in GAMS by

model bilev /deff,defg,defv,defh/;

solve bilev using emp min f;
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along with some extra annotations to a subset of the model de�ning equa-

tions. Speci�cally, within an \empinfo" �le we state that the lower level

problem involves the objective v which is to be minimized subject to the

constraints speci�ed in defv and defh.

bilevel x

min v defv defh

Note that the variables x are declared to be variables of the upper level

problem and that defg will be an upper level constraint. The speci�c syntax

is described in GAMS Development Corporation (2009). Having written the

problem in this way, the MPCC is generated automatically, and passed on

to a solver. In the case where that solver is NLPEC, a further reformulation

of the model is carried out to convert the MPCC into an equivalent NLP or

a parametric sequence of NLP’s.

A point that has been glossed over here but which is described carefully

in the user manual is the process whereby multiple lower level problems are

speci�ed. Thus, the EMP model type allows multiple lower level problems

to be speci�ed within the bilevel format.

2.5. Mathematical Programs with Equilibrium Constraints

Mathematical programs with equilibrium constraints are a generalization

of the aforementioned MPCC problem class. The di�erence is that the lower

level problem, instead of being a complementarity problem, is now a varia-

tional inequality. To specify such a model we couple together the approaches
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of the last two subsections. Thus, the MPEC

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0,

y solves VI(F (x, ·), X),

where X = {s | h(x, s) ≤ 0} can be speci�ed by the statements:

model mpecmod /deff,defg,F,defh/;

solve mpecmod using emp min f;

and an \empinfo" �le

bilevel x

vi F defh

vifunc

F(’1’) y(’1’)

F(’2’) y(’2’)

...

Thus, the EMP format allows for Stackelberg games to be formulated where

there are collections of second level players, and each of those second level

players could be solving a variational inequality or an optimization problem.

The EMP model type results in the ability to model and solve such problems.

3. Extended Nonlinear Programs

Optimization models have traditionally been of the form (1). Specialized

codes have allowed certain problem structures to be exploited algorithmi-

cally, for example simple bounds on variables. However, for the most part,
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assumptions of smoothness of f , g and h are required for many solvers to

process these problems e�ectively.

In a series of papers, Rockafellar and colleagues (Rockafellar, 1993, 1999,

1987) have introduced the notion of extended nonlinear programming, where

the (primal) problem has the form:

min
x∈X

f0(x) + θ(f1(x), . . . , fm(x)). (11)

In this setting, X is assumed to be a nonempty polyhedral set, and the

functions f0, f1, . . . , fm are smooth. The function θ can be thought of as a

generalized penalty function that may well be nonsmooth. However, when θ

has the following form

θ(u) = sup
y∈Y
{yTu− k(y)}, (12)

a computationally exploitable and theoretically powerful framework can be

developed based on conjugate duality. A key point for computation and

modeling is that the function θ can be fully described by de�ning the set

Y and the function k. Furthermore, as we show below, di�erent choices

lead to a rich variety of functions θ, many of which are extremely useful

for modeling. In the above setting θ can take on the value of ∞ and may

well be nonsmooth, but it is guaranteed to be convex (proper and lower

semicontinuous when Y 6= ∅ and k is smooth and convex).

Furthermore, from a modeling perspective, an extended nonlinear pro-

gram can be speci�ed simply by de�ning the functions f0, f1, . . . , fm in the

manner already provided by the modeling system, with the additional issue

of simply de�ning Y and k. Conceptually, this is not much harder that what

is carried out already, but leads to signi�cant enhancements to the types of
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models that are available. This paper outlines an approach to do this within

the GAMS modeling system for a number of di�erent choices of Y and k.

The EMP model type works in this setting by providing a library of

functions θ that specify a variety of choices for k and Y . Once a modeler

determines which constraints are treated via which choice of k and Y , the

EMP model interface automatically forms an equivalent variational inequal-

ity or complementarity problem. As we show later, there may be alternative

formulations that are computationally more appealing; such reformulations

can be generated using di�erent options to our tool.

3.1. Forms of θ

The EMP model type makes the problem format (11) available to users

in GAMS. As special cases, we can model piecewise linear penalties, least

squares and L1 approximation problems, as well as the notion of soft and

hard constraints. We allow modelers to utilize cone constraints and pass

on the underlying geometric structure to solvers. Particular examples show

enormous promise both from a modeling and solution perspective.

