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Abstract

Agents in two-sided matching games vary in characteristics that are unobservable in typical data
on matching markets. We investigate the identification of the distribution of these unobserved
characteristics using data on who matches with whom. The distribution of match-specific unob-
servables cannot be fully recovered without information on unmatched agents, but the distribution
of a combination of unobservables, which we call unobserved complementarities, can be identified.
Knowledge of the unobserved complementarities is sufficient to construct certain counterfactuals.
The distribution of agent-specific unobservables is identified under different conditions.
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1 Introduction

Matching games model the sorting of agents to each other. Men sort to women in marriage based on
characteristics such as income, schooling, personality and physical appearance, with more desirable
men typically matching to more desirable women. Upstream firms sort to downstream firms based on
the product qualities and capacities of each of the firms. This paper is partially motivated by such
applications in industrial organization, where downstream firms pay upstream firms money, and thus
it is reasonable to work with transferable utility matching games (Koopmans and Beckmann, 1957;
Becker, 1973; Shapley and Shubik, 1972).

There has been recent interest in the structural estimation of (both transferable utility and non-
transferable utility) matching games (Dagsvik, 2000; Boyd et al., 2003; Choo and Siow, 2006; Sørensen,
2007; Fox, 2010a; Gordon and Knight, 2009; Chen, 2009; Ho, 2009; Park, 2008; Yang et al., 2009;
Logan et al., 2008; Levine, 2009; Baccara et al., forthcoming; Siow, 2009; Galichon and Salanie, 2010;
Chiappori et al., 2010; Crawford and Yurokoglu, forthcoming; Weese, 2010; Christakis et al., 2010;
Echenique et al., 2011; Menzel, 2011), among others. The papers we cite are unified in estimating
some aspect of the preferences of agents in a matching game from data on who matches with whom
as well as the observed characteristics of agents or of matches. The sorting patterns in the data
combined with assumptions about equilibrium inform the researcher about the structural primitives
in the market, namely some function that transforms an agent’s own characteristics and his potential
partner’s characteristics into some notion of utility or output. These papers are related to but not
special cases of papers estimating discrete, non-cooperative (Nash) games, like the entry literature in
industrial organization (Bresnahan and Reiss, 1991; Berry, 1992; Mazzeo, 2002; Tamer, 2003; Seim,
2006; Bajari et al., 2010) and the discrete outcomes peer effects literature (Brock and Durlauf, 2007;
de Paula and Tang, 2012). Matching games typically use the cooperative solution concept of pairwise
stability.1

The empirical literature cited previously structurally estimates how various structural or equilib-
rium objects, such as payoffs or preferences, are functions of the characteristics of agents observed
in the data. For example, Choo and Siow (2006) study the marriage market in the United States
and estimate how the equilibrium payoffs of men for women vary by the ages of the man and the
woman. Sørensen (2007) studies the matching of venture capitalists to entrepreneurs as a function of
observed venture capitalist experience. Fox (2010a) studies matching between automotive assemblers
(downstream firms) and car parts suppliers (upstream firms) and asks how observed specialization
measures in the portfolios of car parts sourced or supplied contribute to agent profit functions.

The above papers all use data on a relatively limited set of agent characteristics. In Choo and Siow,
1Transferable utility matching games can be seen as special cases of models of hedonic equilibrium (Brown and Rosen,

1982; Ekeland et al., 2004; Heckman et al., 2010). Unlike the empirical literature on hedonic equilibrium, the estimation
approaches in the papers cited in the main text do not rely on data on equilibrium prices or transfers. Compared to
the current work, the hedonic papers do not allow for unobserved characteristics.
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personality and physical attractiveness are not measured, even though those characteristics are likely
important in determining the equilibrium pattern of marriages. Similarly, in Fox each firm’s product
quality is not directly measured and is only indirectly inferred. In Sørensen, the unobserved quality
of each venture capitalist is not measured. If matching based on observed characteristics is found to
be important, it is a reasonable conjecture that matching based on unobserved characteristics is also
important. Ackerberg and Botticini (2002) provide empirical evidence that farmers and landlords sort
on unobservables such as risk aversion and monitoring ability, without formally estimating a matching
game or the distribution of these unobservables.

Our discussion of the empirical applications cited above shows that unobserved characteristics
are potentially important. As the consistency of estimation procedures for matching games depends
on assumptions on the unobservables, empirical conclusions might be more robust if the estimated
matching games allow richly specified distributions of unobserved agent heterogeneity. This paper
investigates what data on the sorting patterns between agents can tell us about the distributions
of unobserved agent characteristics relevant for sorting. In particular, we study the nonparametric
identification of distributions of unobserved agent heterogeneity in two-sided matching games. With
the distribution of unobservables, the researcher can explain sorting and construct counterfactual
predictions about market assignments. This paper allows for this empirically relevant heterogeneity
in partner preferences using data on only observed matches (who matches with whom), not data from,
say, an online dating site on rejected profiles (Hitsch et al., 2010) or on equilibrium transfers, such as
wages in a labor market (Eeckhout and Kircher, 2011). Transfers are often confidential data in firm
contracts (Fox, 2010a) and are rarely observed in marriage data (Becker, 1973).

In some sense, this paper on identification is ahead of the empirical matching literature because no
empirical papers have parametrically estimated distributions of unobserved characteristics in matching
games. Thus, this paper seeks to introduce a new topic for economic investigation, rather than to
simply loosen parametric restrictions in an existing empirical literature. This paper contributes to the
literature on the nonparametric (allowing infinite dimensional objects) identification of transferable
utility matching games (Fox, 2010b; Graham, 2010). Our paper is distinguished because of its focus on
identifying distributions of unobservables, rather than mostly deterministic functions of observables.

We first consider a baseline model, which is stripped down to focus on the key problem of identifying
distributions of heterogeneity from sorting data. In our baseline transferable utility matching game,
the primitive that governs sorting is the matrix that collects the production values for each potential
match in a matching market. The production level of each match is additively separable in observable
and unobservable terms. The observable term is captured by a match-specific regressor. The unknown
primitive is therefore the distribution (representing randomness across markets) of the matrix that
collects the unobservable terms in the production of each match in a market. We call this distribution
the distribution of match-specific unobservables. Match-specific unobservables nest many special cases,
such as agent-specific unobservables.
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We provide three main results, and some extensions. Our first main result states that the distribu-
tion of match-specific unobservables is not identified in a one-to-one matching game with data on who
matches with whom but without data on unmatched or single agents. Our second main result states
that the distribution of a change of variables of the unobservables, the distribution of what we call
unobserved complementarities, is identified. We precisely define unobserved complementarities below.
Our identification proof works by tracing the joint (across possible matches in a market) cumulative
distribution function of these unobserved complementarities using the match-specific observables. We
also show that knowledge of the distribution of unobserved complementarities is sufficient for com-
puting assignment probabilities. Our third main result says that the distribution of the primitively
specified, match-specific unobservables is actually identified when unmatched agents are observed in
the data.

Our three main results can be intuitively understood by reference to a classic result in Becker
(1973). He studies sorting in two-sided, transferable utility matching games where agents have scalar
characteristics (types). He shows that high-type agents match to high-type agents if the types of
agents are complements in the production of matches. Many production functions for match output
exhibit complementarities. Say in Becker’s model male and female types are xm and xw, respectively.
A production function with horizontal preferences, such as − (xm − xw)

2, and one with vertical pref-
erences, such as 2xmxw, can both have the same cross-partial derivative, here 2. Becker’s result that
complementarities alone drive sorting means that data on sorting cannot tell these two production
functions apart. In our more general class of matching games, our first main result is that we cannot
identify the distribution of match-specific unobservables. Our second main result is that we can iden-
tify the distribution of our notion of unobserved complementarities. These two results are analogous
to Becker’s results for a more general class of matching games.

Our third main result uses data on unmatched agents. In a matching game, agents can unilaterally
decide to be single or not. If all other agents are single and hence available to match, the fact that
one particular agent is single can only be explained by the production of all matches involving that
agent being less than the production from being single. This type of direct comparison between the
production of being single and the production of being matched is analogous to the way identification
proceeds in discrete Nash games, where the payoff of a player’s observed (in the data) strategy must
be higher than strategies not chosen, given the strategies of rivals. Thus, the availability of data on
unmatched agents introduces an element of individual rationality that maps directly into the data
and is therefore useful for identification of the primitive distribution of match-specific characteristics.

Many empirical researchers might be tempted to specify a parametric distribution of match-specific
unobservables. Our three results together suggest that estimating a matching model with a parametric
distribution of match-specific unobservables will not lead to credible estimates without using data on
unmatched agents, as a more general nonparametrically specified distribution is not identified. One
could instead impose a parametric distribution for unobserved complementarities.
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We examine several extensions to the baseline model that add more empirical realism. Our baseline
model imposes additive separability between unobservables and observables in the production of a
match. We examine an extension where additional observed characteristics enter match production
and these characteristics may, for example, have random coefficients on them, reflecting the random
preferences of agents for partner characteristics. For example, observationally identical men are often
observed to marry observationally distinct women. One important hypothesis is that these men
have heterogeneous preferences for the observable characteristics of women. In a model with random
preferences, we identify the distribution of match production conditional on the characteristics of
agents and matches other than the match-specific characteristics used in the baseline model. This
object of identification follows identification work using special regressors in the multinomial choice
literature (Lewbel, 2000; Matzkin, 2007; Berry and Haile, 2010).

