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Abstract

The paper proposes a dynamic version of the frictionless Becker-Shapley-Shubik

marriage matching model with transferable utility. Its primary objective is to de-

velop a tractable model that rationalizes the marriage distribution of ‘who marries

whom’ by age. This behavioral dynamic model rationalizes a new marriage match-

ing function. An empirical methodology that relies on the equilibrium outcomes

of the model identifies the marital preferences over spouses. This framework also

allows the inverse problem of computing the vector of aggregate marriages given

a new distribution of available single individuals and estimated preferences to be

solved. The solution to this inverse problem has been shown to exist under mild

conditions. This paper also develops a simple test of the model’s empirical validity.

Using aggregate data of new marriages and available single men and women in the

US in 1970, 1980 and 1990, I investigate the changes in the gains to marriage over

this period.
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1 Introduction

The marriage distribution of ‘who marries whom’ by age shows many well known empir-

ical regularities. There is strong assortative matching by age with men marrying slightly

younger women. As the number of available single men and women falls with age, so do

the marriage rates. While these empirical regularities are not static and have changed

over time and differ across countries, these qualitative features have generally remain

consistent. The timing of marriage has a significant effect on the formation and organi-

zation of families, including the timing of childbirth, the division of home production,

etc.

The paper proposes a dynamic version of the frictionless Becker-Shapley-Shubik mar-

riage matching model using transferable utility. Its primary objective is to develop a

tractable dynamic model that rationalizes the marriage distribution of ‘who marries

whom’ by age together with its empirical regularities. It also extends the static friction-

less marriage matching framework of Choo and Siow (2006) into an overlapping genera-

tions framework. The behavioral dynamic model rationalizes a new marriage matching

function. I develop an empirical methodology to identify preferences over spouse from

marriage that relies on the equilibrium outcomes of the model. It provides an economic

interpretation of these estimated parameters.1 This framework also allows the inverse

problem of computing the vector of aggregate marriage given a new distribution of avail-

able single individuals and estimated preferences to be solved. The proposed type of

transferable utility matching model that has been shown to be equivalent to an optimal

transportation linear programming problem. The solution to this type of problems has

been shown to exist under mild conditions. This paper also develops a simple test of

the model’s empirical validity. Using aggregate data of new marriages and available

single men and women in the US in the 1970 and 1980, I demonstrate its application by

looking at the the changes in the gains in marriage over this decade and compare the

results with those obtained from a static model.

1In a stationary environment, these estimated parameters are invariant to the confounding effects of

changes in the number of available single individuals over the life-cycle.
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Over the two decades from 1970 to 1990, there has been a well documented fall in

the marriage rates in the US. Part of this decline can be explained by socio-political

changes that affected the institution of marriage. Changes like the national legalization

of abortion following the Supreme Court ruling on Roe versus Wade has been argued to

lower the gains to marriage. The empirical methodology developed in this paper allows

the total gains to marriage to be identified. This is the present discounted net present

value from marriage today relative to the present discounted per period utility from

remaining single (forever). The empirical analysis shows that the dynamic component

of the gains to marriage is a large component of the total gains from marriage. This

is especially true since most marriage occur when individuals are young when there are

still many future opportunities of participating in the marriage market as the individuals

age. The decision to marry early suggests that the implied present discounted relative

returns from locking into marriage early is high. When analyzing the change in the

gains to marriage over these two decades, I show that ignoring the dynamic component

of marriage gains severely understate the decline in the gains to marriage among the

young.

The first empirical implementation of the static Becker-Shapley-Shubik marriage

matching model with additively separable utilities in a discrete choice framework was

proposed in Choo and Siow (2006). This paper maintains many of the minimal a priori

assumptions of the static marriage matching model of Choo and Siow (2006). Method-

ologically, the formulation of the model in this paper uses the dynamic discrete choice

framework of Rust (1987). The joint payoff to a match depends on the ages of the

couple. Each cohort of single males and females enters the marriage market at age zero.

At each age, a single individual faced with the marital returns associated with his or her

age decides whether to marry or remain single. In this dynamic environment, the single

individual understand that his or her type changes over time as he or she ages. The

agents are rational and have an expectation of the marriage opportunities in the future

as they age.

An earlier paper of Choo and Siow (2005) also shares a similar objective of attempting

to model the bivariate marriage distribution by age and uses the same building block of
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the dynamic discrete choice framework of Rust (1987). While it shares this similarities,

these papers differ in many ways. Choo and Siow (2005) proposes a general equilibrium

framework that allows different theories of marital and home production to be tested.

Choo and Siow (2005) embeds a marriage matching framework into a set of endogenous

population accounting equations. These different theories are tested by putting restric-

tions on a linearized per period gains from marriage. Choo and Siow (2005) provides a

nice and intuitive approximation to the per period gains from marriage.2 The general

equilibrium structure of the model in Choo and Siow (2005) made it impossible to solve

the model. Instead of solving the model, Choo and Siow (2005) took a different approach

where a linearized structure was placed on the per period utilities from marriage. This

linearization allowed us to empirically approximate the benefit of delaying marriage for

one period versus marrying today using the growth rate of marriages. This approxima-

tion become the basis on which different theories of marital and home production were

tested.

The dynamic model in this paper takes a more modest partial equilibrium approach.

It takes the vector of available single individuals at the beginning of each period as

given. I do not model how this vector of single individuals evolve dynamically and how

it is affected by mortality, migration and marriage. This paper also proposes a very

different representation of the dynamic problem that is empirically tractable. This new

representation allows me to solve the model and derive the implied closed form marriage

matching function. This new marriage matching function is the dynamic analogue of

the one proposed in Choo and Siow (2006). I also propose a new empirical methodology

that relies on the equilibrium outcomes of the model to identify the primitives of the

model. Unlike Choo and Siow (2005), no structure is placed on the per period marital

returns. This paper also focuses on identification of net present discounted utility from a

match and the inverse problem associated with the application of the marriage matching

function.

