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Abstract

This paper studies single-product and two-dimensions of heterogeneity monop-
olistic screening problems. It makes a connection between one-dimensional
screening without single-crossing and two-dimensional screening. We show that
the optimality condition characterizing discrete bunching of types that emerges
in one-dimensional models can be extended to two-dimensional models. Then,
we use this condition to solve some examples from the literature.
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1. Introduction

We study a monopolistic screening problem where the firm produces a single
product and faces heterogeneous customers. The customers’ preferences exhibit
two dimensions of uncertainty, which are their private information. In this paper
we will derive the necessary optimality conditions characterizing the level curves
for the optimal quantity assignment function.

Due to dimensionality constraints, we do not expect to observe a complete
separation of customers with regard to the quantity q of the good purchased.
Indeed, it is natural to observe a bunching of customers attached to each quan-
tity q sold by the firm. Consider the quantity assignment function q(·). The
level curve q(·) = q represents exactly the bunching of customers at this level of
consumption.

The approach we use is based on a natural change of variables in the cus-
tomers type’s space. The new variables will be related to the level curves of the
quantity assignment function q(·). To find the change of variables, we use the
method of characteristic curves from the theory of quasilinear partial differential
equations. Once we have them, we proceed with a calculus of variations using
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these new variables. This will result in an optimality condition characterizing
the optimal level curves of the quantity assignment function.

In the one-dimensional type case without single-crossing, Araujo and Moreira
[1] performed an analysis similar to ours, deriving a condition characterizing
the optimal bunching. However, in their case, the bunching consists of only two
customers choosing the same quantity q. On the other hand, we deal with a
more complex structure as we have a continuum of customers choosing q. In this
sense, this paper makes a connection between one-dimensional screening without
single-crossing and two-dimensional screening. Moreover, we can think of the
optimality conditions derived in this paper as extensions to the two-dimensional
context of the analogous conditions derived by Araujo and Moreira [1] in the
one-dimensional context.

Finally, with the conditions derived here, we can easily solve the examples
from Laffont et al. [10] and the very interesting variation proposed by Deneckere
and Severinov [6], where the level curves of q(·) may interact with the boundary
curve separating the participation and the exclusion region on the type space.

1.1. Related Literature

In the discussion that follows, M is the number of instruments available to
the monopolist and N is the dimension of the customer’s heterogeneity (i.e. the
dimension of the type space).

We observe that the solution of the monopolist’s problem is straightforward
in the one-dimensional case (M = N = 1) under the single-crossing condi-
tion. The problem translates into a well-behaved maximization problem on
the space of monotonic functions.1 However, in the multi-dimensional case
(M > 1 or N > 1), the characterization of the optimal contract is a very com-
plex problem in general.

Laffont et al. [10] presented a particular nonlinear pricing example where
the monopolist sells a single product and is uncertain about the intercept and
the slope of the customer’s demand curve, i.e. (M = 1, N = 2). They derived
the optimal quantity assignment function when these two characteristics are
independently and uniformly distributed.

McAfee and McMillan [11] studied the problem of a multi-product monopo-
list who faces a customer with multi-dimensional characteristics with (M ≤ N).
They introduced the Generalized Single-Crossing (GSC), a condition under
which the first- and second-order conditions for the customer’s problem are
necessary and sufficient for implementability. They also characterized the op-
timal contract when (M = 1, N ≥ 1) under the (GSC), generalizing the result
from Laffont et al. [10].

Armstrong [2] considered a problem where (M ≥ 1, N ≥ 1). He was able to
give closed form solutions for some examples in this multidimensional context.
One of his main contributions was to discover the exclusion property. This

1 See Fudenberg and Tirole [7], chapter 7.
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property states that the optimal contract leaves a set of customers, with positive
measure, excluded from consumption.

Rochet and Chone [15] established the existence of the optimal contract
and provided the characterization in the case of a multi-product monopolist
who faces a customer with multidimensional characteristics. They assume the
number of products and characteristics to be the same (M = N ≥ 1) and also
that the parametrization of a customer’s preferences is linear with types. They
introduced the sweeping procedure as a generalization of the ironing procedure
for dealing with bunching in the multidimensional context.

Basov [3] introduced the Hamiltonian approach as a tentative method of
generalizing Rochet and Chone [15] to the case when the number of products and
characteristics may be different (N ≥ 1,M ≥ 1). Later on, these techniques were
extended in his book (Basov [4]) to deal with more general customer preferences.

Parallel to this literature, there were works analyzing the existence of a so-
lution for the monopolist’s maximization problem. We highlight the papers
by Monteiro and Page Jr [13] and by Carlier [5]. The former uses compactness
properties resulting from budget constraint considerations and the latter uses di-
rect methods and concepts of abstract convexity. However, these approaches do
not actually provide any recipe for the characterization of the optimal contract.

We can say that Laffont et al. [10] is the main inspiration for our paper. We
develop further some ideas that were already in their example, but now apply
them in a more general context.