In another extension, we identify fixed-across-markets but heterogeneous-within-a-market coeffi-
cients on the the match-specific characteristics used in the baseline model. This relaxes the assumption
that the match-specific characteristics enter the production of each match in the same manner. An-
other extension considers models where key observables vary at the agent and not the match level.
We can achieve identification of the primitive distribution of match-specific unobservables without
relying on data on unmatched agents, but by imposing a perhaps stronger functional form for match
production.

Our results on one-to-one, two-sided matching games extend naturally to one-sided matching.
An example of a one-sided matching problem is mergers between firms. Our results also extend to
many-to-many matching under a strong restriction on preferences known as substitutes, which rules
out multiple pairwise stable assignments occurring with positive probability. We briefly discuss the
literature on identification under multiple equilibria in Nash games, but combining approaches to
multiple equilibria with matching games is outside the scope of our paper.

2 Baseline Identification Results

We mainly analyze a two-sided, one-to-one matching game with transferable utility (Koopmans and
Beckmann, 1957; Becker, 1973; Shapley and Shubik, 1972; Roth and Sotomayor, 1990, Chapter 8).
This section imposes that all agents must be matched in order to focus purely on the identification
coming from agent sorting and not from the individual rationality decision to be single. We also use
a simple covariate space. We change these assumptions in later sections.

2.1 Baseline Model

We will use the terms “agents” and “firms” interchangeably. In a one-to-one matching game, an
upstream firm u matches with a downstream firm d. Upstream firm u and downstream firm d can
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form a physical match 〈u, d〉. The monetary transfer from d to u is denoted as t〈u,d〉; we will not
require data on the transfers. In a solution to the game, u and d may form a full match 〈u, d, t〈u,d〉〉.
The production from a match 〈u, d〉 is

z〈u,d〉 + e〈u,d〉,

where z〈u,d〉 is a regressor specific to match 〈u, d〉 and e〈u,d〉 is a match-specific unobservable. An
example of a match-specific regressor z〈u,d〉 is the distance between the headquarters of firms u and d;
we discuss agent-specific regressors in later sections. We can more primitively model production for a
match 〈u, d〉 as the sum of the profit of u and the profit of d, where the transfer t〈u,d〉 between d and
u enters additively separably into both profits and therefore cancels in their sum.2 Only production
levels matter for the matches that form, and we will not attempt to identify upstream firm profits
separately from downstream firm profits.

There are N firms on each side of the market, and in this section there can be no single firms. N
can also represent the set {1, . . . , N}. The matrix

z〈1,1〉 + e〈1,1〉 · · · z〈1,N〉 + e〈1,N〉
...

. . .
...

z〈N,1〉 + e〈N,1〉 · · · z〈N,N〉 + e〈N,N〉


describes the production of all matches in a market, where the rows are upstream firms and the
columns are downstream firms. Let

E =


e〈1,1〉 · · · e〈1,N〉
...

. . .
...

e〈N,1〉 · · · e〈N,N〉

 , Z =


z〈1,1〉 · · · z〈1,N〉
...

. . .
...

z〈N,1〉 · · · z〈N,N〉


be the matrices of unobservables and observables, respectively, in a market.3

A feasible one-to-one assignment A is a set of physical matches A = {〈u1, d1〉 , . . . , 〈uN , dN 〉},
where for this section each firm is matched exactly once. An outcome is a list of physical matches
with transfers: {〈

u1, d1, t〈u1,d1〉
〉
, . . . ,

〈
uN , dN , t〈uN ,dN 〉

〉}
.

An outcome is pairwise stable if it is robust to deviations by pairs of two firms, as defined in
2If the profit of u at some market outcome is πu

〈u,d〉+ t〈u,d〉 and the profit of d is πd
〈u,d〉− t〈u,d〉, then the production

of the match 〈u, d〉 is equal to πu
〈u,d〉 + πd

〈u,d〉 = z〈u,d〉 + e〈u,d〉. We will not attempt to learn the distributions of the

unobservable portions of πu
〈u,d〉 and π

d
〈u,d〉 separately (Fox, 2010b).

3Because the scalar z〈u,d〉 is an element of the matrix Z, we do not use upper and lower case letters (or other notation)
to distinguish random variables and their realizations. Whether we refer to a random variable or its realization should
be clear from context.
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references such as Roth and Sotomayor (1990, Chapter 8).4 An assignment A is called pairwise
stable if there exists an underlying outcome that is pairwise stable. The literature cited previously
proves that the existence of a pairwise stable assignment is guaranteed and that an assignment A is
pairwise stable if and only if it maximizes the sum of production

S (A,E,Z) =
∑
〈u,d〉∈A

(
z〈u,d〉 + e〈u,d〉

)
.

If z〈u,d〉 or e〈u,d〉 have continuous support, S (A,E,Z) has a unique maximizer with probability 1 and
therefore the pairwise stable assignment is unique with probability 1. The sum of the unobserved
production is likewise

S̃ (A,E) =
∑
〈u,d〉∈A

e〈u,d〉.

A market is defined to be the pair (E,Z); agents in a market can match and agents in different
markets cannot. A researcher observes the assignment A and the regressors Z for many markets. In
other words, in each matching market we observe who matches with whom A and the characteristics
Z of the realized and potential matches. This allows the identification of Pr (A | Z). Researchers do
not observe t〈u,d〉, which is usually part of confidential contracts.

Z is independent of the unobservable matrix E. E has the joint cumulative distribution function
(CDF) G (E). We assume that Z has full and product support, meaning that any Z ∈ RN2

is
observed. Each element of Z is called a special regressor, as each z〈u,d〉 enters production with
an additive functional form, the sign and coefficient on each z〈u,d〉 in production is common across
matches (normalized to be 1), each z〈u,d〉 has large support, and Z is independent of E. We allow a
match-specific coefficient on each z〈u,d〉 in a later section.

Such special regressors have been used to prove point identification in the binary and multinomial
choice literature (Manski, 1988; Ichimura and Thompson, 1998; Lewbel, 1998, 2000; Matzkin, 2007;
Gautier and Kitamura, 2011; Berry and Haile, 2010; Fox and Gandhi, 2012). In this literature, failure
to have a special regressor often results in set rather than point identification of the distribution of
heterogeneity. In this paper, we use special regressors in part to focus on reasons specific to matching
games for the failure of point identification.

2.2 Data Generating Process and Identification

The unknown primitive whose identification we explore is the CDF G (E), which reflects how the
unobservables vary across matching markets and hence (because we do not assume independence
across the e〈u,d〉’s) within matching markets as well. By not restricting G, we allow for many special
cases, such as e〈u,d〉 = eu · ed, where eu is a scalar unobserved upstream firm characteristic and ed is

4We omit standard definitions here that can be easily found in the literature.
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a scalar unobserved downstream firm characteristic. We do not restrict the support of G (E) except
in normalizations that follow.

The probability of assignment A occurring given the observables Z is

Pr (A | Z; G) =

ˆ
θ

1 [Apairwise stable assignment | Z,E] dG (E) , (1)

where 1 [Apairwise stable assignment | Z,E] is equal to 1 when A is a pairwise stable assignment for
the market (E,Z).

The distributionG is said to be identified whenever, forG1 6= G2, Pr
(
A | Z; G1

)
6= Pr

(
A | Z; G2

)
for some pair (A,Z). G1 and G2 give a different conditional probability of at least one assignment A on
Z. If G has continuous and full support so that all probabilities Pr (A | Z; G) are nonzero (for every A,
S (A,E,Z) will be maximized by a range of E) and continuous in the elements of Z, the existence of one
such pair (A,Z) implies that a set of Z with positive measure satisfies Pr

(
A | Z; G1

)
6= Pr

(
A | Z; G2

)
.

All but one of our identification results will be constructive, in that we can trace a distribution such
as G (E) using variation in an object such as Z. Regardless, all identification arguments can be used
to prove the consistency of a nonparametric mixtures estimator for a distribution such as G, as Fox
and Kim (2011) show for a particular, computationally simple mixtures estimator.5 Other mixtures
estimators can be used, including simulated maximum likelihood, the EM algorithm, NPMLE, and
MCMC.6

As maximizing S (A,E,Z) determines the assignment seen in the data, the ordering of S (A,E,Z)

across assignments A as a function of E and Z is a key input to identification. We can add a constant
to the production of all matches involving the same upstream firm and the ordering of the production
S (A,E,Z) of all assignments will remain the same. Therefore, we impose the location normalization
that sets the production of all matches 〈i, i〉 to 0, or

E =


0 e〈1,2〉 · · · e〈1,N〉

e〈2,1〉 0 · · · e〈2,N〉
...

...
. . .

...
e〈N,1〉 e〈N,2〉 · · · 0

 . (2)

The need for a location normalization of this sort is already a non-identification result: we cannot
identify whether the production levels of all matches involving one firm are higher than the production
levels of all matches involving a second firm. This non-identification result is unsurprising: the
differential production of matches and hence assignments governs the identity of the pairwise stable

5The proof of consistency in Fox and Kim (2011) requires the random variable (such as E) to have compact support,
which is not required here for identification.

6For large markets, these estimators all have computational problems arising from the combinatorics underlying the
set of matching game assignments. Fox (2010a) uses a maximum score estimator to avoid these computational problems,
but does not estimate a distribution of unobservables. Our identification arguments do not address computational issues.
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assignment in any market.