2The survey paper of Siow (2008) also provides a two period detailed exposition of the dynamic

model of Choo and Siow (2005).
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Related Literature:

There is a growing body of empirical papers on marriage matching. Choo and Siow

(2006) proposed an equilibrium model of static marriage matching using the the discrete

choice framework. Browning, Chiappori and Weiss (2007) and Chiappori, Salaniè and

Weiss (2010) provides a stable matching characterization for preference utility that main-

tain the additive separability structure first introduced in Choo and Siow (2006). They

showed that the additively separable structure reduces the complexity of stable match-

ing into a set of simple inequalities easily satisfied by the probabilistic discrete choice

framework of Choo and Siow (2006). A number of papers have proposed generalizations

to the Choo and Siow’s empirical framework. Chiappori, Salaniè and Weiss (2010) and

Galichon and Salaniè (2011) both have proposed distributional generalizations to the

idiosyncratic shocks allowing for heterogeneity. The former paper uses this more general

characterization to investigate the marital college premium. Focusing on the social sur-

plus function as the basis for their empirical application, Galichon and Salaniè(2010) also

propose parametric approach that allows matching across many observable attributes.

These papers maintain a static characterization of marriage matching which the current

paper generalizes.

Decker, Lieb, McCann and Stephens (2010) provides a simple and elegant test for

the Choo and Siow model. Their test exploits symmetry restrictions on the cross type

marriage elasticity matrix. In words, the symmetry restriction requires that the elasticity

of type i single men to the supply of type j women be equal to the elasticity of the type

j single women with respect the supply of type i men. This restriction is reminiscent

of the Independence of Irrelevant Alternatives (IIA) property brought about by the

i.i.d. additive utility error imposed by the discrete choice structure (see McFadden

(1973) and Debreu (1960)). The exact cost of this restriction in the context marriage

matching model maintaining the Choo and Siow structure remains to be seen. A large

body of literature in empirical Industrial Organization is devoted to overcoming the IIA

properties of the discrete choice models.

Fox (2009) focuses on identifying preferences in transferable utility models applied

to individual-level data. He proposes a maximum-score estimator based on a “pairwise
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stability” requirement. When the matching markets gets large, these pairwise stability

conditions become computationally infeasible. Fox shows that as long as the “rank-order

condition” holds, only a subset of the inequalities need to be used in the estimation.

There is a few papers that look at the empirical implications of the non-transferable

utility models on individual level matchings. Most notable is Echenique, Lee, Shum

and Yenmez (2011) which is the first paper to derived the empirical implications of

stable two-sided matching. The authors develop a revealed preference theory for stable

matching and propose a non-parametric test for stability. They show that transferable

utility matching theory is empirically nested in non-transferable utility matching theory.

There is also a growing number of empirical papers that investigate the nature of

marriage matching preferences through field experiments. Dugar, Bharttacharya and

Reiley (2011) conduct an experiment to analyze how single men and women are willing

to trade social status in India in the form of caste in the presence of strong economic

incentives using a reputable (real world) Bengali arranged marriage market. The authors

placed newspaper advertisements of potential grooms that systematically vary their caste

and income and focused on responses of higher-caste females to lower-caste males.3 The

authors provide strong empirical evidence suggesting that despite strong caste-based

discrimination, higher-status females are willing to trade caste-status for an increase in

the advertised income of lower-status males.4

A closely related paper is Hitsch, Hortaçsu and Ariely (2010), which focus on iden-

tifying preferences separately from the matching process. Employing a dataset from an

online dating service, they estimate a rich specification of preference over spousal phys-

ical and socio-economic characteristics. Using the estimated preferences, they simulate

the men- and women-optimal matchings using the Gale-Shapley’s deferred acceptance

algorithm. The paper goes on to compare these optimal matchings to the actual matches

observed in the online dating dataset.

3Higher-caste females lose their caste-status if they marry a lower-caste male.
4Using a major online dating website in South Korea, Lee and Niederle (2011) conducted an exper-

iment to see how preference signaling in the form of a virtual rose can help chances in online dating.
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2 A Dynamic Matching Model

2.1 Preview of Results

The equilibrium dynamic marriage matching model in this paper delivers a new marriage

matching function given by equation (1) below. A marriage matching function, denoted

by µ= G(m, f ; Π), is a simple reduced form way of characterizing the entire distribution

of marriages, µ as a function of exogenous factors that include a vector of available

single men, m, a vector of available single women, f and a matrix of parameters, Π. m

denotes an (Z × 1) vector of available men by type. The ith element of this vector, mi

denotes the stationary number of available age i men. Similarly, f denotes the (Z × 1)

vector of available women where the jth element of this vector, fj denotes the stationary

number of available age j women. Let Π be an (Z×Z) matrix of parameters, its (i, j)th

element is denoted by Πij. G() is a function that returns an (Z×Z) matrix of marriages

µ, whose (i, j)th element, µij gives the number of marriages between type i men and

type j women.

The marriage matching function is given by,

µij = Πij

√
mifj

zij∏
k=0

(µi+k,0µ0,j+k

mi+kfj+k

) 1
2
(βS)k

. (1)

The term zij = Z−max (i, j) ≥ 0 represents the maximum length of a match before one

of the spouse in the match passes away at the terminal age Z. S denotes the probability

a marriage survives in any period5 and β is the per period discount factor. µi0 and µ0j

denote the number of type i men and type j women who chose to remain single at age i

5For ease of exposition, the survival rate (which is one less the divorce rate) of a marriage has been

assumed to be constant across types of matches and tenure of marriage. This can easily be relaxed.

While the functional form of the matching function will change, the qualitative results remain the same.
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and j respectively. This equation also needs to satisfy a set of accounting constraints.6

I will show that the structural parameter ln Πij can be interpreted as the present

discounted value from an (i, j) marriage relative to the present discounted per-period

utility for the couple from being single forever. I outline an estimation strategy to point

identify the matrix of parameters Π given a vector of aggregate matches and available

individuals, (µ,m,f). These parameters are structural in that they are invariant to

marriage market demand and supply changes and capture the preferences of individuals

in the market. For the empirical application of this model, practitioners are often in-

terested in the inverse problem.7 That is, given an estimated vector Π consistent with

a vector of aggregate matches (µ,m,f), satisfying equation (1) and the accounting

constraints, how do changes in the vector of available men and women affect the distri-

bution of matches. I will show that conditional on the exogenous vectors (Π, m∗, f ∗)

a solution to the marriage matching function exist. Using the representation of the

equilibrium in terms of multinomial probabilities, I propose a bootstrap procedure to

deriving the standard errors for the estimated preferences. I also propose a simple test

for the model. In the empirical application, I use this model to analyze the change in

gains from marriage in the US between 1970 and 1990. This result is compared with the

static matching model of Choo and Siow (2006).