For ease of exposition, we now describe a subset of the types of functions

θ that can be generated by particular choices of Y and k. In many cases, the

function θ is separable, that is

θ(u) =
m∑
i=1

θi(ui).

so we can either specify θi or θ itself.

Extended nonlinear programs include the classical nonlinear program-

ming form (1) as a special case. This follows from the observation that if K
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is a closed convex cone, and we let ψK denote the \indicator function" of K

de�ned by:

ψK(u) =

0 if u ∈ K

∞ else,

then (1) can be rewritten as:

min
x
f(x) + ψK((g(x), h(x)), K = Rm

− × {0}p,

where m and p are the dimensions of g and h respectively and Rm
− =

{u ∈ Rm | u ≤ 0}. An elementary calculation shows that

ψK(u) = sup
v∈K◦

uTv,

where K◦ =
{
u | uTv ≤ 0,∀v ∈ K

}
is the polar cone of the given cone K.

Thus, when θ(u) = ψK(u) we simply take

k ≡ 0 and Y = K◦. (13)

In our example, K◦ = Rm
+ × Rp. To some extent, this is just a formalism

that allows us to claim the classical case as a specialization; however when

we take the cone K to be more general than the polyhedral cone used above,

we can generate conic programs (see below) for example.

The second example involves a piecewise linear function θ:
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Formally, for u ∈ R,

θ(u) =

 ρu if u ≥ 0

σu else.

In this case, simple calculations prove that θ has the form (12) for the choices:

k ≡ 0 and Y = [σ, ρ].

The special case where σ = −ρ results in

θ(u) = ρ |u| . (14)

This allows us to model nonsmooth L1 approximation problems. Another

special case results from the choice of σ = 0, whereby

θ(u) = ρmax{u, 0}.

This formulation corresponds to a soft penalization on an inequality con-

straint, namely if θ(f1(x)) is used then nothing is added to the objective

function if f1(x) ≤ 0, but ρf1(x) is added if the constraint f1(x) ≤ 0 is vio-

lated. Contrast this to the classical setting above, where ∞ is added to the

objective if the inequality constraint is violated. It is interesting to see that

truncating the set Y , which amounts to bounding the multipliers, results in

replacing the classical constraint by a linearized penalty.

The third example involves a more interesting choice of k. If we wish to

replace the \absolute value" penalization given above by a quadratic penal-

ization (as in classical least squares analysis), that is

θ(u) = γu2 (15)
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then a simple calculation shows that we should take

k(y) =
1

4γ
y2 and Y = R.

By simply specifying this di�erent choice of k and Y we can generate such

models easily and quickly within the modeling system: note however that

the reformulation we would use in (14) and (15) are very di�erent as we shall

explain in the simple example below. Furthermore, in many applications it

has become popular to penalize violations using a quadratic penalty only

within a certain interval, afterwards switching to a linear penalty (chosen to

make the penalty function θ continuously di�erentiable - see Huber (1981).

That is:

i.e. θ(u) =


γu− 1

2
γ2 if u ≥ γ

1
2
u2 if u ∈ [−γ, γ]

−γu− 1
2
γ2 else.

Such functions arise from quadratic k and simple bound sets Y . In particular,

the somewhat more general function

θ(u) =


γβ2 + ρ(u− β) if u ≥ β

γu2 if u ∈ [α, β]

γα2 + σ(u− α) else

arises from the choice of

k(y) =
1

4γ
y2 and Y = [σ, ρ],
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with α = σ
2γ

and β = ρ
2γ

.

The �nal example that we give is that of L∞ penalization. This example

is di�erent to the examples given above in that θ is not separable. However,

straightforward calculation can be used to show

θ(u) = max
i=1,...,m

ui

results from the choice of

k ≡ 0 and Y =

{
y ∈ Rm | y ≥ 0,

m∑
i=1

yi = 1

}
,

that is, Y is the unit simplex.

3.2. Underlying theory

The underlying structure of θ leads to a set of extended optimality con-

ditions and an elegant duality theory. This is based on an extended form of

the Lagrangian:

L(x, y) = f0(x) +
m∑
i=1

yifi(x)− k(y)

x ∈ X, y ∈ Y

Note that the Lagrangian L is smooth - all the nonsmoothness is captured in

the θ function. The theory is an elegant combination of calculus arguments

related to fi and its derivatives, and variational analysis for features related

to θ.