2.3 Non-Identification

We will show another non-identification result. Consider the two realizations of matrices of unobserv-
ables

E1 =


0 e〈1,2〉 · · · e〈1,N〉

e〈2,1〉 0 · · · e〈2,N〉
...

...
. . .

...
e〈N,1〉 e〈N,2〉 · · · 0

 , E2 =


0 e〈1,2〉 + 1 · · · e〈1,N〉

e〈2,1〉 − 1 0 · · · e〈2,N〉 − 1
...

...
. . .

...
e〈N,1〉 e〈N,2〉 + 1 · · · 0

 .

It is easy to verify that S (A,E1, Z) = S (A,E2, Z) for all A, Z, which means that the optimal
assignment A is the same for E1 and E2, for any Z. Therefore it is not possible to separately
identify the relative frequencies of E1 and E2 in the data generating process. We summarize the
counterexample in the following non-identification theorem.

Theorem 1. The distribution G (E) of market-level unobserved match characteristics is not identified
in a matching game where all agents must be matched.

Consider a simple case focusing on two upstream firms and two downstream firms. If we see the
matches 〈u1, d1〉 and 〈u2, d2〉 in the data, we cannot know whether this assignment forms because
〈u1, d1〉 has a high payoff, 〈u2, d2〉 has a high payoff, 〈u1, d2〉 has a low payoff, or 〈u2, d1〉 has a low
payoff.The non-identification result implies that parametric estimation of G (E) under these assump-
tions may not be well founded, in that the generalization removing the parametric restrictions is not
identified.

2.4 Unobserved Complementarities

As described in the introduction, Becker (1973) shows that complementarities govern sorting when
there is one characteristic (schooling) per agent. Likewise, while it is not possible to identify the
distribution of the most primitive unobserved heterogeneity, we will show that the distribution of
unobserved complementarities, defined below, can be identified.

Definition 1. The unobserved complementarity between upstream firms u1, u2 and downstream
firms d1, d2 is defined to be

c (u1, u2, d1, d2) = e〈u1,d1〉 + e〈u2,d2〉 −
(
e〈u1,d2〉 + e〈u2,d1〉

)
. (3)
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The unobserved complementarities capture the change in the unobserved production when two
matched pairs 〈u1, d1〉 and 〈u2, d2〉 exchange partners and the matches 〈u1, d2〉 and 〈u2, d1〉 arise.
As an intuitive check that the counterexample in the previous section will not prevent identification,
notice that E1 and E2 have the same values for all unobserved complementarities.

The market-level vector comprising all unobserved complementarities is

C = (c (u1, u2, d1, d2) | u1, u2, d1, d2 ∈ N) . (4)

Given E, one can construct C. The location normalization in (2) on the underlying match-specific
unobservables E is still used. We will prove that the unobserved complementarities characterize
the outcome of the matching game and that the CDF F (C) of unobserved complementarities C is
identified.

There are N4 values c (u1, u2, d1, d2) given any realization E. However, all unobserved comple-
mentarities can be formed from a smaller set of other unobserved complementarities by addition and
subtraction.

Lemma 1. There is a random vector

B = (c (u1, u2, d1, d2) |u1 = d1 = 1, u2, d2 ∈ {2, . . . , N})

of (N − 1)
2 unobserved complementarities such that any unobserved complementarity c (u1, u2, d1, d2)

in C is equal to a (u1, u2, d1, d2)-specific sum and difference of terms in B. The indices (u′1, u
′
2, d
′
1, d
′
2)

of the terms in B in the sum do not depend on the realization of E.

The proof is given in the appendix. We do not prove that B is a minimal vector, and it certainly
is not a unique vector with these properties. The lemma provides the insight that identifying F (C)

will not require the same dimension of moments in the data (i.e. Pr (A | Z) for choices of A and Z) as
the dimension of F (C), where C is a random vector of N4 elements. We will write about identifying
the distribution F (C), but just as well our goal could be identifying the distribution FB (B), as
any realization of B implies a realization of C, and vice-versa. For parametric and nonparametric
estimation using a finite sample, we recommend estimating FB (B). We should be clear that Lemma
1 provides important context but is not referenced in the proofs of other results.

Recall that S̃ (A,E) =
∑
〈u,d〉∈A e〈u,d〉 is the unobserved production from assignment A. We show

that knowing C implies knowing the sum S̃ (A,E) of unobserved production for all assignments.

Lemma 2. For each A, S̃ (A,E) is equal to an A-specific sum and difference of unobserved comple-
mentarities in C. The indices (u1, u2, d1, d2) of the terms in the sum do not depend on the realization
of E.

The proof is in the appendix. This lemma indicates that we can compute counterfactual assignment
probabilities Pr (A | Z; F ) if we know the distribution F of unobserved complementarities C. Also
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by this lemma, we use the overloaded notation S̃ (A,C) for the sum of unobserved production as a
function of C instead of E.

We next argue that two different vectors C1 and C2 of unobserved complementarities give distinct
sums of unobserved production for at least one assignment.

Lemma 3. Consider two realizations C1 and C2 of the random vector C. C1 = C2 if and only if
S̃ (A,C1) = S̃ (A,C2) for all assignments A.

By the lemma, identifying the distribution of C only requires identifying the distribution of S̃.
This lemma is the key economic result that shows that there is hope for the identification of F (C),
as different realizations of C lead to different sums of unobserved production of assignments, which
possibly lead to different assignments occurring in the data.

For examples, we verify the conclusions of Lemmas 1, 2 and 3 for the cases of N = 2 and N = 3.

Example 1. Consider the case of N = 2. A matrix of match-specific unobservables is

E =

(
0 e〈1,2〉

e〈2,1〉 0

)
.

There are two possible assignments, A1 = {〈1, 1〉, 〈2, 2〉} and A2 = {〈1, 2〉, 〈2, 1〉}. There is one
random variable in the random vector B: c (1, 2, 1, 2) =

(
0 + 0− e〈1,2〉 − e〈2,1〉

)
. As for the other

unobserved complementarity in C, c (2, 1, 2, 1) = −c (1, 2, 1, 2), which demonstrates Lemma 1. The
sum of unobserved production for A1 is S̃ (A1, E) = 0 by the location normalization (2). Also,
S̃ (A2, E) = e〈1,2〉 + e〈2,1〉 = −c (1, 2, 1, 2). These formulas for S̃ (A,E) for both assignments demon-
strate Lemma 2. Now consider two realizations of the random vector C, namely C1 and C2. As
S̃ (A2, C) = −c (1, 2, 1, 2), it follows that C1 = C2 if and only if S̃ (A,C1) = S̃ (A,C2) for all assign-
ments A. This demonstrates Lemma 3.

Example 2. Consider the case of N = 3. A matrix of match-specific unobservables is

E =

 0 e〈1,2〉 e〈1,3〉

e〈2,1〉 0 e〈2,3〉

e〈3,1〉 e〈3,2〉 0

 .
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There are six possible assignments,

A1 = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}
A2 = {〈1, 2〉, 〈2, 1〉, 〈3, 3〉}
A3 = {〈1, 3〉, 〈2, 2〉, 〈3, 1〉}
A4 = {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}
A5 = {〈1, 1〉, 〈2, 3〉, 〈3, 2〉}
A6 = {〈1, 3〉, 〈2, 1〉, 〈3, 2〉} .

(5)

There are twelve elements in the set of unobserved complementarities, and according to Lemma 1 we
only need to know the values of the four of them in

B = (c (1, 2, 1, 2) , c (1, 2, 1, 3) , c (1, 3, 1, 2) , c (1, 3, 1, 3)) =(
−
(
e〈1,2〉 + e〈2,1〉

)
, e〈2,3〉 −

(
e〈1,3〉 + e〈2,1〉

)
, e〈3,2〉 −

(
e〈1,2〉 + e〈3,1〉

)
,−
(
e〈1,3〉 + e〈3,1〉

))
.

To verify Lemma 1, we can construct the rest of the elements of the vector C from the sums and
differences of the four unobserved complementarities in B. Here we present one example:

c (2, 3, 2, 3) = e〈2,2〉 + e〈3,3〉 −
(
e〈2,3〉 + e〈3,2〉

)
= −

(
e〈2,3〉 + e〈3,2〉

)
= c (1, 2, 1, 2)− c (1, 2, 1, 3)− c (1, 3, 1, 2) + c (1, 3, 1, 3) ,

where the first equality uses the definition of an unobserved complementarity, the second equality uses
the location normalization (2), and the third equality uses algebra. To verify Lemma 2, additional
algebra shows that

S̃ (A1, E)

S̃ (A2, E)

S̃ (A3, E)

S̃ (A4, E)

S̃ (A5, E)

S̃ (A6, E)


=



0

e〈1,2〉 + e〈2,1〉

e〈1,3〉 + e〈3,1〉

e〈1,2〉 + e〈2,3〉 + e〈3,1〉

e〈2,3〉 + e〈3,2〉

e〈1,3〉 + e〈2,1〉 + e〈3,2〉


=



0

−c (1, 2, 1, 2)

−c (1, 3, 1, 3)

c (1, 2, 2, 3)− c (1, 3, 1, 3)

−c (2, 3, 2, 3)

−c (1, 3, 1, 3) + c (2, 3, 1, 2)


. (6)

One direction of Lemma 3 states that, given two realizations C1 and C2, if S̃ (A,C1) = S̃ (A,C2) for
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all A, then C1 = C2. Algebra shows that

c (1, 2, 1, 2) = S̃ (A1, C)− S̃ (A2, C)

c (1, 2, 1, 3) = S̃ (A5, C)− S̃ (A6, C)

c (1, 3, 1, 2) = S̃ (A5, C)− S̃ (A4, C)

c (1, 3, 1, 3) = S̃ (A1, C)− S̃ (A3, C) .