1.2. Outline of the Paper

The plan of the paper is the following. In Section 2 we present the model
used in our analysis. In Section 3 we derive the partial differential equation
related to the incentive compatibility constraints. The method for solving this
equation gives us a reparametrization of the type space. In Section 4 we use this
reparametrization to derive the optimality conditions. In Section 5 we use our
method to solve two examples from the related literature. Finally, in Section 6
we give the conclusions. All proofs are relegated to the Appendix.
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2. Model

The customer has a quasi-linear preference, represented by

v(q, a, b)− t,

where (a, b) ∈ Θ = [0, 1] × [0, 1] is the customer’s type, q ∈ R+ is the good
consumed, and t is the monetary payment.

The firm is a profit maximizing monopolist which produces a single product
q ∈ R+. The firm does not observe (a, b) and has a prior distribution over Θ
according to the differentiable density function f(a, b) > 0. The monopolist’s
preference is given by

Π(q, t) = t− C(q),

where C(q) is a C2 cost function, with C(·) ≥ 0, C ′(·) > 0, and C ′′(·) > 0.
Using the ‘Revelation Principle’ we can restrict our attention to direct and

truthful mechanisms.2 Thus, the monopolist’s problem consists in choosing the
contract (q, t) : Θ→ R+ × R that solves

max
q(·),t(·)

∫ 1

0

∫ 1

0

Π(q(a, b), t(a, b))f(a, b)dadb, (Π)

subject to the individual-rationality constraints:

v(q(a, b), a, b)− t(a, b) ≥ 0 ∀(a, b) ∈ Θ, (IR)

and the incentive compatibility constraints:

(a, b) ∈ arg max
(a′,b′)∈Θ

{v(q(a′, b′), a, b)− t(a′, b′)}, ∀(a, b) ∈ Θ. (IC)

A contract (q(·), t(·)) is incentive-compatible if it satisfies the (IC) con-
straints. We say that q(·) is implementable if we can find a monetary payment
t(·) such that the pair (q(·), t(·)) is incentive compatible. For an incentive-
compatible contract, we define the informational rent as

V (a, b) = v(q(a, b), a, b)− t(a, b). (1)

In the single-product, single-characteristic case (M = N = 1), the informa-
tional rent is used to eliminate the monetary payment t(·) from the monopolist’s
problem (Π). After that, combining integration by parts and the envelope’s
theorem from Milgrom and Segal [12] one can derive a new expression for the
monopolist’s expected profit now depending only on q(·) and the customer’s
type.3

This idea can be extended to the multi-dimensional context. Indeed, in the
case with multiple characteristics (N > 1), Armstrong [2] proposed the “integra-
tion by rays” technique, that also results in an expression for the monopolist’s

2 The ‘Revelation Principle’ has been enunciated in Gibbard [8].
3 See Fudenberg and Tirole [7], chapter 7, for more details.
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expected profit depending only on q(·) and the customer’s type. However, when
we have multiple characteristics, there are several paths connecting distinct cus-
tomers. So, instead of using “integration by rays”, it may be more convenient
to choose a different path for this integration. This decision, of course, depends
on the specific problem to be addressed.

In this paper, we are not concerned with the particular method used. We
will assume that the monopolist’s expected payoff is given by∫ 1

0

∫ 1

0

g(q(a, b), a, b)f(a, b)dadb. (2)

As in the one-dimensional case, we will call g(·) the virtual surplus. To simplify
our notation, we define G(q, a, b) = g(q, a, b)f(a, b). We make the following
assumptions about the utility function v(q, a, b) and the function G(q, a, b).

Assumption A. v(q, a, b) is thrice differentiable and G(q, a, b) is twice differ-
entiable. They satisfy:

A1. va > 0 and vb < 0 when q > 0.

A2. vqa > 0 and vqb < 0 when q > 0.

A3. vq2 < 0 and Gq2 < 0.

Observe that assumption A1 implies that the informational rent increases with
a and decreases with b. Assumption A2 is a single-crossing condition in each
direction a and b. As a consequence, it requires that an implementable q(a, b)
is increasing with a and decreasing with b. Finally, assumption A3 requires
the strict concavity of the utility function v(·, a, b), and the strict concavity of
G(·, a, b), for each (a, b)-type customer. The last assumption assures that the
first-order necessary conditions for a q(a, b) that maximizes expression (2) are
also sufficient.

3. Local Incentive Conditions

Now we present the partial differential equation (PDE) that is derived from
the (IC) constraints. First, consider an incentive compatible contract (q, t).
Then, each (a, b)-type customer must solve the maximization problem

max
(a′,b′)∈Θ

{v(q(a′, b′), a, b)− t(a′, b′)}. (3)

The first-order necessary optimality conditions for problem (3) are{
vq(q(a, b), a, b)qa(a, b) = ta(a, b), and (4)
vq(q(a, b), a, b)qb(a, b) = tb(a, b). (5)

From equations (4) and (5), we can derive the cross derivatives tab and tba.
Finally, using the Schwarz’s integrability condition

tab(a, b) = tba(a, b),
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we get Proposition 1 below.4

Proposition 1 (Quasi-Linear Equation). Suppose that the contract (q, t) is
incentive compatible and twice differentiable in an open set Ω ⊂ Θ. Then it
satisfies the following equation

− vqb
vqa

qa + qb = 0. (6)

Equation (6) is a quasi-linear first-order partial differential equation.5 It de-
scribes the relationship between the contour lines of q(a, b) and vq(q(a, b), a, b).
Indeed, let (a(s), b(s)) be a contour line with q(a(s), b(s)) = k. Then, differen-
tiating q(a, b) and vq(q(a, b), a, b) along this curve, we get

d

ds
q(a(s), b(s)) = qaas + qbbs = 0, (7)

and

d

ds
vq(k, a(s), b(s)) = vqaas + vqbbs. (8)

Finally, using equations (6),(7), and (8), we conclude that

d

ds
vq(k, a(s), b(s)) = 0. (9)

Observe that equation (9) is saying that if (a(s), b(s)) is a contour line q(a, b) =
k, then it is also a contour line of vq(k, a, b).