6The accounting constraints are

µ0j +

Z∑
i=1

µij = fj ∀ j,

µi0 +

Z∑
j=1

µij = mi ∀ i,

µ0j , µi0, µij ≥ 0 for all i and j.

I will describe these constraints in more detail in Section 2.4.
7Decker, Lieb, McCann and Stephens(2010) used the term Choo-Siow Inverse Problem to describe

a similar problem in the static marriage matching model of Choo and Siow (2006).
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2.2 Assumptions

The proposed framework employs the dynamic discrete choice framework introduced by

Rust (1987). Agents are horizontally differentiated into types that change over time.8

Specifically, I focus on type as defined by age and attempt to empirically characterize

the marriage distribution by age.9

Stationarity: Consider a stationary society populated by overlapping generations of

adults. For expositional convenience, I assume that each individual lives for Z periods

irrespective of gender.10 The youngest adult is of age one. The age of a male is indexed

by i and the age of a female is indexed by j. In any period, the type of an adult is

defined by his or her age, and let mi and fj denote the numbers of single males of age

i and females of age j at the beginning of each period. The society is stationary in the

sense that the vector single men and women {mi}Zi=1 and {fj}Zj=1 are exogenous and

taken as given.11

State Variables: Any single type i male indexed g (or type j female indexed G) in

each period is characterized by two state variables,

• i (or j) ∈ {1, . . . , Z} is his (or her) age when single, and

• εig, (or εjG,) is a (Z+1) vector of i.i.d idiosyncratic payoffs or match specific errors

specific to type i male individual, g (or type j female, G), that is unobserved to

8Sautmann (2011) extends the Shimer and Smith’s (2000) transferable utility model of search and

matching to allow for types (defined by age) that change continuously over time. She derives conditions

for positive and negative assortative matching and differential age matching.
9While age is clearly not a complete characterization of type, the proposed methodology can be

easily extended to deal with fixed horizontal attributes or types such as race, religion and education.
10This assumption can be relaxed to allow for differential mortality by age and gender without

changing the qualitative results of the model.
11This is a restrictive assumption. An earlier paper, Choo and Siow (2005) take an more general

equilibrium approach and allows for endogenous vectors of single men and women within a different

dynamic model of marriage. This paper posits a set of accounting equations in which the number of

single men and women are endogenously determined by their behavioral dynamic model.
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the econometrician.

At each period a single type i male g (or single type j female G) faces a random utility

draw from each type of spouse available and from remaining single that period. He or

she chooses the option that maximizes his or her discounted expected utility. At the

beginning of each period, the single male g gets to observe the (Z + 1) × 1 vector of

idiosyncratic payoffs εig = {εi0g, εi1g, . . . εiZg, } before deciding on a utility-maximizing

decision. Similarly single female G observes a [(Z+1)×1] vector of idiosyncratic payoffs

εjG. Single adults can choose whether or not to marry. These type specific idiosyncratic

draws do not depend on the identity of the spouse the single decision maker meets or

matches with.

Actions: aig (or ajG) denote the action of a single type i male g (or single type j female

G) where aig (or ajG) ∈ {0, 1, . . . , Z}. If he (or she) chooses to remain single, aig = 0 (or

ajG = 0), else if he (or she) chooses to match with a type k spouse, aig = k (or ajG = k).

Exogenous Parameters: The time discount factor is denoted by β ∈ (0, 1). Marriages

may end in divorce or the death of a spouse. Divorce occurs at some exogenous rate,

δ. I assume that δ = 0 in the first year of marriage for all (i, j) pairs and δ = 1 in the

kth year where max(i, j) + k > Z. If divorce occurs in period k of a marriage, where

1 ≤ k ≤ Z − max(i, j), the individuals g and G reenter the marriage market as single

individuals of age i+ k and j + k respectively. Let the survival probability of marriage

be denoted by S = 1− δ. 12 I do not distinguish the previous marital status of the single

men and women.

AS and CI: The specification of preferences over partners satisfy two assumptions: the

Additive Separability and Conditional Independence assumptions. Both these assump-

tions were introduced by Rust (1987) in the context of a single agent dynamic discrete

choice model. Let the utility of a single male g with state vector (i, εig) from action

aig be denoted by v(aig, i, εig). The utility of a single female individual G with state

12The formulation carries through when I allow for duration dependence in the divorce hazard.
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vector (j, εjG) from action ajG be denoted by w(ajG, j, εjG). I assume that the following

assumptions hold:

Assumption AS Additive Separability:

The utility functions v(aig, i, εig) and w(ajG, j, εjG) have additively separable de-

compositions of the form,

v(aig, i, εig) = va(i) + εiag, (2)

w(ajG, j, εjG) = wa(j) + εjaG, (3)

where εiag and εjaG are the ath component of the vector εig and εjG respectively.

Assumption CI Conditional Independence:

The transition probability of the state variables for males and females respectively

factorize as

P{i′, ε′ig | i, ε, a} = h(ε | i) · Fa(i′ | i), (4)

P{j′, ε′jG | j, ε, a} = h(ε | i) · Ra(j
′ | j), (5)

where h(ε) is the multivariate pdf of the i.i.d ε, and Fa(i′ | i) (or Ra(j
′ | j)) is the

probability that the male (or female) individual will next be single again at i′ (or

j′) given action a and his (or her) current age i (or j).

I also maintain the assumption introduced in Choo and Siow (2006) that εig is drawn

from MacFadden’s type I extreme value distribution.13

The CI limits the dependence structure on the state variables. As discussed in Rust

(1994), it says that the observed states i′ (and j′) are sufficient statistics for the unob-

served states ε′ig (and ε′jG). Any dependence between ε′ and ε is transmitted through

ages i′ and j′. Fa(i′ | i) is the transition probability that a type i male g will next find

himself single at age i′ given his action a at age i. Similarly Ra(j
′ | j) is the transition

probability that a type j female G will next find herself single at age j′ given her action

13The marginal density is given by h(εig | i) =
∏Z

aig=0 exp[−εiag + c] exp[− exp(−εiag + c)], where c

is the Euler constant.
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a. ε are iid noise that are superimposed on this process. I will go into the details of the

structure of the utilities in the next section.