Therefore, if all the elements in B are equal for S̃ (A,C1) and S̃ (A,C2), C1 must equal C2 by Lemma
1. The other direction of Lemma 3 states that if C1 = C2, then S̃ (A,C1) = S̃ (A,C2) for all A. This
follows from (6), recalling that S̃ (A,E) and S̃ (A,C) are overloaded notation for the same sum of
unobserved production.

2.5 Identifying the Distribution of Unobserved Complementarities

We wish to identify the CDF F (C) of unobserved complementarities. There are N ! possible assign-
ments in a one-to-one matching game without unmatched agents. A stable assignment A for a market
(E,Z) maximizes S (A,E,Z), so differences in assignment production S (A2, E, Z)−S (A1, E, Z) gov-
ern the pairwise stable assignment. We investigate the random variable that is the difference in the un-
observed production of each assignmentA and the unobserved production ofA1 = {〈1, 1〉 , . . . , 〈N,N〉},

where S̃ (A1, C) = 0 for all C by the location normalization (2). Let S̃ =
(
S̃ (Ai, C)

)N !

i=2
be a vector

of random variables giving the unobserved production of all assignments in a matching market. In
order to identify F (C), we first trace the CDF H

(
S̃
)
by varying Z and then perform a change of

variables from S̃ to C.

Lemma 4. The CDF H
(
S̃
)
of unobserved production for all assignments is identified.

Proof. Let a primitive unobservable E? give the unobserved complementarities C? and the corre-
sponding vector of the unobserved production S̃?. Set

z?〈u,d〉 = −e?〈u,d〉.

Then by the location normalization, S (A1, E, Z
?) = 0,∀E at Z?, and

S (A,E?, Z?) = S̃? (A,C?) +
∑
〈u,d〉∈A

z?〈u,d〉 = 0∀A.

Therefore for any A 6= A1, S̃ (A,C) ≤ S̃ (A,C?) for some C generated by some E if and only if

S (A,E,Z?) ≤ S (A,E?, Z?) = 0 = S (A1, E, Z
?) .
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At S̃?, by definition the joint CDF (using the one-to-one change of variables between C and S) is

H
(
S̃?
)

= Pr
(
S̃ (A,C) ≤ S̃ (A,C?) ,∀A 6= A1

)
.

Therefore

H
(
S̃?
)

= Pr
(
S̃ (A,C) ≤ S̃ (A,C?) ,∀A 6= A1

)
= Pr (S (A,E,Z?) ≤ S (A1, E, Z

?) , ∀A 6= A1)

= Pr (A1 | Z?) .

Values of S̃ that cannot be formed from a valid E will not occur.

The proof of this lemma shows that identification of H
(
S̃
)
uses data on the moments Pr (A1 | Z)

for many values Z, where assignment A1 is the assignment whose unobserved production S̃ (A1, E) =

0 ∀E in the location normalization (2). The identification of H
(
S̃
)

does not use the probabilities
of other assignments. This is analogous to results on the multinomial choice model, where data on
the probability of only one choice is needed for identification (e.g., Thompson, 1989). It is crucial to
have large and product support on Z to point identify H

(
S̃
)
without restrictions on the support of

E, again as in the binary and multinomial choice literature (Ichimura and Thompson, 1998; Lewbel,
1998, 2000; Matzkin, 2007; Gautier and Kitamura, 2011; Berry and Haile, 2010; Fox and Gandhi,
2012).

Theorem 2. The distribution F (C) of market-level unobserved complementarities is identified in a
matching game where all agents must be matched.

Proof. By Lemma 3, there exists a one-to-one and onto correspondence J from the space of C to
the space of S̃. By Lemma 4, the distribution of S̃, H

(
S̃
)
is identified. We can perform a change

of variables and learn the distribution of C: every valid C corresponds with a S̃ = J (C), and
F (C) = H (J (C)) can be traced. Values of C that cannot be reconciled with a valid E and a valid
S̃ will not occur.

Our results imply that only one F (C) can generate the limiting information on Pr (A | Z) for pairs
(A,Z). As discussed previously, various nonparametric mixtures estimators can be used with a finite
sample of data. Again, we recommend estimating FB (B) and not F (C).

Our identification results are for the general case where agent indices such as u and d have common
meanings across markets. For example, in Fox (2010a) a matching market is an automotive supplier
component category and the same suppliers operate in multiple component categories. In applica-
tions where agent indices are arbitrary because the same agents do not operate in different markets,
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one should additionally impose that F (C) is exchangeable in the agent indices. An exchangeable
distribution F (C) is a special case of our identification results.7

3 Extensions

We consider various extensions to the one-to-one matching game where all agents are matched.

3.1 Other Observed Variables X and Random Preferences

In addition to the match-specific special regressors Z, researchers often observe other match-specific
and agent-specific data, which we collect in the random variable X. We also include in X the number
of agents on each side, N , to allow the size of the market to vary across the sample. An example of a
production function augmented by the elements of X is

(xu · xd)′ β〈u,d〉,1 + x′〈u,d〉β〈u,d〉,2 + µ〈u,d〉 + z〈u,d〉,

where xu is a vector of upstream firm characteristics, xd is a vector of downstream firm characteristics,
xu · xd is a vector of all interactions between upstream and downstream characteristics, x〈u,d〉 is a
vector of match-specific characteristics, µ〈u,d〉 is a random intercept capturing unobserved character-
istics of both u and d, and β〈u,d〉,1 and β〈u,d〉,2 are random coefficient vectors specific to the match.
The two random coefficient vectors can be the sum of the random preferences of upstream and
downstream firms for own and partner characteristics. In a marriage setting, we allow men to have
heterogeneous preferences over the observed characteristics of women, which is one explanation for
why observationally identical men marry observationally distinct women.

In this example,
X =

(
N, (xu)u∈N , (xd)d∈N ,

(
x〈u,d〉

)
u,d∈N

)
.

Now we define
e〈u,d〉 = (xu · xd)′ β〈u,d〉,1 + x′〈u,d〉β〈u,d〉,2 + µ〈u,d〉

and
c (u1, u2, d1, d2) = e〈u1,d1〉 + e〈u2,d2〉 − e〈u1,d2〉 − e〈u2,d1〉.

Using the same notation as before, we define the vector of unobserved complementarities as (4). This
definition of C now depends on the realizations of X. Our previous argument in Theorem 2 does not
use X, therefore we can condition on a realization of X to identify the conditional-on-X distribution

7A matching market where agent indices have no meaning is analogous to a multinomial choice problem when each
agent is offered a set of choices where the indices of choices have no meaning. Even if indices are arbitrary, one should
not relabel indices after observing values in Z or in A, for example by setting the firm with the highest value for a z〈u,d〉
to always be firm 1. In this case, the support of Z will not be RN2

.
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of unobserved complementarities F (C |X). We of course require variation in Z as before, but now
Z must have full support conditional on each realization of X. We do not require that C and E are
independent of X, but both unobservables must still be independent of Z conditional on X.

Corollary 1. The distribution F (C | X) of market-level unobserved complementarities conditional
on X is identified in a one-to-one matching game where all agents must be matched.

Our identification of distributions of heterogeneity conditional on X follows arguments in the
multinomial choice literature (Lewbel, 2000; Matzkin, 2007; Berry and Haile, 2010). If instead we
assumed that β〈u,d〉,1, β〈u,d〉,2 and µ〈u,d〉 are independent of X and tried to identify the distribution
of C (X) as a vector of functions of X, we could use the identification framework of Fox and Gandhi
(2012). A previous version of our paper used stronger assumptions to identify distributions of functions
of X.

3.2 Inclusion of Heterogeneous Coefficients on z

We define the production to a match 〈u, d〉 to be

e〈u,d〉 + γ〈u,d〉z〈u,d〉,

where γ〈u,d〉 6= 0 is a match-specific coefficient. The coefficients γ〈u,d〉 vary across matches within each
market but not across markets. Therefore, the γ〈u,d〉 are fixed parameters to be identified and not
random coefficients. Fixing coefficients across markets but not within markets only makes sense in
a context where firm indices like u and d have a consistent meaning across markets. For example,
the same set of upstream and downstream firms may participate in multiple matching markets, as
in Fox (2010a), where each market is a separate automotive component category. We apply a scale
normalization on production by setting |γ〈1,1〉| = 1. Because of transferable utility, we can identify
the relative scale of each match’s production. We use the matrix Γ =

(
γ〈u,d〉

)
u,d∈N . The terms C and

X are defined as before.

Assumption 1. Given any δ, 0 < δ < 1, there exists y1, y2 such that for any A1, A2, and X, and
for all a > y1, and b < y2,

Pr
(
S̃ (A1, C)− S̃ (A2, C) < a | X

)
> δ

and
Pr
(
S̃ (A1, C)− S̃ (A2, C) < b | X

)
< δ.

This assumption rules out probability masses at the infinities of S̃ (A1, C)− S̃ (A2, C). Under this
assumption, we obtain identification of Γ and F (C | X).
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Theorem 3.

1. The parameter matrix Γ is identified in a one-to-one matching game where all agents must be
matched.

2. Assume that no element of Γ is 0. In the same setting, the distribution F (C | X) of market-level
unobserved complementarities conditional on X is identified once Γ is identified.