It is shown in Rockafellar (1993) that under a standard constraint qual-

i�cation, the �rst-order conditions of (11) are precisely in the form of the

23



following variational inequality:

VI

 ∇xL(x, y)

−∇yL(x, y)

 , X × Y
 . (16)

When X and Y are simple bound sets, this is simply a complementarity

problem.

Note that EMP exploits this result. In particular, if an extended nonlinear

program of the form (11) is given to EMP, then the optimality conditions

(16) are formed as a variational inequality problem and can be processed as

outlined above. For a speci�c example, we cite the fact that if we use the

(classical) choice of k and Y given in (13), then the optimality conditions of

(11) are precisely the standard complementarity problem given as (5). While

this is of interest, we believe that other choices of k and Y may be more

useful and lead to models that have more practical signi�cance.

Under appropriate convexity assumptions on this Lagrangian, it can be

shown that a solution of the VI (16) is a saddle point for the Lagrangian on

X × Y . Furthermore, in this setting, the saddle point generates solutions to

the primal problem (11) and its dual problem:

max
y∈Y

g(y), where g(y) = inf
x∈X
L(x, y),

with no duality gap.
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3.3. A simple example

As an example, consider the problem

min
x1,x2,x3

exp(x1) + 5 ‖log(x1)− 1‖2 + 2 max(x2
2 − 2, 0)

s.t. x1/x2 = log(x3),

3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0.

In this problem, we would take

X =
{
x ∈ R3 | 3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

}
.

The function θ essentially treats 3 separable pieces:

f1(x) = log(x1)− 1,

f2(x) = x2
2 − 2,

f3(x) = x1/x2 − log(x3).

A classical problem would force f1(x) = 0, f2(x) ≤ 0 and f3(x) = 0, while

minimizing f0(x) = exp(x1). In our problem, we still force f3(x) = 0, but

apply a (soft) least squares penalty on f1(x) and a smaller one-sided penal-

ization on f2(x). The above formulation is nonsmooth due to the max term

in the objective function; in practice we could replace this by:

min
x1,x2,x3,w

exp(x1) + 5 ‖log(x1)− 1‖2 + 2w

s.t. x1/x2 = log(x3),

3x1 + x2 ≤ 5, x1 ≥ 0, x2 ≥ 0

w ≥ x2
2 − 2, w ≥ 0
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and recover a standard form NLP. If the penalty on f1(x) would be replaced

by a one-norm penalization (instead of least squares), we would have to play

a similar game, moving the function f1(x) into the constraints and adding

additional variable(s). To some extent, this seems unnatural - a modeler

should be able to interchange the penalization without having to reformulate

the problem from scratch.

The proposed extended NLP would not be reformulated at all by the

modeler, but allows all these \generalized constraints" to be treated in a

similar manner within the modeling system. The actual formulation would

take:

θ(u) = θ1(u1) + θ2(u2) + θ3(u3)

where

θ1(u1) = 5u2
1,

θ2(u2) = 2 max(u2, 0),

θ3(u3) = ψ{0}(u3).

The discussion above allows us to see that

Y = R× [0, 2]×R,

k(y) =
1

20
y2

1 + 0 + 0.

The corresponding Lagrangian is the smooth function:

L(x, y) = f0(x) +
3∑
i=1

yifi(x)− k(y).
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The corresponding VI (16) can almost be formulated in GAMS (except

that the linear constraint in X cannot be handled currently except by intro-

ducing a θ4(x)). Thus

f4(x) = 3x1 + x2 − 5, θ4(u) = ψR−

resulting in the following choices for Y and k:

Y = R× [0, 2]×R×R+,

k(y) =
1

20
y2

1 + 0 + 0 + 0.

Since X and Y are now simple bound sets, (16) is now a complementarity

problem and can be solved for example using PATH. A simple \empinfo" �le

details the choices of Y and k from the implemented library:

Adjusteqn

e1 sqr 5

e2 MaxZ 2

The full model and option �les are available in GAMS Development Corpo-

ration (2009).