We have yet another interpretation. The “Taxation Principle” says that we
can also implement q(a, b) with a tariff P : Q = q(Θ) → R, P (q(a, b)) = t(a, b)
for all (a, b) ∈ Θ. Using this tariff P , we can write the customer’s problem as

max
q∈Q

v(q, a, b)− P (q).

Notice that, when P is differentiable at q(a(s), b(s)) = k, Proposition 1 is simply
saying that all the types choosing q(a(s), b(s)) get the same marginal utility
vq(k, a(s), b(s)). In Araujo and Moreira [1], they have a similar condition (the
U-condition) in the one-dimensional context. They use it in the derivation of
the optimality condition. We will follow the same steps, adapted to the two-
dimensional case.

4 Laffont et al. [10] mentioned this integrability condition and the PDE for the particular
case they were treating. Here we present the general expression for this PDE.

5 See John [9] for a complete analysis of this kind of PDE and a description of the method
of characteristic curves used to solve it.
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3.1. Solving the Quasi-Linear Equation

The solution of the quasi-linear equation (6) will provide a natural repara-
metrization of types in the participation region. This reparametrization will
follow the contour lines of q(a, b). After that, using calculus of variations, we
will derive an optimality condition involving types in the same contour line
q(a, b) = k.

We use the method of characteristic curves to solve equation (6). This
method consists in reducing a partial differential equation to a system of ordi-
nary differential equations. Then, the system is integrated using the initial data
prescribed on a curve Γ.6 Formally, we have the following Cauchy initial value
problem associated with equation (6):

− vqb
vqa

qa + qb = 0,

q|Γ = φ(r),

(CP)

where Γ = {(α0(r), β0(r))} is a curve on the ab-plane, defined on I = [r, r]. In
this curve, we have q(α0(r), β0(r)) = φ(r). The basic idea is to prescribe the
value of q(·) on Γ and then use the characteristic curves to propagate this infor-
mation to the participation region, as we can see in Fig. 1. In this sense, because
Γ is a one-dimensional curve, we are reducing problem from two-dimensions to
one.

Γ = {(α0(r), β0(r))}

Figure 1: The characteristic plane curves

6 For a description of the method, we refer the reader to John [9] and Petrovski [14].
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Following the method, we define the family of curves (a(r, s), b(r, s), z(r, s))
as the solution of

da

ds
(r, s) = − vqb

vqa
(z, a, b),

db

ds
(r, s) = 1, and

dz

ds
(r, s) = 0,

with initial conditions

a(r, s0) = α0(r),

b(r, s0) = β0(r), and
z(r, s0) = φ(r).

To be precise, if we fix r = r0, then (a(r0, s), b(r0, s), z(r0, s)) is a characteristic
curve and (a(r0, s), b(r0, s)) is a plane characteristic curve. In the text, we use
both terms. We will assume that (a(r, s), b(r, s)) is invertible for r ∈ (r, r) and s
such that (a, b) is in the participation region. In this case, the method provides
a change of variables

a = a(r, s), and
b = b(r, s),

such that q(a(r, s), b(r, s)) = φ(r). Observe that we can solve explicitly for b
and z,

b(r, s) = s,

z(r, s) = φ(r),

with s0 = β0(r). It will be convenient to know the dependence of the new
variable a on q. For instance, we can define A(q, r, s) as the solution of

dA

ds
(q, r, s) = − vqb

vqa
(q, a, b)

with A(q, r, s0) = α0(r). Then we have

a(r, s) = A(φ(r), r, s). (10)
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Figure 2: Two possibilities for the characteristic curves

4. Optimality Conditions

We will derive the optimality condition for the monopolist’s problem. The
method of characteristic curves gives a new parametrization of the type space
and takes into account the local incentive condition given by Proposition 1.

In Fig. 2 we depict the two situations that may occur with the characteristic
curves. The dashed curve represents the boundary between the participation
(shaded) and the exclusion (white) regions. The two solid curves represent the
characteristic curves. From A1 and A2, we have that the characteristic curves
and the boundary curve all are increasing.

Observe that one of the curves intersects the dashed curve but the other does
not. These two cases will deserve separate treatments in the following analysis.

4.1. Case I (No Intersection)

For this case, we are considering the characteristic curves that do not inter-
sect the boundary curve between the participation and the exclusion regions.