The proof is included in the appendix. While Theorem 3 identifies a more general model than
Theorem 2, the identification proof for the matrix Γ in Theorem 3 operates by contradiction. Once
Γ is identified, a variant of the proof of Theorem 2 can be used to trace F (C | X). We rule out that
any γ〈u,d〉 is 0 in order to use the special regressors in Z to trace F (C | X).

3.3 Agent-Specific Characteristics

Match specific z’s with full support are not always available in datasets. Instead, we now assume the
researcher has scalar agent-specific regressors zu and zd, which enter the production function

eu · ed + zu · zd, (7)

where eu and ed are unobserved agent-specific characteristics. We still require that the z’s have full
and product support, meaning

Z =
(
(zu)u∈N , (zd)d∈N

)
now has support on R2N .

We need location and scale normalizations. We first normalize eu = 0 for u = 1 by subtracting
an equal amount from all eu. This location normalization does not affect the optimal assignment:
the sum of unobserved production for a given assignment A is decreased by a constant times the sum
of the ed, which is independent of A. Therefore, the ordering of the total unobserved production
for the different assignments does not change. Similarly, we normalize ed = 0 for d = 1. Next, we
apply a scale normalization and set eu = 1 for u = 2. This is equivalent to setting ẽu =

eu
eu=2

and

ẽd = ed · eu=2. Because F (C|X) has continuous support, the probability of eu=2 = 0 is 0. This
scale normalization keeps the production for each match the same, as ẽu · ẽd = eu · ed. Given the
normalizations, we, for this subsection only, redefine a market-level type to be

E =
(

(eu)
N
u=3 , (ed)

N
d=2

)
. (8)

In other words, E is comprised of 2N − 3 unobservables. X is composed of agent-specific observable
characteristics entering the indices eu and ed. For example, eu = x′uβu + µu, where the vector xu
is comprised of observable characteristics of firm u other than zu, βu is a vector of possibly random
coefficients, and µu is a scalar random intercept. We show that the distribution of E is identified.
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Theorem 4. The distribution G (E | X) is identified in the one-to-one matching model with agent-
specific characteristics, agent-specific unobservables, and without unmatched agents.

The proof is in the appendix. We emphasize that we identify the distribution of agent-specific
characteristics and not just the distribution of unobserved complementarities. The identification of the
distribution of unobserved complementarities F (C | X) follows from the identification of G (E | X).

The scale normalization for E is with respect to the second upstream firm. The scale of the
distribution G (E | X) has a more meaningful interpretation when the second upstream firm is the
same firm across matching markets. If the firm indexed as the second firm in each matching market
is arbitrary, all we learn is the distribution of unobserved characteristics relative to some arbitrary
firm in each market. This makes comparisons across markets difficult.8 As before, we should impose
exchangeability of G (E | X) in the case where agent indices have no underlying meaning. We can
always use the identified G (E | X) to compute counterfactual assignment probabilities.

4 Data on Unmatched Agents

Return to the case of match-specific unobservables and match-specific special regressors. Up until
this point, we consider matching games where all agents have to be matched. This assumption is
reasonable when only data on observed matches are available. For example, it may be unreasonable
to assume that data on all potential entrants to a matching market exist. In some situations, however,
researchers can also observe the identities of unmatched agents. Data are available, for example, on
potential merger partners or on single people in a marriage market. When data on unmatched agents
do exist, we can go beyond unobserved complementarities and identify the distribution of match-
specific unobservables.

Here, X can contain separate numbers of downstream firms Nd and upstream firms Nu. Use 〈u, 0〉
and 〈0, d〉 to denote an upstream firm and a downstream firm that are not matched. An assignment
A can be {〈u1, 0〉, 〈u2, d2〉, 〈0, d2〉}, allowing single firms. We normalize the production of unmatched
agents to be 0, instead of the location normalization in (2). Therefore,

E =


e〈1,1〉 · · · e〈1,Nd〉
...

. . .
...

e〈Nu,1〉 · · · e〈Nu,Nd〉

 .

We do not need match-specific regressors z〈u,0〉 and z〈0,d〉 for unmatched firms; they can be included
in X if present.

8An analogous issue happens in discrete choice models. If one normalizes the utility of each choice relative to choice
1 and choice 1 has no common interpretation across agents, the joint (across choices) distribution of utility is hard to
compare across agents.
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The data generating process is still (1). One difference is that a pairwise stable assignment needs
to satisfy individual rationality: each non-singleton realized match has production greater than 0.

Theorem 5. The distribution G (E | X) of market-level unobservables is constructively identified with
data on unmatched agents.

Proof. Condition on X. Let A0 denote the assignment where no agents are matched, then S̃ (A0, E) =

0 for all E. Let E? be an arbitrary realization. Let Z? =
(
z?〈u,d〉

)
u,d∈N

be such that z?〈u,d〉 = −e?〈u,d〉.
Then S (A,Z?, E?) = 0 for all A, and S (A0, Z

?, E) = 0 for any E. Thus for all A and all E ≤ E?

elementwise, S (A,Z?, E) ≤ 0 = S (A0, Z
?, E) . Therefore G (E?) = Pr (A0 |Z?).

The proof shows that the distribution G (E | X) for some X can be traced using the probability
that all agents are single, conditional on Z. The individual rationality decision to be single identifies
G (E | X) while the sorting of matched firms to other matched firms identifies only F (C | X). Using
an individual rationality condition is more similar to the utility maximization assumptions used in the
identification of single-agent discrete choice models and discrete Nash games (Lewbel, 2000; Matzkin,
2007; Berry and Haile, 2010; Berry and Tamer, 2006).

5 One-Sided and Many-to-Many Matching

One-sided matching is more general than two-sided matching. Agents are not divided into men and
women or upstream and downstream firms; all matches with at most two agents can hypothetically
occur. Examples include models with homosexual relationships and models of mergers, where which
firm is a target and which firm is an acquirer are not defined as fixed roles. In one-sided matching,
a pairwise stable assignment may not exist (Chiappori, Galichon and Salanié, 2012). However, if an
assignment does exist in a one-to-one matching game, it is unique with probability 1 by the same
social planner arguments we cite for two-sided matching. None of our identification arguments use
the two sides of the market in a fundamental way. Therefore, all our arguments generalize to one-sided
matching when a pairwise stable assignment exists. Under non-existence, probabilities will not sum
to 1. Relatedly, Ciliberto and Tamer (2009) estimate a discrete Nash game of perfect information
assuming pure strategies, while proving existence of a Nash equilibrium requires mixed strategies.

Many-to-many matching where the production of each match does not depend on other matches
(the underlying profit of each firm is additively separable across matches and hence allows the definition
of production functions at the match level) is a simple generalization of the matching models studied
in this paper. Sotomayor (1999) shows that existence of a pairwise stable assignment is guaranteed
and similar arguments to ours show it is unique with probability 1. All of our lemmas and theorems
can be shown to extend to this case, where the production of each match does not depend on other
matches. In particular, say the number of matches each agent makes in a feasible assignment is not
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always equal to the maximum number of matches that the agent can physically make. Then there is
an element of individual rationality in the decision not to form all possible matches, and an argument
similar to that in the proof of Theorem 5 can be used.

Many-to-many matching where the production of each match depends on other matches involving
the same agents is more complex. Under a theoretical restriction known as substitutes (which rules out
same-side complementarities), a pairwise stable assignment will exist and be unique with probability
1, as all pairwise stable assignments are fully stable and hence maximize the social planner’s objective
function (Hatfield and Milgrom, 2005; Hatfield et al., 2011). Consider an example where each upstream
firm u can match with two downstream firms d1 and d2. If we impose the substitutes condition, we
can work with the production z〈u,d1,d2〉 + e〈u,d1,d2〉 and identify the distribution of the appropriate
definition of unobserved complementarities or the distribution of e〈u,d1,d2〉, depending on whether an
identification argument based on individual rationality can be used. We need one special regressor z
for each e term; the dimension of the data must be analogous to the dimension of the unobservables.

If we do not impose the substitutes condition, the many-to-many matching problem will have cases
of non-existence and will also have multiple pairwise stable assignments with positive probability.
Methods used in the literature on estimating Nash games with multiple equilibria will likely need to
be employed, which is beyond the scope of this paper (Bajari et al., 2010; Beresteanu et al., 2011;
Ciliberto and Tamer, 2009; Galichon and Henry, 2011). Another approach to multiplicity is to impose
a particular model of search and match formation, as in Christakis et al. (2010). Also, the maximum
score approach of Fox (2010b) uses broad assumptions on equilibrium selection to gain identification
without ruling out multiplicity.

6 Conclusion

Matching models that have been structurally estimated to date have not allowed rich distributions
of unobservables. It has been an open question whether data on who matches with whom as well as
match or agent characteristics are enough to identify distributions of unobservables. In this paper, we
explore several sets of conditions that lead to identification.

Using data on only matched firms, one can identify distributions of what we call unobserved
complementarities but not the underlying primitive distribution of match-specific unobservables. The
distribution of complementarities is enough to compute assignment production levels and therefore
counterfactual assignment probabilities.

In extensions, we can include other covariates X and identify distributions of unobservable comple-
mentarities conditional on X. We show that it is possible to identify heterogeneous-within-a-market
coefficients on the special regressors. We also examine a model where firm-level observed and unob-
served characteristics both enter the production function multiplicatively, and we show identification
of the distribution of the firm level unobservables.
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Finally, if the data contain unmatched firms, the individual rationality decision to not be un-
matched helps identify the distribution of primitively specified unobservables, not just the distribution
of unobserved complementarities.