Fa(r | i) is the transition probability that a type i male g will next find himself single

at age r given his action a. Clearly Fa(r | i) = 0 for all r ≤ i and all a. If g chooses to

be single a = 0, F0(r | i) = 1 for r = i + 1 and zero elsewhere. If g chooses to match

with a type j spouse (a=j), Fa(r | i) takes the form, For i < r ≤ Z,

Fa(r | i) =

 δ(βS)r−(i+1), if i+ 1 ≤ r ≤ i+ zij

(βS)r−(i+1), if r > i+ zij.
(6)

Similarly Ra(r | j) is the transition probability that a type j female G will next find

herself single at age r given her action a. Ra(r | j) = 0 for all r ≤ j and all a. For action

a = 0, R0(r | j) = 1 for r = j + 1 and zero elsewhere. If she chooses to match with a

type i spouse (a=i), Ra(r | j) takes the form,

Ra(r | j) =

 δ(βS)r−(j+1), if j + 1 ≤ r ≤ j + zij

(βS)r−(j+1), if r > j + zij.
(7)

Functional Form of Utilities: The model adopts a full commitment framework; the

decision to marry locks an individual into a stream of payoffs in the event that the

marriage does not dissolve due to divorce or death of either spouse. Let αijk be the

k′th period marital output accrued to a type i male when married to a type j female

today. Similarly γijk be the k′th period marital output accrued to a type j female when

married to a type i male.

Suppose male g (or female G) chooses to marry an age j female (or i male), his (or

her) one period utility functions (given by Equations (2) and (3) above) respectively are

v(aig = j, i, εig) =

 αi(j)− τ ij + εijg, if 1 ≤ a ≤ Z

αi0 + εi0g, if a = 0, and
(8)

w(ajG = i, j, εjG) =

 γj(i) + τ ij + εijG, if 1 ≤ a ≤ Z

γ0j + ε0jG, if a = 0,
(9)
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where the present discounted gains from the match αi(j) and γj(i) take the form,

αi(j) =

zij∑
k=0

(βS)k αijk, and γj(i) =

zij∑
k=0

(βS)k γijk. (10)

αi0 and γ0j are the per-period utilities from remaining single for i type males and j type

females respectively. Recall that zij = Z − max (i, j) captures the maximum length of

the match given the terminal age of Z.

Equation (8) says that if g marries a type j women, he receives the mean utility

from the match equal to αi(j) − τ ij, plus an idiosyncratic shock εijg. The mean utility

depends only on the type of men and women in the match and does not depend on

the precise identity of the spouse or the decision maker g.
∑zij

k=0(βS)k αijk captures the

present discounted stream of male marital payoffs in the event that the marriage does

not dissolve. In choosing this match, g commits to pay a once off transfer, τ ij specific

to these two types of individuals matching. Similarly in equation (9), single females G

of type j who decide to marry type i men agree to receive this equilibrium transfer.

In accepting the match, she locks herself to a stream of marital payoffs, of which the

present discounted value equals
∑zij

k=0(βS)k γijk. So, if individual g of type i wants to

marry a woman G of type j, he has to transfer τ ij of marital output to her. Similarly,

if woman G of type j wants to marry man g of type i, she has to be willing to accept

τ ij of marital output from him. Each individual takes τ ij as exogenous. The marriage

market clears when given τ ij, for every i, j, the number of type i men who want to marry

type j women is equal to the number of type j women who want to marry type i men.

This transfer can be positive or negative. In this full-commitment model, the one time

payment of τ ij fully internalizes the discounted stream of within marriage utilities for

this couple, the exogenous divorce probabilities and the relative scarcity of males and

females in the system.

2.3 The Agents’ Decision Problem

The single male at age i chooses a sequence of decisions aig = {aig, ai+1g, . . . aZg}, where

aig = a(i, εig) ∈ {0, 1, . . . , Z} is the expected discounted utilities maximizing choice g
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makes in the event that he is single at age i. The value function Vα(i, εg) is defined by

Vα(i, εig) = max
a

E
{ Z∑

k=i

βk−i
(

[αk(akg)− τ ka]I(akg 6= 0) + αk0I(akg = 0) + εkag

)
| i, εig

}
.

Similarly for single age j women G, her value function takes the form

Wγ(j, εjG) = max
a′

E
{ Z∑
k=j

βk−i
(

[γk(a
′
kG)+τak]I(a′kG 6= 0)+γ0kI(a′kG = 0)+εakG

)
| j, εjG

}
.

where a′jG = {a′jG, a′j+1G, . . . , a
′
ZG}. The Bellman equations for male g and female G

respectively takes the familiar form

Vα(i, εg) = maxa

{
[αi(a)− τ ia]I(a 6= 0) + αi0I(a = 0) + εiag

+βE
(
Vα(i′, ε′g) | i, εg, a

)}
,

Wγ(j, εG) = maxa′
{

[γj(a
′) + τa′j]I(a′ 6= 0) + γ0jI(a′ = 0) + εa′jG

+βE
(
Wγ(j

′, ε′G) | j, εG, a′
)}
.

Integrated Value Functions: Rust (1987) showed that Assumptions AS and CI allow

the Bellman equations be represent in a form where the unobservables are integrated

out. Let V i and W j be the corresponding integrated value function for a single age

i male and j female respectively. That is V i = EVα(i, εg) =
∫
Vα(i, εg) dH(εg) and

W j = EWγ(j, εG) =
∫
Wγ(j, εG) dH(εG). The integrated Bellman equation for a single

type i male and type j female then takes the form,

V i =

∫
maxa∈D

{
[αi(a)− τ ia]I(a 6= 0) + αi0I(a = 0) + εiag

+β
∑
i′

Fa(i′ | i) · V i′

}
h(dε), (11)

W j =

∫
maxa∈D

{
[γj(a) + τaj]I(a 6= 0) + γ0jI(a = 0) + εajG

+β
∑
j′

Ra(j
′ | j) ·W j′

}
h(dε). (12)

14



Consider decomposing the integrated value function V i and W j in equations (11)

and (12) into a mean component that is dependent on the utility maximizing choice

and an idiosyncratic component. This decomposition together with the distributional

assumption provides a closed form representation for the conditional choice probabilities

of a particular type of spouse.

The mean component also referred to as the choice specific value functions for type

i males and j females is denoted by ṽij and w̃ij respectively. They are

w̃ij = [γj(i) + τ ij]I(i 6= 0) + γ0jI(i = 0) +
∑
j′

Ri(j
′ | j) ·W j′

ṽij = [αi(j)− τ ij]I(j 6= 0) + αi0I(i = 0) +
∑
i′

Fj(i′ | i) · V i′ .