In Fig. 3 the shaded stripes represent the image of a(r, s) and b(r, s) when
r ∈ [r1, r2] and s ∈ [D(r), L(φ(r), r)]. The functions D(·) and L(·) give the
minimum and the maximum values of the parameter s for a given r. We want
to compute the contributions of these types to the monopolist’s expected profit.
For this task, we use the change of variables{

a(r, s) = A(φ(r), r, s),

b(r, s) = s,

9



r

s

s

D(r)

D(r)
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U(φ(r), r)
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b
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Figure 3: Illustrating the the new variables r and s.

given by the method of characteristic curves for problem (CP). Then, assuming
that the Jacobian determinant is positive, i.e.,

det
∂(a, b)

∂(r, s)
= Aqφ

′ +Ar > 0,

we can use the change of variables formula in the integral (Π) to compute this
contribution as∫ r2

r1

∫ U(φ(r),r)

D(r)

G(φ(r), A(φ(r), r, s), s)(Aqφ
′ +Ar)dsdr. (11)

Let us define the function

H(φ, φ′, r) :=

∫ U(φ,r)

D(r)

G(φ,A(φ, r, s), s)(Aqφ
′ +Ar)ds. (12)

Then, using (12), we can rewrite (11) and define the following maximization
problem

max
φ(·)

∫ r2

r1

H(φ(r), φ′(r), r)dr. (ΠI)

In problem (ΠI), we want to maximize the contribution to the monopolist’s ex-
pected profit from types in the images of a(r, s) and b(r, s). The Euler equation
for this problem is

Hφ −
d

dr
Hφ′ = 0, (13)

from which we get the following:

Theorem 1. The first-order necessary condition for problem (ΠI) is given by∫ U(φ(r),r)

D(r)

Gq
vqa

(φ(r), A(φ(r), r, s), s)ds = 0. (14)

10



Observe that Theorem 1 gives the optimality condition along the character-
istic curve γ(s) = (a(r, s), s). It is analogous to the Araujo and Moreira [1] opti-
mality condition, now prescribed in the characteristic curve γ(s) = (a(r, s), s).7
The condition says that the average of the marginal virtual surplus Gq weighted
by the 1/vqa along the characteristic curve γ(s) is zero.

4.2. Case II (Intersection)

In this case, the characteristic curve intersects the boundary between the
participation and the exclusion regions. We parametrize this boundary using
the curve β(r), that we assume is differentiable when r ∈ (r1, r2). For all types
in this boundary, the informational rent V (r, β(r)) = 0. Then, the marginal
informational rent

d

dr
V (r, β(r)) = 0. (15)

Using the envelope theorem from Milgrom and Segal [12] we get the following
expression for marginal informational rent

d

dr
V (r, β(r)) = va(φ(r), r, β(r)) + vb(φ(r), r, β(r))β′(r). (16)

For a simpler notation, we define the function

R(φ(r), β(r), β′(r), r) := va(φ(r), r, β(r)) + vb(φ(r), r, β(r))β′(r). (17)

Therefore, equations (15) and (16) add another constraint for the monopolist’s
problem. Using equation (17) we can write this boundary constraint as

R(φ(r), β(r), β′(r), r) = 0. (BC)

The procedure for this case follows the procedure of the previous case. Again,
in Fig. 4, the shaded stripe is the image of a(r, s) and b(r, s) when r ∈ [r1, r2]
and s ∈ [β(r), U(φ(r), β(r), r)]. We will compute the contribution to the mo-
nopolist’s expected profit from types in this shaded stripe. Now, the change of
variables is represented by{

a(r, s) = A(φ(r), β(r), r, s),

b(r, s) = s.

We also assume that the Jacobian determinant is negative,8 i.e.,

det
∂(a, b)

∂(r, s)
= Aqφ

′ +Aββ
′ +Ar < 0.

7 In Araujo and Moreira [1], this condition can be found in their Theorem 2 (Critical
U-shaped curve).

8 Just observe in Fig. 4 that a(r, s) decreases in r. Thus the Jacobian determinant is
negative.
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Figure 4: Illustrating the the new variables r and s.

Using the change of variables formula in the integral (Π) we can compute this
contribution as∫ r2

r1

∫ U(φ(r),β(r),r)

β(r)

−G(φ,A(φ, β, r, s), s)(Aqφ
′ +Aββ

′ +Ar)dsdr. (18)

Defining the function

H(φ, φ′, β, β′, r) :=

∫ U(φ,β,r)

β

−G(φ,A(φ, β, r, s), s)(Aqφ
′ +Aββ

′ +Ar)ds,

(19)

we can rewrite (18) as ∫ r2

r1

H(φ, φ′, β, β′, r)dr. (20)

We still have to consider the constraint (BC) in the monopolist’s problem. For
this, we use the Lagrangian multiplier λ(r) to append this constraint. The
resulting problem is

max
φ(·),β(·)

∫ r2

r1

{H(φ, φ′, β, β′, r) + λR(φ, β, β′, r)}dr. (ΠII)

In problem (ΠII) we have to optimally choose the pair (φ(·), β(·)). Thus, we
have a system with the two Euler equations, one for φ(·) and the other for β(·).