A Appendix

A.1 Proof of Lemma 1

We construct a vector of unobserved complementarities such that any unobserved complementarity is
equal to sums and differences of elements in this vector.

The vector we construct is

B = (c (u1, u2, d1, d2) |u1 = d1 = 1,∀u2, d2 ∈ {2, . . . , N})

= (c (1, u2, 1, d2)) .

There are (N − 1)2 elements in B.
First we show that any unobserved complementarity of the form c (1, u, d1, d2) is equal to the

difference of two elements of B:

c (1, u, d1, d2) = e〈1,d1〉 + e〈u,d2〉 −
(
e〈1,d2〉 + e〈u,d1〉

)
= e〈1,1〉 + e〈u,d2〉 −

(
e〈1,d2〉 + e〈u,1〉

)
−
(
e〈1,1〉 + e〈u,d1〉 −

(
e〈1,d1〉 + e〈u,1〉

))
= c (1, u, 1, d2)− c (1, u, 1, d1) .

Next,

c (u1, u2, d1, d2) = e〈u1,d1〉 + e〈u2,d2〉 −
(
e〈u1,d2〉 + e〈u2,d1〉

)
= e〈1,d1〉 + e〈u2,d2〉 −

(
e〈1,d2〉 + e〈u2,d1〉

)
−
(
e〈1,d1〉 + e〈u1,d2〉 −

(
e〈1,d2〉 + e〈u1,d1〉

))
= c (1, u2, d1, d2)− c (1, u1, d1, d2) .

Because we have shown that any c (1, u2, d1, d2) is a difference of two elements in B, c (u1, u2, d1, d2)

can be written as the sums and differences of elements in B.

A.2 Proof of Lemma 2

We prove the lemma by mathematical induction on N , the number of upstream firms, which is equal
to the number of downstream firms. When N = 2, in assignment A1 = {〈1, 1〉, 〈2, 2〉} S̃ (A1, E) is 0
by our location normalization, and in A2 = {〈1, 2〉, 〈2, 1〉} S̃ (A2, E) = e〈1,2〉 + e〈2,1〉 = −c (1, 2, 1, 2) .

Thus the lemma is true for N = 2. The induction hypothesis is that the lemma is true for N − 1 for
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some arbitrary N . For the case of markets with N upstream firms, there are two different types of
assignments A that can occur. We use the notation of A (u) = d if match 〈u, d〉 occurs in A.

Case 1. A is such that A(N) = N , where again N is the last upstream firm (and hence downstream
firm) index. Then

S̃ (A,E) =

N−1∑
u=1

e〈u,A(u)〉 + e〈N,N〉 =

N−1∑
u=1

e〈u,A(u)〉 + 0,

by the location normalization. We can define an assignment A? on the (N − 1)-by-(N − 1)

submarket involving the first N − 1 upstream firms and the first N − 1 downstream firms, such
that A?(u) = A(u),∀u < N , or all upstream firms other than the last upstream firm. Then

S̃ (A,E) =
N−1∑
u=1

e〈u,A(u)〉 + 0 =

N−1∑
u=1

e〈u,A∗(u)〉.

By the induction hypothesis, we know that the last sum can be written as a sum of unobserved
complementarities. Therefore the total non-z production given assignment A can be written as
the sum of unobserved complementarities.

Case 2. A is such that A (N) = d?, where d? < N . Because all agents are matched, among upstream
firms 1, . . . , N − 1 there exists an upstream firm u? who matches with the last downstream firm
N : A(u?) = N . Therefore

S̃ (A,E) =

N−1∑
u = 1,

u 6= u?

e〈u,A(u)〉 + e〈N,A(N)〉 + e〈u?,A(u?))〉

=

N−1∑
u = 1,

u 6= u?

e〈u,A(u)〉 + e〈N,d?〉 + e〈u?,N)〉. (9)

Recall c (N, u?, d?, N) = e〈N,d?〉+e〈u?,N〉−
(
e〈N,N〉 + e〈u?,d?〉

)
. Because e〈N,N〉 = 0 by the location

normalization, we have

e〈N,d?〉 + e〈u?,N〉 = c (N, u?, d?, N) + e〈u?,d?〉.
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Substitute this equation into (9):

S̃ (A,E) =

N−1∑
u = 1,

u 6= u?

e〈u,A(u)〉 + e〈u?,d?〉 + c (N, u?, d?, N) .

Notice that the first (N − 1) terms only involve the first (N − 1) upstream firms and the first
(N − 1) downstream firms. We can apply a similar argument to the one we used before to re-write
the sum of these terms as the sum of non-z production from an assignment on a (N − 1)-by-
(N − 1) submarket. By the induction hypothesis, this is a sum of unobserved complementarities.
Therefore S̃ (A,E) is a sum of complementarity functions.

The induction is complete, and the lemma is true for all N .

A.3 Proof of Lemma 3

In proving the result, we use A (u) = d to mean that assignment A includes the match 〈u, d〉. The
“only if” direction is a result of Lemma 2. S̃ (A,C) can be expressed as a sum of c (·) that is not
specific to the realization E (or C). Suppose C1 = C2. Because c1 (u1, u2, d1, d2) = c2 (u1, u2, d1, d2)

for all sets of two upstream and two downstream firms, then S̃ (A,C1) = S̃ (A,C2) for all assignments
A. To prove the “if” direction, suppose S̃ (A,C1) = S̃ (A,C2) for all A. Given any upstream firms
u1, u2 and downstream firms d1, d2, we want to show that c1 (u1, u2, d1, d2) = c2 (u1, u2, d1, d2), where
the superscripts index C1 and C2. Consider assignment A1 such that A1(u1) = d1 and A1(u2) = d2

and the assignment A2 such that A2(u1) = d2 and A2(u2) = d1, where A1 (u) = A2 (u) for all other
upstream firms u. As S̃ (A,C1) = S̃ (A,C2) for all A,

e1〈u1,A1(u1)〉 + e1〈u2,A1(u2)〉 +
∑

u6=u1,u2

e1〈u,A1(u)〉 = e2〈u1,A1(u1)〉 + e2〈u2,A1(u2)〉 +
∑

u6=u1,u2

e2〈u,A1(u)〉

e1〈u1,A2(u1)〉 + e1〈u2,A2(u2)〉 +
∑

u6=u1,u2

e1〈u,A2(u)〉 = e2〈u1,A2(u1)〉 + e2〈u2,A2(u2)〉 +
∑

u6=u1,u2

e2〈u,A2(u)〉.

Subtracting the equations will cancel out all the terms in the summations. Substitute in the values
for A1 (·) and A2 (·) to give

e1〈u1,d1〉 + e1〈u2,d2〉 −
(
e1〈u1,d2〉 + e1〈u2,d1〉

)
= e2〈u1,d1〉 + e2〈u2,d2〉 −

(
e2〈u1,d2〉 + e2〈u2,d1〉

)
,

which is precisely c1 (u1, u2, d1, d2) = c2 (u1, u2, d1, d2).
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A.4 Proof of Theorem 3

We first state a lemma that is helpful in the proof of the theorem. In the lemma, A0 is an arbitrary
assignment, not necessarily the assignment {〈1, 1〉 . . . , 〈N,N〉}.

Lemma 5. Let 0 < δ < 1 be given. Given Assumption 1 and a particular, arbitrary assignment A0,
∃ζ1, ζ2, such that for any X, and for all a > ζ1, and b < ζ2,

Pr
(
S̃ (A,E)− S̃ (A0, E) < a,∀A 6= A0 | X

)
> δ

and
Pr
(
S̃ (A,E)− S̃ (A0, E) < b,∀A 6= A0 | X

)
< δ.

Proof. We construct ζ1 inductively. List all possible assignments as A0, A1, . . . , AN !−1. Denote the
event S̃ (Ai, θ)− S̃ (A0, θ) < a as Bi (a). Denote Cn (a) = ∩i=1...nBi (a). The first part of the lemma

is to show that there exists ζ1 such that ∀a > ζ1, Pr (CN !−1 (a) |X) > δ. Given δ, let δ1 =
1

2
(1 + δ).

By Assumption 1, there exists y1 and y2 such that for a > y1 Pr (B1 (a) | X) > δ1 and for a > y2

Pr (B2 (a) | X) > δ1. Let ζ
(2)
1 = max (y1, y2), then for any a > ζ

(2)
1

Pr (C2 (a) |X) = Pr (B1 (a) |X) + Pr (B2 (a) |X)− Pr (B1 (a) ∪B2 (a) |X)

> Pr (B1 (a) |X) + Pr (B2 (a) |X)− 1

≥ 2δ1 − 1 = δ.

Given δ and n−1, then by induction there exists ζ(n−1)1 such that ∀a > ζ
(n−1)
1 , Pr (Cn−1 (a) |X) > δ.

We do not use this hypothesis for this value of δ. Instead, because the lemma applies to any value
of δ, we use the induction hypothesis for the value δ1 instead. Therefore, there exists y(n)1 such that
for a > y

(n)
1 , Pr (Cn−1 (a) | X) > δ1. By Assumption 1, there exists y(n)2 such that for a > y

(n)
2 ,

Pr (Bn (a) | X) > δ1. Let ζ(n)1 = max
(
y
(n)
1 , y

(n)
2

)
, then just as above, Pr (Cn (a) |X) > δ. Therefore

the induction is complete; denote ζ1 = ζ
(N !−1)
1 . For a > ζ1, Pr (CN !−1 (a) |X) > δ.