This provides an alternative representation for male g’s and female G’s optimization

problem that is convenient when talking about stability in Section 2.7.14 The value

functions can now be written as

V (i, εig,α) = max
a∈D

{
ṽia + εiag

}
(13)

W (j, εjG,γ) = max
a∈D

{
w̃aj + εajG

}
(14)

Let the conditional choice probability Pij denote the probability that choice j is the

optimal choice for males at age i, that is Pij =
∫
I{j = arg maxa∈D (ṽia + εiag)}h(dε).

Similarly for females, Qij is the probability that choice i is the optimal choice for females

at age j. That is, Qij =
∫
I{i = arg maxa∈D (w̃aj + εajG)}h(dε). The conditional choice

probability can be expressed as a function of the normalized choice value functions,

(ṽij − ṽi0). In our case, the probability that a type i male who matches with a type j

female will have the familiar multinomial logit form,

Pij =
exp(ṽij − ṽi0)

1 +
∑Z

r=1 exp(ṽir − ṽi0)
, (15)

and similarly for females,

Qij =
exp(w̃ij − w̃0j)

1 +
∑Z

r=1 exp(w̃rj − w̃0j)
. (16)

14Browning, Chiappori and Weiss (2007) and Chiappori, Salaniè and Weiss (2010) provided a proof

of the existence of ṽij and w̃ij . Berry (1994) also provided a proof of uniqueness in the context of

differentiated goods demand models.
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In this finite horizon case, the integrated value functions for male and females also

take a convenient recursive structure,

V i =

 αi0 + c+ βV i+1 − lnPi0 : i < Z

αi0 + c− lnPi0 : i = Z
(17)

W j =

 γ0j + c+ βW j+1 − lnQ0j : j < Z

γ0j + c− lnQ0j : i = Z
(18)

Equation 17 says that the expected value of participating in the marriage market at age

i, V i can be divided into two components. The first is the expected utility from being

single this period which is comprised of αi0 + c and the expected value of participating

in the marriage market next period as an older (i+ 1) individual represented by βV i+1.

The second term, − logPi0 captures the expected utility from choosing to be married at

age i. If the marriage rate for type i males is high, (or the probability of being single,

Pi0 is low), then the expected utility from being locked into marriage is high.

2.4 Equilibrium and the Dynamic Marriage Matching Function

The log-odds ratio of an (i, j) match relative to i remaining single in can also be expressed

in terms of normalized choice specific value functions, ṽij− ṽi0. It describes the expected

payoffs for an i type male marrying a j type female relative to remaining single that

period. This is given by

log
{Pij
Pi0

}
= αi(j)−αi(0)− τ ij −

zij∑
k=1

(βS)k
(
c+ lnP−1i+k,0

)
(19)

The term αi(j) =
∑zij

k=1(βS)kαijk represents the stream of expected period utility he

gets from the match in the event that the marriage does not dissolve. Abusing notation

slightly, αi(0) denotes
∑zij

k=1(βS)kαi+k,0. In the event of divorce or death of a spouse

at age (i + k) < Z where 0 < k ≤ zij, his expected value of being single is αi+k + c +

lnP−1i+k,0 + βV i+k+1. By repeated use of the recursive equations (17) and (18), it can be

shown that at each age i + k of marriage, the difference in expected utility from being

locked in marriage and participating in the marriage market that period is represented
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by αik,j+k − αi+k,0 − β(1 − δ)(c + lnP−1i+k,0). lnPi+k,0 is a statistic for the gains from

participating in the marriage market at i + k. In choosing this match, the i type male

commits to pay a one-time match specific transfer τ ij to his spouse.

Similarly for females, the log-odds ratio that a j type female marries an i type

male relative to remaining single equals the difference in choice specific value functions

w̃ij − w̃i0. That is,

log
{Qij
Q0j

}
= γj(i)− γj(0) + τ ij −

zij∑
k=1

(βS)k
(
c+ lnQ−10,j+k

)
(20)

Equation (20) gives the difference in systematic expected payoffs for a j type female

marrying an i type male relative to remaining single that period. The interpretation of

the various terms in (20) is analogous to that for males. Recall that γkij is the females

share of the marital output in the k′th period of marriage for a couple that marry when

the male and female ages are i and j respectively. When the marriage does not dissolve,

the female share of the discounted within marriage payoffs is γj(i) =
∑zij

k=1(βS)kγijk If

she agrees to this match, she receives an equilibrium transfer τ ij from her partner. Given

that divorce occurs at an exogenous rate δ, the term δ(γ0,j+k+c+βW 0,j+k+1+lnQ−10,j+k)

captures the expected value of re-entering the marriage market in the future in the event

of divorce. The first term γ0j is the systematic payoff to j from remaining single which

is common to all j females. The interpretation of the remaining parameters is analogous

to the male counterpart of equation (20).

Rearranging the terms of the the log-odds ratios in Equations (19) and (20) delivers

a system of (Z × Z) quasi-demand and quasi-supply equations respectively.

lnPij −
zij∑
k=0

(βS)k lnPi+k,0 = αi(j)−αi(0)− τ ij − κ (21)

lnQij −
zij∑
k=0

(βS)k lnQ0,j+k = γj(i)− γj(0) + τ ij − κ. (22)

The constant κ is the geometric sum of Euler’s constants, κ = cβS(1 − (βS)zij)/(1 −
βS).15 The left hand side of equation (21) is the log of an (i, j) choice probabilities

15In the static framework of Choo and Siow (2006), we get an analogous representation of quasi-
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Pij, scaled by the weighted average of the probabilities of remaining single in the future∑zij
k=0(βS)k lnPi+k,0. The denominator represents the opportunity cost of future partic-

ipation in the marriage market that an i type male incurs when he chooses to match

with a j type female. When the probability of remaining single in the future, Pi+k,0 is

large, then the forgone opportunity of being locked into marriage is small and vice versa.

This ratio equals the difference in present discounted utilities from being locked into an

(i, j) relative to the present discounted value of being single forever, (αi(j)−αi(0)) less

the equilibrium transfer, τ ij that needs to be paid. The interpretation for equation (22)

in terms of female match probabilities is similar. The central difference being that the

type j female is the recipient of the transfer.