Hφ −
d

dr
Hφ′ +Rφλ(r) = 0; and, (21)

Hβ −
d

dr
Hβ′ + λ(r)[Rβ −

d

dr
Rβ′ ]−Rβ′λ′(r) = 0. (22)

12



From the system of equations above we get the next:

Theorem 2. The first-order necessary conditions for problem (ΠII), when Rφ 6=
0 are

(i)
∫ U(φ(r),β(r),r)

β(r)

Gq
vqa

(φ(r), A(φ(r), β(r), r, s), s)ds = λ(r); and, (23)

(ii)
G

vb
(φ(r), r, β(r)) = λ′(r). (24)

5. Applications

In this section we will consider the following utility function for the customer,

v(q, a, b) = aq − (b+ c)
q2

2
, (25)

with c > 0. The monopolist’s cost is assumed to be zero, therefore, we get the
following virtual surplus

G(q, a, b) = (2a− 1)q − 1

2
(b+ c)q2. (26)

We will solve explicitly two examples, the first with c = 1 and the second with
c ∈ (0, 1

2 ).

Example 1 (Laffont et al. [10]). In this example we set c = 1 for the cus-
tomer’s utility function (25). Using the method of characteristic curves we get
the following change of variables,{

A(q, r, s) = r + sq,

B(q, r, s) = s.

We can determine the function U(·) as

U(q, r) =

{
1, if r < rI ,
1−r
q , if r > rI .

(27)

Using Theorem 1, the optimality condition is∫ U(φ(r),r)

0

Gq
vqa

(φ(r), A(φ(r), r, s), s)ds = 0.

Making all the substitutions, we get∫ U

0

{2(r + sφ)− 1− (s+ 1)φ}ds = (2r − 1− φ)U +
U2

2
φ = 0. (28)
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Solving equation (28) for φ, and using (27), we get

φ(r) =


0 , if 0 ≤ r ≤ 1

2 ,
4r − 2 , if 1

2 ≤ r ≤ 3
5 ,

3r−1
2 , if 3

5 ≤ r ≤ 1.
(29)

Now we have to go back to the original variables. Solving the equation A(φ(r), r, s) =
r + sφ(r) for r in terms of a and b, we get:

r(a, b) =



a , if a ≤ 1
2 ,

a+2b
1+4b , if 1

2 ≤ a+2b
1+4b ≤ 3

5 ,

2a+b
2+3b , if 3

5 ≤ 2a+b
2+3b ≤ 1.

We have that q(a, b) = φ(r(a, b)). Making the substitution we can find the
optimal decision q(a, b):

q(a, b) =



0 , if a ≤ 1
2 ,

4a−2
1+4b , if 1

2 ≤ a+2b
1+4b ≤ 3

5 ,

3a−1
2+3b , if 3

5 ≤ 2a+b
2+3b ≤ 1,

and also the nonlinear tariff P that implements q:9

P (q) =


q
2 −

3q2

8 , if q ≤ 2
5 ,

q
3 −

q2

6 + 1
30 , if q ≥ 2

5 .

Example 2 (Deneckere and Severinov [6]). Now we consider the values c ∈
(0, 1

2 ) for the customer’s utility function (25).
We apply the method from Section 4 to characterize the solution proposed

by Deneckere and Severinov [6], and in Fig. 5 we can see the general pattern for
their solution. The participation region is divided into three subregions, (I), (II)
and (III).

In region (I), the characteristic curves do not intersect the boundary curve.
The change of variables is given by{

A(q, r, s) = r + sq,

B(q, r, s) = s.

9 We find the nonlinear tariff P by integrating the marginal tariff given by vq(q, a, 0).
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Figure 5: Solution

Then, using Theorem 1, we get the optimal10

ψ(r) =
3r − 1

2c
,when r ∈ [w, 1]. (30)

Observe that when r = w, the corresponding characteristic curve separates re-
gions (I) and (II).

In region (II), the characteristic curves intersect the boundary curve (r, β(r)).
In this case, we have the following change of variables{

A(q, β, r, s) = r + (s− β)q,

B(q, β, r, s) = s.

Solving A(q, β, r, U) = 1, we get

U(q, β, r) =
1− r
q

+ β. (31)

Then, using Theorem 2 we get the following system of ordinary differential equa-
tions 

(
3r2 − 4r + 1

)
φ′(r) + 2(r − 1)φ(r)2β′(r) + 2rφ(r)

2φ(r)2
= 0,

φ(r)− 1
2φ(r)2β′(r) = 0.

(32)

10 To avoid confusion, we use ψ instead of φ in this region I.
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The solution for system (32) is given by
φ(r) =

k1

3r2 − 4r + 1
,

β(r) = 1
k1

(2r3 − 4r2 + 2r) + k2,

(33)

with r ∈ [w, a(w)]. Using the boundary conditions

ψ(w) = φ(w) and β(w) = 0,

we get the constants k1 and k2 depending on w,

k1 =
(1− 3w)2(w − 1)

2c
and k2 = −4d(w − 1)w

(1− 3w)2
. (34)

Observe that the characteristic curve that separates regions (II) and (III)
intersects the point (a(w), β(a(w))) and the corner point (α, β) = (1, 1). Indeed,
we define a(w) as the solution of

a+ (1− β(a))φ(a) = 1. (35)

In region (III), all the characteristic curves intersect at the point (a(w), β(a(w))).
The idea is that q(·) has a discontinuity jump at (a(w), β(a(w))), and this type
is indifferent between all q ∈ [0, q(a(w), β(a(w)))].