Any y2 satisfying the second part of Assumption 1 is ζ2: for given A and δ, there exists y2 such
that ∀b < y2, Pr

(
S̃ (A,ψ)− S̃ (A0, ψ) < b | X

)
< δ. The intersection of these sets over A has a weakly

smaller probability than δ.

Now we are ready to state the proof of Theorem 3.

Proof. Condition on X if it is present. The location normalization is that |γ〈1,1〉| = 1. We first prove
the theorem with γ〈1,1〉 = 1. The argument is similar with γ〈1,1〉 = −1. Consider two parameter pairs

(Γ, F ) and
(

Γ̂, F̂
)
. If Γ = Γ̂, a variant of the proof of Theorem 2 can be used to trace out F if each

element of Γ is nonzero, thus uniquely identifying it. So the interesting case is when Γ 6= Γ̂.
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The majority of this proof shows the identification of γ〈u1,d1〉, where either u1 = 1 or d1 = 1. Let
Pr (A |Z) represent probabilities of an assignment (integrating over E) under (Γ, F ) and let P̂r (A |Z)

represent probabilities under
(

Γ̂, F̂
)
. We will find an assignment A? and data matrix Z̆ where

Pr
(
A? | Z̆

)
6= P̂r

(
A? | Z̆

)
, thus proving identification. The identification of parameters other than

γ〈u1,d1〉 will follow similar arguments, as we discuss at the end.
Therefore, suppose γ〈u1,d1〉 6= γ̂〈u1,d1〉. Pick an assignment A? that contains the match 〈1, 1〉. Then

〈u1, d1〉 is not a match of A?, as each upstream firm and each downstream firm can be matched only
once. Fix a positive number δ, 0 < δ < 1. Pick Z? as follows:

1. z?〈u,d〉 = 0 if 〈u, d〉 6= 〈u1, d1〉 or 〈u, d〉 6∈ A?.

2. Without loss of generality, choose z?〈1,1〉 > 0 and z?〈u1,d1〉 such that

γ〈u1,d1〉z
?
〈u1,d1〉 − z

?
〈1,1〉 > 0 > γ̂〈u1,d1〉z

?
〈u1,d1〉 − z

?
〈1,1〉 (10)

3. For any other 〈u, d〉 ∈ A?, choose z?〈u,d〉 such that γ〈u,d〉z?〈u,d〉 > z0 + |γ〈u1,d1〉z
?
〈u1,d1〉|, where z0

is defined as follows. By Assumption 1 and Lemma 5, there exists z0 such that for any a ≥ z0,
Pr
(
S̃ (A,E)− S̃ (A?, E) < a,∀A 6= A? | X

)
> δ.

Let the set
EA? =

{
E | S̃ (A,E)− S̃ (A?, E) < z0,∀A 6= A?

}
.

Then Pr (EA?) > δ. Denote the set of matches that occur inA?\ {〈1, 1〉} but not inA asA?\ {A ∪ 〈1, 1〉}.
Any non-A? assignment A is in one of the following three mutually exclusive categories.

1. A contains the match 〈1, 1〉. Then A cannot contain the match 〈u1, d1〉. Denote the set of such
A’s as A1. Denote the set of E’s such that A? has higher payoffs than any A ∈ A1 as

E1 (Z?) = {E | S (A,E,Z?) ≤ S (A?, E, Z?) ,∀A ∈ A1} ,

which is equivalent to {
E | S̃ (A,E)− S̃ (A?, E) ≤ z?1 (A) ,∀A ∈ A1

}
,

where z?1 (A) =
(∑

〈u,d〉∈A?\{A∪〈1,1〉} γ〈u,d〉z
?
〈u,d〉

)
. Because there are at least two different

matches in the assignments A and A?, there is at least one match in the set of A?\ {A ∪ 〈1, 1〉}.

For each A ∈ A1 , denote one such match as 〈ũ, d̃〉A (keep in mind
〈
ũ, d̃
〉A
∈ A?, not A). By

25



Condition 3 in picking Z?, for each A ∈ A1

z?1 (A) > γ〈ũ,d̃〉Az
?

〈ũ,d̃〉A

> z0 + |γ〈u1,d1〉z
?
〈u1,d1〉|

> z0,

which implies that EA? ⊂ E1 (Z?).

2. A contains the match 〈u1, d1〉. Then A cannot contain the match 〈1, 1〉. Denote the set of such
A’s as A2. Denote the set of E’s such that A? has higher payoffs than any A ∈ A2 as

E2 (Z?) = {E | S (A,E,Z?) ≤ S (A?, E, Z?) ,∀A ∈ A2} ,

which is equivalent to {
E | S̃ (A,E)− S̃ (A?, E) ≤ z?2 (A) ,∀A ∈ A2

}
,

where

z?2 (A) =

 ∑
〈u,d〉∈A?\{A∪〈1,1〉}

γ〈u,d〉z
?
〈u,d〉

+ z?〈1,1〉 − γ〈u1,d1〉z
?
〈u1,d1〉.

As above,
(∑

〈u,d〉∈A?\{A∪〈1,1〉} γ〈u,d〉z
?
〈u,d〉

)
> z0 + |γ〈u1,d1〉z

?
〈u1,d1〉|. Thus

z?2 (A) > z0 + |γ〈u1,d1〉z
?
〈u1,d1〉|+ z?〈1,1〉 − γ〈u1,d1〉z

?
〈u1,d1〉

> z0 + z?〈1,1〉

> z0,

where the second inequality holds because either |γ〈u1,d1〉z
?
〈u1,d1〉|−γ〈u1,d1〉z

?
〈u1,d1〉 = 0 or because

−γ〈u1,d1〉z
?
〈u1,d1〉 is positive and the third inequality holds because z?〈1,1〉 was chosen to be positive

before. These inequalities imply that EA? ⊂ E2 (Z?).

3. A contains neither 〈1, 1〉 or 〈u1, d1〉. Denote the set of such A’s as A3. Denote the set of E’s
such that A? has higher payoffs than any A ∈ A3 as

E3 (Z?) = {E | S (A,E,Z?) ≤ S (A?, E, Z?) ,∀A ∈ A3} ,
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which is equivalent toE | S̃ (A,E)− S̃ (A?, E) ≤

 ∑
〈u,d〉∈A?\{A∪〈1,1〉}

γ〈u,d〉z
?
〈u,d〉

+ z?〈1,1〉,∀A ∈ A3

 .

This implies EA? ⊂ E3 (Z?) as above.

Henceforth EA? ⊂ Ei (Z?) for i = 1, 2, 3, and

Pr (A? | Z?) = Pr [E1 (Z?) ∩ E2 (Z?) ∩ E3 (Z?)] ≥ Pr (EA?) > δ.

If Pr (A? | Z?) 6= P̂r (A? | Z?), then the parameter γ〈u1,d1〉 is identified and we can move onto
the identification of the other parameters, as discussed below. Thus we only consider the case
Pr (A? | Z?) = P̂r (A? | Z?) > δ. By Assumption 1 and Lemma 5, there exists z′0 such that ∀z ≤ z′0,

Pr
(
S̃ (A,E)− S̃ (A?, E) < z,∀A

)
< δ. (11)

Now let Z̆ =
(
z̆〈u,d〉

)
u,d∈N where z̆〈u,d〉 = z?〈u,d〉, except that z̆〈u1,d1〉 (K) = Kz?〈u1,d1〉 and

z̆〈1,1〉 (K) = Kz?〈1,1〉. By the choice in 10, −
(
γ〈u1,d1〉z̆〈u1,d1〉 (K)− z̆〈1,1〉 (K)

)
is negative and be-

comes more negative as K > 1 increases. Therefore, there exists a sufficiently large K such that for
all A ∈ A2,

−
(
γ〈u1,d1〉z̆〈u1,d1〉 (K)− z̆〈1,1〉 (K)

)
< z′0 −

 ∑
〈u,d〉∈A?\A

γ〈u,d〉z
?
〈u,d〉

 ,

which implies  ∑
〈u,d〉∈A?\A

γ〈u,d〉z
?
〈u,d〉

− (γ〈u1,d1〉z̆〈u1,d1〉 (K)− z̆〈1,1〉 (K)
)
< z′0

and therefore

E2
(
Z̆
)

=

E | S̃ (A,E)− S̃ (A?, E) ≤

 ∑
〈u,d〉∈A?\A

γ〈u,d〉z̆〈u,d〉

− (γ〈u1,d1〉z̆〈u1,d1〉 (K)− z̆〈1,1〉
)
,∀A ∈ A2


=

E | S̃ (A,E)− S̃ (A?, E) ≤

 ∑
〈u,d〉∈A?\A

γ〈u,d〉z
?
〈u,d〉

− (γ〈u1,d1〉z̆〈u1,d1〉 (K)− z̆〈1,1〉
)
,∀A ∈ A2


⊂
{
E | S̃ (A,E)− S̃ (A?, E) ≤ z′0,∀A ∈ A2

}
,
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and by 11,
Pr
(
E2
(
Z̆
))

< Pr
(
E | S̃ (A,E)− S̃ (A?, E) ≤ z′0,∀A ∈ A2

)
< δ.