Definition 1: A marriage market equilibrium consists of a vector of males, m and

females, f across individual type, the vector of marriage µ, and the vector of transfers,

τ such that the number of i type men who want to marry j type spouses exactly equals

the number of j type women who agree to marry type i men for all combinations of

(i, j). That is, for each of the (Z × Z) sub-markets,

miPij = fjQij = µij

Dynamic Marriage Matching Function: Let pij and qij denote the maximum

likelihood estimators of the probability that type i male matches with type j female,

Pij and type j female matches with i male, Qij respectively. That is, pij = µij/mi and

qij = µij/fj. The above marriage market clearing conditions and the ML estimators for

the choice probabilities is applied to the system of quasi-supply and demand equations,

(21) and (22) respectively to derive the Dynamic Marriage Matching Function for an

demand and quasi-supply of spouses corresponding to the case when zij = 0. That is

lnPij − lnPi,0 = αij − αi,0 − τ ij

lnQij − lnQ0,j = γij − γ0,j + τ ij
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(i, j) marriage (when zij > 0)16 given by Equation (1) shown earlier,

µij = Πij

√
mifj

zij∏
k=0

(µi+k,0µ0,j+k

mi+kfj+k

) 1
2
(βS)k

where ln Πij = 1
2

(
αi(j) + γj(i)−αi(0)− γj(0)

)
− κ.

The dynamic marriage matching function also needs to satisfy the accounting con-

straints given by Equations (23), (24) and (25):

µ0j +
Z∑
i=1

µij = fj ∀ j (23)

µi0 +
Z∑
j=1

µij = mi ∀ i (24)

µ0j, µi0, µij ≥ 0 ∀ i, j (25)

Equation (23) says that the total number of j type women who marry and the number

of unmarried j type women must be equal to the number of available j type women for

all j. Similarly Equation (24) says that the total number of women who marry i type

men and the number of unmarried i type men must be equal to the number of available

i type men for all i. Equation (25) holds because the number of unmarrieds of any type

and gender, and the number of marriages between type i men and type j women must

be non-negative.

Given the preference parameters of the system, Π, practitioners are often interested

in how variations in the supply population vectors, m and f , affect the distribution

of marriages as represented by µ. I’ll refer to this as the DMM (Dynamic Marriage

Matching) Inverse Problem. A formal statement of this problem follows:

Definition 2: - Dynamic Marriage Matching (DMM) Inverse Problem

Given a matrix of preferences Π, whose elements are non-negative and strictly positive

16This condition ensures that neither spouse is at a terminal age. If zij = 0, the Dynamic Marriage

Matching Function reduces to the static marriage matching function of Choo and Siow (2006), that is

µij = Πij
√
µi0µ0j .
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population vectors, m and f , does there exist a unique non-negative marital distribution

µ that is consistent with Π, that satisfies equations (23), (24), (25) and (20).

Taking Πij, m and f as exogenously given, Equation (1) defines a I × J system

of polynomials with the I × J elements of µ as unknowns. Like in Choo-Siow (2006),

the model can be reformulated to an I + J system with I + J number of unmarrieds

of each type, µi0 and µ0j, as unknowns. This reduced system defined by equations (26)

and (27) below is derived by summing Equation (1) over all i’s and Equation (1) over

all j’s respectively. After solving for µi0 and µ0j, then the µij’s are fully determined by

Equation (1).

mi − µi0 =
I∑
i=1

Πij

√
mifj

zij∏
k=0

(µi+k,0µ0,j+k

mi+kfj+k

) 1
2
(βS)k

(26)

fj − µ0j =
J∑
j=1

Πij

√
mifj

zij∏
k=0

(µi+k,0µ0,j+k

mi+kfj+k

) 1
2
(βS)k

. (27)

2.5 Existence and Uniqueness

As noted in Chiappori, McCann and Nesheim (2009), transferable utility marriage

matching model is equivalent to an optimal transportation (Monge-Kantorovich) linear

programming problem.17 They showed that optimal assignment in (Monge-Kantorovich)

linear programming problem corresponds to stable matching and that optimal assign-

ment are shown to exist under mild conditions. This equivalence brings to bear the

wide body of knowledge about linear programming and optimal transportation. Despite

the complication arising from the dynamics, the formulation of the marriage match-

ing model in this paper reduces to a structure identical to that introduced by Choo and

17A continuum version of the Sharpley and Shubik’s(1972) transferable utility assignment model has

also been analyzed by Gretszky, Ostroy and Zame (1992, 1999). They proved that the transferable

utility assignment model can either be modeled as a linear programming problem, a coorperative game

or an exchange economy. They proved the equivalence of these three views in a setting with a continuum

of agents. Agents in this economy are endowed with a single contract and are not free to trade any

contracts. This restriction is relaxed by Chiappori, McCann and Nesheim (2009).
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Siow (2006) and extended in Chiappori, Salaniè and Weiss (2011). The general existence

result holds in this model. Readers should refer to Chiappori, McCann and Nesheim

(2009) for precise statements.

As for uniqueness, linear programming models on compact convex feasible set gener-

ically have unique solutions. However for finite population, stable matching is generally

not unique. It is possible to marginally alter the individual payoffs without violating

the conditions for stability. In the limit as the population becomes large, uniqueness is

established. I again refer interested readers to Chiappori, McCann and Nesheim (2009)

for more precise statements.

2.6 Identification

2.6.1 Dynamic Gains to Marriage

Choo and Siow (2006) introduced a statistic for the Total Gains to an (i, j) marriage

relative to remaining single. It is the ratio of the number of (i, j) to the geometric mean

of the number of unmarrieds of each type, that is

ln
µ2
ij

µi0µ0j

= ln
pijqij
pi0q0j

= (αij + γij)− (αi0 + γ0j) = 2 ln πij. (28)

The dynamic analogue of this statistic derived from Equation (1) takes the following

form,

ln
(
pijqij

/ zij∏
k=0

(pi+k,0q0j+k)
(βS)k

)
= αi(j) + γj(i)−αi(0)− γj(0)− 2κ = 2 ln Πij. (29)

The interpretation of the statistic is similar to the static case. It gives the present

discounted utility from being locked in an (i, j) match relative to the present discounted

sum of the per period payoff from being single forever.18 This statistic is point identified.

The right hand side of (29) comprise of only the primitives of the model and are invariant

to changes in the vectors of unmarried men, m, and women, f . It becomes the basis of

the empirical application in Section 3. I will refer to the statistic 2 ln πij as defined by

Equation (28) as Static Gains and 2 ln Πij from Equation (29) as Dynamic Gains.