Now we will compute the contribution of types in region (III) to the monop-
olist’s profit. We consider the following change of variables{

A(q, s) = a(w) + (s− β(a(w)))q,

B(q, s) = s.

Using the change of variables formula we can compute this contribution as∫ φ(a)

0

∫ U(q,β(a),a)

β(a)

G(q, a(w) + (s− β(a(w)))q, s)(s− β(a(w)))dsdq. (36)

From (11), (18), and (36) we can write the expression for the monopolist’s
expected profit depending on the parameter w.11 Finally, we have to optimally
choose this w. We did it numerically, and we depict the result in Fig. 6, where
we can see the optimal w for each c ∈ (0, 1

2 ).12

11 See the expression for Π(w) in Appendix B.
12 We used the software MathematicaR©, version 8.0 to perform the numeric computation

for this example.
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Figure 6: The optimal choice for w.

6. Conclusion

In this paper we studied a screening model where the firm is a single-product
monopolist facing customers with two dimensions of heterogeneity. One can
think of this paper as a natural extension of Araujo and Moreira [1] techniques
to the two-dimensional context. Moreover, it also establishes a link between
ideas presented in Laffont et al. [10] and Araujo and Moreira [1].

We were mainly concerned with finding the necessary optimality condition
involving bunched customers, i.e., those whose types belong to the same contour
line q(a, b) = k. After that, we used these conditions to solve concrete examples
from the literature. As a further extension, we can consider how to perform
these same characterizations in a more general multi-dimensional context. In
other words, how to extend Theorem 1, or even Theorem 2 when the type space
is multi-dimensional.
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Appendix A. Mathematical Proofs

Proof of Proposition 1 The cross derivatives tab and tba are given by

tab = (vqq(q, a, b)qb + vqb(q, a, b))qa + vq(q, a, b)qab, and
tba = (vqq(q, a, b)qa + vqa(q, a, b))qb + vq(q, a, b)qba.

As t is twice differentiable at (a, b), we use Schwarz’s integrability condition
tab = tba, qab = qba and the result follows.

Proof of Theorem 1 We defined H in equation (12). For the Euler equa-
tion (13), we need to derive Hφ and Hφ′ . First, we derive

Hφ =

∫ U

D

{[Gq +GaAq][Aqφ
′ +Ar] +G[Aq2φ′ +Aqr]}ds+ (A.1)

+G(φ,A(φ, r, U), U)[Aq(φ, r, U)φ′ +Ar]Uq.

Then, we derive the expression for

Hφ′ =

∫ U

D

GAqds,

and after that we get

d

dr
Hφ′ =

∫ U

D

{[Gqφ′ +Ga[Aqφ
′ +Ar]]Aq +G[Aq2φ′ +Aqr]}ds+ (A.2)

+G(φ,A(φ, r, U), U)Aq(φ, r, U)[Uqφ
′ + Ur]+

−G(φ,A(φ, r,D), D)Aq(φ, r,D)Dr.

Therefore, using (A.1) and (A.2) we can rewrite the Euler equation as∫ U

D

GqArds+G(φ,A(φ, r, U), U)[Ar(φ, r, U)Uq −Aq(φ, r, U)Ur]+ (A.3)

G(φ,A(φ, r,D), D)Aq(φ, r,D)Dr.

Now we show that the expression outside the integral in (A.3) is zero. First,
observe that we have two possibilities for U(·):

1. U(q, r) ≡ 1.
In this case Uq = 0 and Ur = 0. Thus,

[Ar(φ, r, U)Uq −Aq(φ, r, U)Ur] = 0. (A.4)
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2. A(q, r, U(q, r)) ≡ 1.
Differentiating with respect to q and r we get{

Aq +AsUq = 0,

Ar +AsUr = 0.

Thus, we have that

Uq = −Aq
As

and Ur = −Ar
As

.

And again,

[Ar(φ, r, U)Uq −Aq(φ, r, U)Ur] =

[−Ar(φ, r, U)
Aq
As

+Aq(φ, r, U)
Ar
As

] = 0.

We also have two cases for D(·):
1. D(r) ≡ 0.

In this case Dr ≡ 0 and we get

G(φ,A(φ, r,D), D)Aq(φ, r,D)Dr ≡ 0.

2. A(q, r,D(r)) ≡ 0. In this case, for a fixed r, Aq(q, r,D(r)) ≡ 0 and we
also get

G(φ,A(φ, r,D), D)Aq(φ, r,D)Dr ≡ 0.

Therefore, we conclude that

G(φ,A(φ, r, U), U)[Ar(φ, r, U)Uq −Aq(φ, r, U)Ur]+

+G(φ,A(φ, r,D), D)Aq(φ, r,D)Dr = 0,

and we finally get that the Euler equation is exactly∫ U(φ(r),r)

D(r)

Gq(φ(r), A(φ(r), r, s), s)Ar(φ(r), r, s), s)ds = 0. (A.5)

Observe that the marginal utility is constant along the characteristic curve.
Thus, we have that

vq(q, A(q, r, s), s) = vq(q, A(q, r,D(r)), D(r)).