3.4. Reformulation as a classical NLP

Suppose

θ(u) = sup
y∈Y
{uTy − 1

2
yTQy, }

for a polyhedral set Y ∈ Rm and a symmetric positive semide�nite Q ∈

Rm×m (possibly Q = 0). Suppose further that

X = {x | Rx ≤ r} , Y =
{
y | STy ≤ s

}
,

Q = DJ−1DT , F (x) = (f1(x), . . . , fm(x)),
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where J is symmetric and positive de�nite (for instance J = I). Then, as

outlined by Rockafellar (1999), the optimal solutions �x of (11) are the �x

components of the optimal solutions (�x, �z, �w) to

min f0(x) + sT z + 1
2
wTJw

s.t. Rx ≤ r, z ≥ 0, F (x)− Sz −Dw = 0.

The multiplier on the equality constraint in the usual sense is the multiplier

associated with �x in the extended Lagrangian for (11). (Note that a Cholesky

factorization may be needed to determine D.)

It may be better to solve this reformulated NLP than to solve (16). How-

ever, it is important that we can convey all types of nonsmooth optimization

problems to a solver as smooth optimization problems, and hence it is impor-

tant to communicate the appropriate structure to the solver interface. We

believe that specifying Y and k is a theoretically sound way to do this.

Another example showing formulation of an extended nonlinear program

as a complementarity problem within GAMS can be found in Dirkse and

Ferris (1995).

4. More Allowable Model Constructs

4.1. Disjunctive Programs

There are many ways that the EMP model type can be used for further

extensions to the modeling capabilities of a given system. In particular, the

procedures outlined in Vecchietti et al. (2003) for disjunctive programming

extensions are also implemented within the EMP model type.

One simple example to highlight this feature is the notion of an ordering

of tasks, namely that either job i comes before job j or the converse. Such a
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disjunction can be speci�ed using an empinfo �le containing lines:

disjuncton * seq(i,j) else seq(j,i)

In such an example, one can implement a Big-M method, employ indicator

constraints, or utilize a convex hull reformulation. The convex hull reformu-

lation is the default strategy; to utilize the Big-M formulation, the additional

option

default bigm 1000

would add binary variables and constraints to impose the disjunction using a

Big-M value of 1000. Alternatively, for the CPLEX solver, the option setting

(for EMP):

default indic

writes out a model and a CPLEX option �le that implements a reformulation

using indicator constraints. The EMP model library that is part of the

standard GAMS distribution contains a sequencing model that implements

all of these options.

More complicated (nonlinear) examples make the utility of this approach

clearer. The design of a multiproduct batch plan with intermediate storage

described in Vecchietti and Grossmann (1999) and a synthesis problem in-

volving 8 processes from Turkay and Grossmann (1996) are also included in

the EMP model library. As a �nal example, the gasoline emission model out-

lined in Furman and Androulakis (2008) is precisely in the form that could

exploit the features of EMP related to (nonlinear) disjunctive programming.
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4.2. Conic Programming

A problem of signi�cant recent interest (due to its applications in robust

optimization and optimal control) involves conic constraints (Lobo et al.,

1998; Alizadeh and Goldfarb, 2003; Ben-Tal and Nemirovskii, 2001):

min
x∈X

pTx s.t. Ax− b ≤ 0, x ∈ C,

where C is a convex cone. Using the notation outlined above, this can be

expressed as an EMP:

min
x∈X

pTx+ ψRm
−

(Ax− b) + ψC(x)

For speci�c cones such as the Lorentz (ice-cream) cone where C =
{
x ∈ Rn | x1 ≥

√∑n
i=2 x

2
i

}
,

or the rotated quadratic cone, there are e�cient implementations of interior

point algorithms for their solution (Andersen et al., 2003). It is also possi-

ble to reformulate the problem in the form (1) for example by adding the

constraint

x1 ≥

√√√√ n∑
i=2

x2
i . (17)

Annotating the variables that must lie in a particular cone using a \empinfo"

�le allows solvers like MOSEK (Andersen and Andersen, 2000) to receive

the problem as a cone program, while standard NLP solvers would see a

reformulation of the problem as a nonlinear program. It is also easy to see

that (17) can be replaced by the following equivalent constraints

x2
1 ≥

n∑
i=2

x2
i , x1 ≥ 0.

Such constraints can be added to a nonlinear programming formulation or

a quadratically constrained (QCP) formulation in GAMS. This automatic
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reformulation allows the CPLEX solver to process these problems since its

barrier solver will process constraints of the form

y2 ≥ xTQx, y ≥ 0, Q PSD.

Details on the options that implement these approaches can be found in the

EMP manual.