18In other words, since the couple is committing to being single forever, the right hand side term does

not include the expected opportunity cost of participating in the marriage market from being single.
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2.6.2 Bootstrap Standard Errors

The representation of the matching function in Equation (29) provides a natural way of

generating bootstrap standard errors for the marriage gains statistics. Given an observed

distribution of m, f and µ, there is an implied vector of maximum likelihood estimators

p and q.

To derive the standard error of the gains statistic, I first sample with replacement

in blocks from the pool of individuals in each age group keeping track of whether the

individual is married and to whom he or she is married to. For example, suppose there

are m1 type 1 males.19 For each bootstrap sample s of size m1, I generate the implied

probability vector ps1. This is carried out for each block of i and j generating the implied

vector of ps and qs and the matrix of statistics Πs. The standard error and confidence

interval is computed from the demeaned sampling distribution of Πs.

The asymptotic distribution for the gains statistic is complicated by the covariance

structure of Pij and Pkj where i 6= k which depends on the underlying assumption of

the model. Choo (2012) compares the coverage of the proposed block bootstrap method

with the asymptotic distribution of the dynamic gains statistic.

2.6.3 A Test of the Model

Equations (21) and (22) can be expressed in terms of the maximum likelihood estimators

pij and qij. That is,

ln
(
pij

/ zij∏
k=0

p
(βS)k

i+k,0

)
= αi(j)−αi(0)− τ ij − κ, (30)

ln
(
qij

/ zij∏
k=0

q
(βS)k

0,j+k

)
= γj(i)− γj(0) + τ ij − κ. (31)

Let

nij(µ,m,f) = ln
(
pij

/ zij∏
k=0

p
(βS)k

i+k,0

)
and

Nij(µ,m,f) = ln
(
qij

/ zij∏
k=0

q
(βS)k

0,j+k

)
19That is,

∑Z
j=0 µ1j = m1.
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Proposition 1 below provides a simple test for our model:

Proposition 1 Holding αijk, γijk, and δijk fixed for all (i, j, k), any changes in available

men mi or women fj that leads to an increase in nij(µ,m,f) would also lead to a

decrease in Nij(µ,m,f) and vice versa.

In other words, any changes in relative scarcity of men and women that changes the

market clearing division of surplus τ ij would make nij and Nij move in opposite di-

rections. If our model is true, a simple regression of estimates of n̂ij(µ,m,f) against

N̂ij(µ,m,f) should give a slope coefficient of -1.

2.7 Stability

Browning, Chiappori and Weiss (2007) and Chiappori, Salaniè and Weiss (2010) intro-

duced a stable matching characterization for preference utility that maintains the addi-

tive separability structure introduced in Choo and Siow (2006). These stable matching

characterizations consist of a set of inequalities that translate naturally when defining

equilibrium probabilities of different types of matches as in Choo and Siow (2006). These

characterizations have significant implications in the empirical implementation of mod-

els with this additively separable structure. The dynamic marriage matching outlined

here maintains the additively separable structure. Equations (13) and (14) show that

despite this more complicated dynamic setting, the choice specific utilities still maintain

the additively separable structure. The choice specific utilities can be decomposed into

a mean choice specific value function and an i.i.d. idiosyncratic component. For com-

pleteness, the stable matching characterization of Chiappori, Salaniè and Weiss (2010)

is reproduced in Lemma 2 of the appendix.

3 Empirical Application

3.1 Changes in the Marriage distribution in the 1970s, 80s and 1990s

The model is used to analyze the changes in the marriage distribution in the US over two

decades from 1970 to 1990. From a demographic viewpoint, this period saw significant
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changes in the number of single men and women. In particular, the baby boomers

entered a marriageable age in the 1980s and 1990s. This was also a period of major

socio-political changes that affected marriage as an institution. Many have argued that

federal legislative changes like the legalization of abortion and no-fault divorce have

changed the gains to marriage. I construct the distribution of new marriages and single

men and women for individuals aged between 16 and 75 over the two decades for the

US. To minimize sparseness in the marriage distribution, a two-year distribution of new

marriages is constructed (instead of a one-year). The marriage distributions by age,

µ̂ij for 1971/72, 1981/82 and 1991/92, is constructed using data the Vital Statistics

taken from the NBER collection of the National Center for Health Statistics.20. These

files contain a sample of the new marriage records from reporting states across the three

periods.21 The number of single men and women by age, µ̂i0 and µ̂0j, come from the 1970,

1980 and 1990 US Census. To be consistent on the data of new marriages from the Vital

Statistics, only unmarried individuals from matching reporting states are included.22

The individuals are aged between 16 and 75. An individual is considered unmarried is

his or her marital status is not equal to (i) married spouse present, or (ii) married spouse

absent. Census weights are used to get an estimate of the total unmarried counts.

20This data is collected by the US Department of Health and Human Services.
21Weights in the Vital Statistics files are used to get an estimate of the total number of each type of

marriage in reporting states.
22The reporting states are Alabama, Alaska, California, Colorado, Connecticut, Delaware, District

of Columbia, Florida, Georgia, Hawai, Idaho, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana,

Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New

Hampshire, New Jersey, New York State, North Carolina, Ohio, Oregon, Pennsylvania, Rhode Island,

South Carolina, South Dakota, Tennessee, Utah, Vermont, West Virginia, Wisconsin, Wyoming.
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Figure 1

Figures 1 a) and 1 b) plot the distribution of single men and women according the

the three US Census. It shows some familiar patterns. There are fewer single individuals

at older ages than at younger ages. As we move from 1970 to 1980 and 1990, we see a

dramatic change in the number of available single men and women as the baby boomers

enter marriageable age. The gender differences in later ages arise from higher mortality

rates among older men and lower remarriage rates among divorced women. Figures 1

c) and d) graph the marginal distribution of two-year new marriages over the period.

There is a clear right shift in the distribution of new marriages across genders arising

from more delayed marriage. The modal age of marriage across gender has also increased.