Using the implicit function theorem, we get

Ar(q, r, s) =
vqa(q,A(q, r,D(r)), D(r))

vqa(q, A(q, r, s), s)
. (A.6)
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Then, plugging (A.6) into (A.5) we get the result.

Proof of Theorem 2(i) We now consider the Euler equation (21). We need
to derive Hφ, Hφ′ and d

drHφ′ . First, let us derive

−Hφ =

∫ U

β

{
[Gq +GaAq][Aqφ

′ +Aββ
′ +Ar] (A.7)

+G[Aq2φ′ +Aβqβ
′ +Arq]

}
ds

+G(φ,A(φ, β, r, U), U)
[
Aq(φ, β, r, U)φ′ +Aβ(φ, β, r, U)β′ +Ar(φ, β, r, U)

]
Uq.

Then, we derive

−Hφ′ =

∫ U

β

GAqds. (A.8)

After that, we get

− d

dr
Hφ′ =

∫ U

β

{[
Gqφ

′ +Ga[Aqφ
′ +Aββ

′ +Ar]
]
Aq+ (A.9)

+G[Aq2φ′ +Aqββ
′ +Aqr]

}
ds

+G(φ,A(φ, β, r, U), U)Aq(φ, β, r, U)
[
Uqφ

′ + Uββ
′ + Ur

]
−G(φ,A(φ, β, r, β), β)Aq(φ, β, r, β)β′.

Using equations (A.7) and (A.9) we can write the Euler equation (21) as

−
{∫ U

β

{Gq[Aββ′ +Ar]}ds+ (A.10)

+G(φ,A(φ, β, r, U), U)
[
Ar(φ, β, r, U)Uq −Aq(φ, β, r, U)Ur

]

+G(φ,A(φ, β, r, U), U)β′
[
Aβ(φ, β, r, U)Uq −Aq(φ, β, r, U)Uβ

]

+G(φ,A(φ, β, r, β), β)Aq(φ, β, r, β)β′ −Rφλ(r)

}
= 0.
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We want to simplify (A.10). First observe thatA(q, β, r, β) ≡ r. Thus, Aq(q, β, r, β) ≡
0. Moreover, observe that we have two possibilities for U(·).

1. U(q, β, r) ≡ 1.
In this case Uq = Uβ = Ur = 0. Thus,

[Ar(φ, β, r, U)Uq −Aq(φ, β, r, U)Ur] =

[Aβ(φ, β, r, U)Uq −Aq(φ, β, r, U)Uβ ] = 0.

2. A(q, β, r, U(q, β, r)) ≡ 1.
Differentiating with respect to q, β and r we get

Aq +AsUq = 0,

Aβ +AsUβ = 0,

Ar +AsUr = 0.

Thus, we have that

Uq = −Aq
As

, Uβ = −Aβ
As

and Ur = −Ar
As

.

And again,

[Ar(φ, β, r, U)Uq −Aq(φ, β, r, U)Ur] =

[−Ar(φ, β, r, U)
Aq
As

+Aq(φ, β, r, U)
Ar
As

] = 0,

and,

[Aβ(φ, β, r, U)Uq −Aq(φ, β, r, U)Uβ ] =

[−Aβ(φ, β, r, U)
Aq
As

+Aq(φ, β, r, U)
Aβ
As

] = 0.

After all these simplifications, we can write (A.10) as∫ U

β

{Gq[Aββ′ +Ar]}ds−Rφλ(r) = 0. (A.11)

Finally, we observe that the marginal utility is constant along the characteristic
curve, i.e.,

vq(q, A(q, β, r, s), s) = vq(q, r, β). (A.12)

Using the implicit function theorem in (A.12), we can compute

Aβ(φ(r), β(r), r, s) =
vqb(φ(r), r, β(r))

vqa(φ(r), A(φ(r), β(r), r, s), s)
, (A.13)
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and

Ar(φ(r), β(r), r, s) =
vqa(φ(r), r, β(r))

vqa(φ(r), A(φ(r), β(r), r, s), s)
. (A.14)

From equations (A.13) and (A.14) we can compute

Aββ
′ +Ar =

Rφ
vqa(φ,A, s)

. (A.15)

Using (A.15) , we can write (A.11) as

Rφ[

∫ U

β

Gq
vqa

(φ(r), A(φ(r), β(r), r, s), s)ds− λ(r)] = 0, (A.16)

and the result follows.

Proof of Theorem 2(ii) Now, we are considering equation (22). We need to
derive Hβ , Hβ′ , ddrHβ′ , Rβ , Rβ′ and d

drRβ′ . First, let us derive

−Hβ =

∫ U

β

{
GaAβ [Aqφ

′ +Aββ
′ +Ar] (A.17)

+G[Aqβφ
′ +Aβ2β′ +Arβ ]

}
ds+

+G(φ,A(φ, β, r, U), U)
[
Aq(φ, β, r, U)φ′ +Aβ(φ, β, r, U)β′ +Ar(φ, β, r, U)

]
Uβ

−G(φ,A(φ, β, r, β), β)
[
Aq(φ, β, r, β)φ′ +Aβ(φ, β, r, β)β′ +Ar(φ, β, r, β)

]
.