Furthermore, it is straightforward to facilitate the use of stochastic con-

straints that have become very popular in �nancial applications. Speci�-

cally, we mention the work of Rockafellar and Uryasev (2000) on conditional

value at risk, and the recent papers by Dentcheva and Ruszczy�nski (2003),

and Luedtke (2008) on stochastic dominance constraints. All of these for-

mulations are easily cast as constraints on decision variables annotated by

additional (in this case distributional) information.

4.3. Embedded Complementarity Systems

A di�erent type of embedded optimization model that arises frequently

in applications is:

min
x

f(x, y)

s.t. g(x, y) ≤ 0 (⊥ λ ≥ 0)

H(x, y, λ) = 0 (⊥ y free)

Note the di�erence here: the optimization problem is over the variable x,

and is parameterized by the variable y. The choice of y is �xed by the

(auxiliary) complementarity relationships depicted here by H. Note that the

\H" equations are not part of the optimization problem, but are essentially

auxiliary constraints to tie down remaining variables in the model.

Within GAMS, this is modeled as:
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model ecp /deff,defg,defH/;

solve ecp using emp;

Again, so this model can be processed correctly as an EMP, the modeler pro-

vides additional annotations to the model de�ning equations in an \empinfo"

�le, namely that the function H that is de�ned in defH is complementary to

the variable y (and hence the variable y is a parameter to the optimization

problem), and furthermore that the dual variable associated with the equa-

tion defg in the optimization problem is one and the same as the variable λ

used to de�ne H:

dualequ H y

dualvar lambda g

Armed with this additional information, the EMP tool automatically creates

the following MCP:

0 = ∇xL(x, y, λ) ⊥ x free

0 ≤ −∇λL(x, y, λ) ⊥ λ ≥ 0

0 = H(x, y, λ) ⊥ y free,

where the Lagrangian is de�ned as

L(x, y, λ) = f(x, y) + λTg(x, y).

Perhaps the most popular use of this formulation is where competition is

allowed between agents. A standard method to deal with such cases is via

the concept of Nash Games. In this setting x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i(xi, x
∗
−i, q),∀i ∈ I,

32



where x−i are other players decisions and the quantities q are given exoge-

nously, or via complementarity:

0 ≤ H(x, q) ⊥ q ≥ 0.

This mechanism is extremely popular in economics, and Nash famously won

the Nobel Prize for his contributions to this literature.

This format is again an EMP, more general than the example given above

in two respects. Firstly, there is more than one optimization problem spec-

i�ed in the embedded complementarity system. Secondly, the parameters

in each optimization problem consist of two types. Firstly, there are the

variables q that are tied down by the auxiliary complementarity condition

and hence are treated as parameters by the ith Nash player. Also there are

the variables x−i that are treated as parameters by the ith Nash player, but

are treated as variables by a di�erent player j. While we do not specify the

syntax here for these issues, GAMS Development Corporation (2009) pro-

vides examples that outline how to carry out this matching within GAMS.

Finally, two points of note: �rst it is clear that the resulting model is a com-

plementarity problem and can be solved using PATH, for example. Secondly,

performing the conversion from an embedded complementarity system or a

Nash Game automatically is a critical step in making such models practically

useful.

We note that there is a large literature on discrete-time �nite-state stochas-

tic games: this has become a central tool in analysis of strategic interactions

among forward-looking players in dynamic environments. The Ericson and

Pakes (1995) model of dynamic competition in an oligopolistic industry is

exactly in the format described above, and has been used extensively in

33



applications such as advertising, collusion, mergers, technology adoption, in-

ternational trade and �nance. Ongoing work aims to use the EMP format

to model these problems.

5. Conclusions

A number of new modeling formats involving complementarity and vari-

ational inequalities have been described and a framework, EMP, that allows

such problems to be speci�ed has been outlined. We believe this will make a

modeler’s task easier by allowing model structure to be described succinctly.

Furthermore, model generation can be done more reliably and automatically,

and algorithms can exploit model structure to improve solution speed and

robustness.

We believe that EMP will be useful in systems optimization where collec-

tions of interacting (optimization and complementarity) models need to be

processed. The automatic reformulations of these problems will save time,

improve accuracy, and expand the range of problems that can be practica-

bly solved. While the implementation described in this paper was developed

for the GAMS modeling system, we believe that most of the features are

applicable to any modeling system. Speci�cally, equation annotations can

be provided in AMPL via user-de�ned constructs while the object oriented

design of MATLAB could easily be extended to this setting.
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