For males, the modal age of marriage went from around 21 in 1971/72 to 23 in 1981/82

and 25 in 1991/92. The modal age for females which is slightly younger compared to

males also increased from around 18 in 1971/72 to 20 in 1981/82 and 22 in 1991/92.
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Summary statistics of the data are given in Table 1 below. According to the 1970

Census, there were 16.0 and 19.6 million single men and women respectively between the

age of 16 and 75. By 1980, the number of available men and women had increased by

46.2% and 39% respectively to 23.4 and 27.2 million men and women respectively. The

change in population between 1980 and 1990 was more modest. In 1990, there were 28.4

million men and 31.6 million women, an increase of 21.4% and 15.9% respectively from

1980. In the data sample constructed from the Vital Statistics, there are 3.24 million

new marriages recorded in the two-years 1971-72, while in 1981-82 there are 3.45 million

new marriages. This is an increase of 6.5 % compared to the around 40 % increase in

number of single men and women. In 1991-92, the number of new marriages fell to 3.22

million, a drop of 7.1 % from the level in 1981-82.
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Table 1: Data Summary

A: US Census Data

1970 1980 1990

Number of Available Males, (mill.) 16.018 23.412 28.417

Percentage change 46.2 21.4

Number of Available Females, (mill.) 19.592 27.225 31.563

Percentage change 39.0 15.9

Average age of Available Males 30.4 29.6 31.7

Average age of Available Females 39.1 37.1 37.9

B: Vital Statistics Data

1969-71 1979-81 1989-91

Average Number of marriages (mill.) 3.236 3.449 3.220

Percentage change 6.6 -7.11

Average age of Married Males 27.1 29.2 31.2

Average age of Married Females 24.5 26.4 28.9

Average couple age difference 2.6 2.7 2.3
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3.2 Estimating the Gains to Marriage

Figure 2

Figure 2 a) graphs the distribution of new marriages by age in 1971-72, while Figure

2 b) and 2 c) graphs the estimates of the Static Gains and Dynamic Gains from marriage

implied by this distribution of new marriages.23 The Static Gains plot in Figure 2 b)

shows strong assortative matching by age with the gains being highest for couples that

are close in age along the diagonal.24 It shows a peak occurring at an early age when

young couples matched with each other. The plot of the Dynamic Gains in Figure 2 b)

maintains much of the qualitative features of Figure 2 c). The Dynamic Gains plot strong

assortative matching pattern by age with the peak being a lot higher and occurring at

an even earlier age. Aside from the difference in the peak, a significant portion of the

Dynamic Gains for young age couples are now positive compared to the case where the

Static Gains are all negative.

The Static Gains for an (i, j) pair is computed by taking the natural log of the number

of current (i, j) matches divided by the geometric averages of those i and j types that

23In Figure 2 b) and 2 c), a non-parametric estimate is used to predict the gains for those age pairs

where no marriages is observed. This typically happens for matches with large age differential, that is

when a young individual is matched with a much older individual.
24Choo and Siow (2006) provides a smoothed version of the plot for the Static Gains in Figure 2 c).
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chose to remain single. It ignores dynamic considerations in terms of forgone future

opportunities of participating in the marriage market if individuals remain single. The

Dynamic Gains statistics compensates for this shortcoming by internalizing the future

marriage market opportunities forgone in the gains calculation. It approximates the

future value of participating in the marriage market using the probabilities of remaining

single in the future given by
∏zij

k=0(pi+k,0q0j+k)
(βS)k . Young individuals have the most

opportunity to participate in the marriage market, albeit as older individuals as they

age. Given that most marriages occur when individuals are young, the implied Dynamic

Gains from marriage accounting for the forgone marriage market opportunities in the

future is much larger than the Static Gains. The Static Gains statistics in effect assume

that there is only one opportunity to match and that in the future, agents would remain

single with certainty. In other words future probabilities of remaining single, pi+k,0 and

qi+k,0 equal 1.

Figure 3 graphs various cross-sections of the 1971-72 Static and Dynamic Gains

against the age of their spouse on the horizontal axis. Figure 3 a) and 3 b) plots the

marriage gains for females aged 18, 25 and 34 years old and Figure 3 c) and 3 d) plots

the gains for males for the same ages. The graphs also plot the bootstrap 95% confidence

interval computed using the procedure described in Section 2.6.2.25 These set of graphs

provide a more detailed picture of the differences between the Static and Dynamic Gains

from marriage. In terms of magnitude, it is clear that the difference between these two

statistics is biggest when at least one of the spouses are young. The Dynamic Gains for

an 18 and 25 year old far exceed their corresponding Static Gains and is positive when

the spouse is young. The tight computed bootstrap confidence interval also suggest that

these estimates seem precisely estimated especially for young individuals where most of

the data lies.

25For age pairs where no matches were observed, a non-parametric conditional mean was used to

predict the gains. In those cases, no standard error nor confidence interval is computed accounting for

the gaps in the plots of the 95% confidence intervals.
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Figure 3

To understand how the marriage gains have changed from 1970 to 1980, I construct

a simple difference in the Static and Dynamic Gains to marriage. Figure 4 plots various

cross sections of this difference against the age of their spouse. Figure 4 a) and 4 b) plots

the differences for males and 4 c) and 4 d) plots the differences for females. Generally all

these plots suggest that there has been a fall in the gains to marriage over this decade.

After accounting for the forgone future marriage opportunities using the Dynamic Gains,

Figure 4 a) and 4 c) suggest that the drop in the gains to marriage is even larger than

initially suggested by the Static Gains calculation. Comparing Figure 4 a) and b), the

drop in marriage gains for 18 years old males are no longer confined to matches with

spouses age 18 to 22 but experienced over the entire distribution of spouses’ age. While

differing in magnitude, the qualitative features of the plots for 25 and 34 year old males

are very similar.
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Figure 4

4 Conclusion

I propose and estimate a dynamic model of marriage matching. It generalizes the contri-

bution of Choo and Siow (2006) into a dynamic setting while maintaining the empirical

tractability and convenience of the static model. Applying the model to US marriage

data, I show that ignoring the dynamic returns from marriage severely understates the

gains to marriage especially among the young. The proposed framework is sufficiently

flexible to allow for matching along other attributes.
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5 Appendix

Lemma 2 A set of necessary and sufficient conditions for stability is that

1. For all matched couples of type (i, j) where male g ∈ i and female G ∈ j, we require

that

εijg − εikg ≥ ṽik − ṽij for all k (32)

εijg − εi0g ≥ ṽi0 − ṽij (33)

and

εijG − εkjG ≥ w̃kj − w̃ij for all k (34)

εijG − ε0jG ≥ w̃0j − w̃ij (35)

2. For every single male g of type i, we require that

εi0g − εikg ≥ ṽij − ṽi0 for all k (36)

3. For every single female G of type j, we require that

ε0jG − εkjG ≥ w̃kj − w̃0j for all k (37)

Proof. See Chiappori, Salaniè and Weiss(2011).
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