Then, we derive

−Hβ′ =

∫ U

β

GAβds. (A.18)

After that, we get

− d

dr
Hβ′ =

∫ U

β

{
[Gqφ

′ +Ga[Aqφ
′ +Aββ

′ +Ar]]Aβ+ (A.19)

+G[Aβqφ
′ +Aβ2β′ +Aβr]

}
ds

+G(φ,A(φ, β, r, U), U)Aβ(φ, β, r, U)
[
Uqφ

′ + Uββ
′ + Ur

]
−G(φ,A(φ, β, r, β), β)Aβ(φ, β, r, β)β′.
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Using equations (A.17) and (A.19) we get

−Hβ +
d

dr
Hβ′ = −φ′

∫ U

β

GqAβds+ (A.20)

+G(φ,A(φ, β, r, U), U)
[
Aq(φ, β, r, U)Uβ −Aβ(φ, β, r, U)Uq

]
φ′

+G(φ,A(φ, β, r, U), U)
[
Ar(φ, β, r, U)Uβ −Aβ(φ, β, r, U)Ur

]

−G(φ,A(φ, β, r, β), β)
[
Aq(φ, β, r, β)φ′ +Ar(φ, β, r, β)

]
.

As we did in the proof of item (i), we have that

[Aq(φ, β, r, U)Uβ −Aβ(φ, β, r, U)Uq] =

[Ar(φ, β, r, U)Uβ −Aβ(φ, β, r, U)Ur] = 0.

We also have that A(φ, β, r, β) ≡ r, which results in Aq(φ, β, r, β) ≡ 0 and
Ar(φ, β, r, β) ≡ 1. Therefore, we can simplify and rewrite (A.20) as

−Hβ +
d

dr
Hβ′ = −φ′

∫ U

β

GqAβds−G(φ,A(φ, β, r, β), β). (A.21)

For R, it is defined by

R(φ(r), β(r), β′(r), r) = va(φ(r), r, β(r)) + vb(φ(r), r, β(r))β′(r). (A.22)

Then, we have

Rβ = vab(φ, r, β) + vb2(φ, r, β)β′,

Rβ′ = vb(φ, r, β),

d
drRβ′ = vbq(φ, r, β)φ′ + vba(φ, r, β) + vb2(φ, r, β)β′.

(A.23)

Finally, using the equations (A.23), (A.21), and (A.13) we can write (22) as

−
{
G(φ, r, β)− vb(φ, r, β)λ′(r)+ (A.24)

+φ′vqb(φ, r, β)
[ ∫ U

β

Gq
vqa

(φ,A(φ, β, r, s), s)ds− λ(r)
]}

= 0.

Observe that by item (i), the term in brackets in (A.24) is 0 and the result
follows.
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Appendix B. Example 2

From (11), (18), and (36) we can write the expression for the monopolist’s
expected profit as∫ 1

w

∫ U(ψ(r),r)

0

G(ψ(r), r + sψ(r), s)(1 + sψ′(r))dsdr+ (B.1)

−
∫ a

w

∫ U(φ(r),β(r),r)

β(r)

{G(φ(r), r + (s− β(r))φ(r), s)

[(s− β(r))φ′(r)− φ(r)β′(r) + 1]}dsdr+

∫ φ(a)

0

∫ U(q,β(a),a)

β(a)

G(q, a+ (s− β(a))q, s)(s− β(a(w)))dsdq.

By an abuse of notation, we are using the same letter U for the different functions

U(q, r) =
1− r
q

, (B.2)

and

U(q, β, r) =
1− r
q

+ β. (B.3)

Solving equation (35), we get

a(w) = 1− 3

√
(w − 1) ((4c+ 9)w2 − 2(2c+ 3)w + 1)

2c
. (B.4)

Now, plugging the functions ψ(r), φ(r) and β(r) from equations (30) and (33)
with the constants k1, k2 given by (34) into the monopolist’s expected profit (B.1)
taking into account equations (B.2), (B.3), and (B.4) we will get an expression
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for the profit depending on w, given by Π(w):

Π(w) =
1

648

{
27
[
−4ca(w)3 + 8ca(w)2 − 4ca(w) + (w − 1)

(
(4c+ 9)w2 − 2(2c+ 3)w + 1

)]2
4c3(a(w)− 1)3(3a(w)− 1)3

×
[
c
(
24a(w)3 − 42a(w)2 + 24a(w) + 3w3 − 9w2 + 5w − 5

)
+

+2(w − 1)(1− 3w)2 + 2(w − 1)(1− 3w)2
]

+

+ 3 [3w(3w(3w − 5) + 11)− 16 log(−1 + 3w)− 15 + 16 log(2)]

−18
[
−
(
9w3 + 3w + 10

)
a(w) + 9a(w)4 − 18a(w)3 + 24a(w)2 + w

(
18w2 − 21w + 10

)]
3a(w)− 1

− 6 [8(3a(w)− 1) log(1− 3w) + (8− 24a(w)) log(1− 3a(w))]

3a(w)− 1

}
.

Then, for each c ∈ (0, 1
2 ) we maximize this expression numerically and we get

Fig. 6.
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