. Therefore,
Pr
(
A? | Z̆

)
= Pr

(
E1
(
Z̆
)
∩ E2

(
Z̆
)
∩ E3

(
Z̆
))
≤ Pr

(
E2
(
Z̆
))

< δ.

On the other hand, because the term −
(
γ̂〈u1,d1〉z̆〈u1,d1〉 (K)− z̆〈1,1〉 (K)

)
is positive, the set

Ê2
(
Z̆
)

=

E | S̃ (A,E)− S̃ (A?, E) ≤

 ∑
〈u,d〉∈A?\A

γ̂〈u,d〉z
?
〈u,d〉

− (γ̂〈u1,d1〉z̆〈u1,d1〉 (K)− z̆〈1,1〉 (K)
)
,∀A ∈ A2


becomes weakly larger as K increases. Therefore for K > 1, Ê2 (Z?) ⊂ Ê2

(
Z̆
)
. We also have

Ê3 (Z?) ⊂ Ê3
(
Z̆
)
, because

E3
(
Z̆
)

=

E | S̃ (A,E)− S̃ (A?, E) ≤

 ∑
〈u,d〉∈A?\{A∪〈1,1〉}

γ〈u,d〉z
?
〈u,d〉

+ z̆〈1,1〉 (K) ,∀A ∈ A3

 ,

whose probability increases with K; Ê1
(
Z̆
)

= Ê1 (Z?), because z1 (A) does not contain the production
of the matches of 〈1, 1〉 and 〈u1, d1〉.. Therefore,

P̂r
(
A? | Z̆

)
= P̂r

(
Ê1
(
Z̆
)
∩ Ê2

(
Z̆
)
∩ Ê3

(
Z̆
))

≥ P̂r
(
Ê1 (Z?) ∩ Ê2 (Z?) ∩ Ê3 (Z?)

)
≥ δ.

Therefore, P̂r
(
A? | Z̆

)
≥ δ and Pr

(
A? | Z̆

)
< δ.

Therefore, γ〈u1,d1〉 = γ̂〈u1,d1〉 if u1 = 1 or d1 = 1. Now we can show that γ〈u,d〉 = γ̂〈u,d〉 for any 〈u, d〉
by slightly modifying the above proof steps. Suppose γ〈u,d〉 6= γ̂〈u,d〉, and without loss of generality,
u 6= 1. Then by the previous argument, we have γ〈1,d〉 = γ̂〈1,d〉. Then in the above proof, we can
replace z〈1,1〉 with γ〈1,d〉z〈1,d〉, have A? contain the match 〈1, d〉 and generate a similar contradiction.
For the case of γ〈1,1〉 = −1, simply reverse the sign of z〈1,1〉 and the proof is identical.

Once the parameter matrix Γ is identified, we can then constructively trace F (C) by a variant of
Theorem 2.
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A.5 Proof of Theorem 4

Condition on X. We let w(E) be the matrix of unobserved production levels

w(E) =


0 0 ... 0

0 f〈2,2〉 ... f〈2,N〉
...

...
. . .

...
0 f〈N,2〉 ... f〈N,N〉

 ,

where we define
f〈u,d〉 = eu · ed.

Let S̃ (A,E) =
∑N
u=1 f〈u,A(u)〉 and S (A,E,Z) = S̃ (A,E)+

∑N
u=1 zu·zd. LetA1 = {〈1, 1〉, . . . , 〈N,N〉}.

Also define S̄ (A,E) = S̃ (A,E) − S̃ (A1, E) and the vector ȳ (E) =
(
S̄ (A,E)

)
A 6=A1

. First we show
that there is a one-to-one and onto relationship between ȳ (E) and E. This amounts to showing
E1 = E2 if and only if ȳ (E1) = ȳ (E2) . The “only if” direction is trivial. The following two lemmas
are dedicated to showing the “if” part of the assertion.

Lemma 6. If S̃ (A,E1) = S̃ (A,E2) for all A, then E1 = E2.

Proof. Let f1 index the unobserved production for E1 and let f2 index the unobserved produc-
tion for E2. Recall that f〈u,d〉 = eu · ed. We start on the diagonal elements. For assignment
(〈1, 1〉, 〈2, 2〉, · · · , 〈N,N〉),

N∑
u=2

f1〈u,u〉 =

N∑
u=2

f2〈u,u〉, (12)

as the missing first term in each sum is 0 as e1 is normalized to be 0. For assignment (〈1, k〉, 〈2, 2〉 · · · , 〈k, 1〉, · · · , 〈N,N〉),
we have

N∑
u = 2

u 6= k

f1〈u,u〉 =

N∑
u = 2

u 6= k

f2〈u,u〉, (13)

again as the matches 〈1, k〉 and 〈k, 1〉 have zero non-z production by the location normalization that
e1 = 0 for upstream and downstream firms. Subtract equation (13) from equation (12), which gives us
f1〈k,k〉 = f2〈k,k〉. The previous argument can be repeated for all k, giving f1〈k,k〉 = f2〈k,k〉 ∀ k = 1, . . . , N .

Next we induct on the size of the K ×K upper left submatrix of w(E). For the upper left two-
by-two matrix, the only nonzero term is f〈1,1〉, which we just showed was identical between E1 and
E2. Now assume the (N − 1)-by-(N − 1) upper left submatrix of w(E) is the same between E1 and
E2. We know the element f〈N,N〉 is the same. For arbitrary elements f〈N,d〉 of the last row and f〈u,N〉
of the last column, we want to show that those elements are identical between E1 and E2. If we can
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show this for an element of the last row, a symmetric argument will hold for an element of the last
column. Focusing on f〈N,d〉, consider the assignment

(〈N − 1, 1〉, 〈N − 2, 2〉, · · · , 〈N − d+ 1, d− 1〉, 〈N, d〉, 〈N − d, d+ 1〉, · · · , 〈1, N〉) ,

which has the sum of unobserved production

0 + f〈N−2,2〉 + · · ·+ f〈N−d+1,d−1〉 + f〈N,d〉 + f〈N−d,d+1〉 + · · ·+ 0.

All terms in the sum except for f〈N,d〉 are equal across E1 and E2 by the induction hypothesis and
the location normalization. Because the sums of non-z production are equal across assignments,
f1〈N,d〉 = f2〈N,d〉,∀d. Thus the induction is complete and w(E1) = w(E2).

With the scale normalization that eu = 1 for u = 2 and f〈u,d〉 = eu · ed, we have e2 · e1d = e2 · e2d,
which implies that e1d = e2d. By comparing every term that involves f〈u,d〉, u 6= 1, 2, we have e1u = e2u.
Therefore E1 = E2.

Next we prove the following lemma.

Lemma 7. Let A1 be the diagonal assignment as defined at the beginning of the section.

S̃ (A2, E1)− S̃ (A1, E1) = S̃ (A2, E2)− S̃ (A1, E2) ,∀A2 6= A1, (14)

if and only if E1 = E2.

Proof. The “if” direction is trivial. For the “only if” direction, by re-arranging terms, we have

S̃ (A2, E1)− S̃ (A2, E2) = S̃ (A1, E1)− S̃ (A1, E2) .

We can define D to be equal to the value of the right side, which is not a function of A2. Given the
implication of the location normalizations that f〈1,1〉 = 0, we have

S̃ (A1, E1)− S̃ (A1, E2) =

N∑
u=2

f1〈u,u〉 −
N∑
u=2

f2〈u,u〉 = D, (15)

where the superscripts index E1 and E2. Consider the assignmentA2 = (〈1, k〉, 〈2, 2〉 · · · , 〈k, 1〉, · · · , 〈N,N〉).
Under the implication of the location normalizations that f〈1,k〉 = f〈k,1〉 = 0, we have

S̃ (A2, E1)− S̃ (A2, E2) =

N∑
u = 2

u 6= k

f1〈u,u〉 −
N∑

u = 2

u 6= k

f2〈u,u〉 = D (16)
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Comparing (15) and (16), we have that f1〈k,k〉 = f2〈k,k〉. Varying the argument for each k shows that
f1〈k,k〉 = f2〈k,k〉 for all k as functions of X. Therefore

∑N
u=2 f

1
〈u,u〉 =

∑N
u=2 f

2
〈u,u〉 and D = 0. Therefore

S̃ (A2, E1) = S̃ (A2, E2)∀A2. By Lemma 6, this implies that E1 = E2.

Now we are ready to prove Theorem 4.

Proof. Continue to condition on X. By Lemmas 7, there is a one-to-one and onto relationship between
ȳ (E) and E. Thus it suffices to show that the distribution H (ȳ (E)) is identified. The rest of the
proof is parallel to the proof of Lemma 4 and Theorem 2.

Suppose E? gives ȳ (E?). Set
z?u = −e?u, z?d = e?d.

Then S (A,E?, Z) = 0 ∀A. At ȳ (E?), the CDF has the value of

H (ȳ (E?)) = Pr (S (A2, E, Z
?)− S (A1, E, Z

?) ≤ S (A2, E
?, Z?)− S (A1, E

?, Z?) , . . . |Z?)

= Pr
(
S̃ (A2, E)− S̃ (A1, E) ≤ 0, . . . , S̃ (AN !, E)− S̃ (A1, E) ≤ 0

)
= Pr (A1|Z?) .

Therefore the cumulative distribution function H (ȳ (E?)) can be traced by Pr (A1|Z?). Applying
a bijective change of variables gives us the distribution of E?. Therefore the distribution G (E) is
identified.
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