Dynamic Marriage Matching: An Empirical Framework

Eugene Choo
University of Calgary

Matching Problems Conference,
June 5th 2012

Introduction

$\square \quad$ Interested in rationalizing the marriage distribution of 'who marries whom' by age.
\square To allow for dynamics in marriage and marital decisions.
$\square \quad$ Empirically quantify the marital gains across gender and age. How important are dynamic considerations in marital decisions?
\square Propose a dynamic version of the Becker-Shapley-Shubik model.
\square Model rationalizes a new marriage matching function, $\boldsymbol{\mu}=\mathcal{G}(\boldsymbol{m}, \boldsymbol{f} ; \boldsymbol{\Pi})$ where $\boldsymbol{\mu}$ is the distribution of new marriages, \boldsymbol{m} and \boldsymbol{f} are the vectors of available single men and women, and Π is a matrix of parameters, .

Contributions - Dynamic Marriage Matching Function

$$
\begin{equation*}
\mu_{i j}=\Pi_{i j} \sqrt{m_{i} f_{j}} \prod_{k=0}^{z_{i j}}\left(\frac{\mu_{i+k, 0} \mu_{0, j+k}}{m_{i+k} f_{j+k}}\right)^{\frac{1}{2}(\beta S)^{k}} \tag{1}
\end{equation*}
$$

$\square \quad(i, j)$ denote the ages (or types) of males and females respectively.
$\square \quad \mu_{i j}$ is the number of observed new (i, j) matches,
$\mu_{i 0}$ is the number of i men who remained single and $\mu_{0 j}$ is the number of j women who remained single
$\square \quad m_{i}$ and f_{j} are the number of single type i men and j women respectively.
\square discount factor is β, divorce rate is δ, survival probability $S=1-\delta$
$\square \quad z_{i j}=Z-\max (i, j)$, measures the maximum length of a marriage.

Contributions - Dynamic Marriage Matching Function

$\square \quad \Pi_{i j}$ is the present discounted value of an (i, j) match relative to remaining single for the duration of the match.

$$
\begin{equation*}
\Pi_{i j}=\sum_{k=0}^{z_{i j}}(\beta S)^{k}\left[\left(\alpha_{i j k}+\gamma_{i j k}\right)-\left(\alpha_{i+k, 0}+\gamma_{0, j+k}\right)\right]-2 \kappa \tag{2}
\end{equation*}
$$

$\square \quad \alpha_{i j k}$ be the $k^{\prime} t h$ period marital output accrued to a type i male when married to a type j female today,
\square similarly $\gamma_{i j k}$ be the k^{\prime} th period marital output accrued to a type j female when married to a type i male,
$\square \quad \alpha_{i 0}$ and $\gamma_{0 j}$ are the per-period utilities from remaining single for i type males and j type females respectively.
$\square \quad \kappa$ is the geometric sum of Euler's constants.

Empirical Application

$\square \quad$ Use model to analyze the fall in marital gains by age and gender between 1970 and 1990 in the US
\square Show that dynamic component marital gains is large especially among the young.
$\square \quad$ Ignoring dynamics severely unstate the drop in marital gains between 1970 and 1990 especially among young couples.

Literature

\square Builds on frictionless Becker-Sharpley-Shubik transferable utility model of marriage
\square Extends ideas in Choo and Siow (2006) and Choo and Siow (2005)
$\square \quad$ Adopt the dynamic discrete choice framework of Rust (1987)
\square Growing body of empirical work on marriage matching:
Chiappori, Salanie and Weiss (2011),
Chiappori, McCann and Nesheim (2009),
Galichon and Salanie (2010),
Echenique, Lee, Shum and Yenmez (2011),
Ariely, Hortacsu and Hitsch $(2006,2010)$,
Fox (2010).

The Model - Assumptions

\square State Variables: Single individuals has two state variables:

1. (i, j) denote male and female's age when single, terminal age is Z.
2. $\boldsymbol{\epsilon}_{i g}$, is a $(Z+1)$ vector of i.i.d idiosyncratic payoffs specific to type i male individual, $g\left(\epsilon_{j G}\right.$ for type j female, G), unobserved to econometrician. Agents observe $\boldsymbol{\epsilon}$ at beginning of period.
\square Stationarity: Single males and females, m_{i} and $f_{j} \forall i, j$ at each period taken as given.
\square Actions: $a_{i g} \in\{0,1, \ldots, Z\}$ (or $a_{j G}$) denote the action of a single type i male g (or single type j female G).

If g (or G) chooses to remain single, $a_{i g}=0$ (or $a_{j G}=0$), else if g (or G) chooses to match with a type k spouse, $a_{i g}=k$ (or $\left.a_{j G}=k\right)$.

The Model - Assumptions continues

\square Exogenous Parameters: discount factor is β, divorce rate δ, the survival probability $S=1-\delta$.
\square Adopt Dynamic Discrete Choice framework of Rust(1987), maintain Rust's Additive Separability (AS) and Conditional Independence (CI).
\square Additive Separability (AS) in utilities
Utility function of a single male g decomposes to

$$
v\left(a_{i g}, i, \boldsymbol{\epsilon}_{i g}\right)=v_{a}(i)+\epsilon_{i a g},
$$

similarly utility function of a single female G takes the form,

$$
w\left(a_{j G}, j, \boldsymbol{\epsilon}_{j G}\right)=w_{a}(j)+\epsilon_{j a G}
$$

The Model - Assumptions continues

\square Conditional Independence (CI): State transition probability factorize as

$$
\begin{aligned}
\mathbb{P}\left\{i^{\prime}, \boldsymbol{\epsilon}_{i g}^{\prime} \mid i, \boldsymbol{\epsilon}, a\right\} & =h(\boldsymbol{\epsilon} \mid i) \cdot \mathcal{F}_{a}\left(i^{\prime} \mid i\right) \\
\mathbb{P}\left\{j^{\prime}, \boldsymbol{\epsilon}_{j G}^{\prime} \mid j, \boldsymbol{\epsilon}, a\right\} & =h(\boldsymbol{\epsilon} \mid i) \cdot \mathcal{R}_{a}\left(j^{\prime} \mid j\right) .
\end{aligned}
$$

$\square \quad \mathcal{F}_{a}\left(i^{\prime} \mid i\right)$ is the transition probability that a type i male g will next find himself single at age i^{\prime} given his action a at age i.
$\square \mathcal{R}_{a}\left(j^{\prime} \mid j\right)$ is the transition probability that a type j female G will next find herself single at age j^{\prime} given her action a.
$\square \epsilon$ are i.i.d. Type I Extreme Value random variables.
\square full commitment, transferable utility setup.

The Model - Utility Functions

\square If male g (or female G) chooses to marry an age j female (or i male),

$$
\begin{aligned}
v\left(a_{i g}=j, i, \boldsymbol{\epsilon}_{i g}\right) & =\boldsymbol{\alpha}_{i}(j)-\tau_{i j}+\epsilon_{i j g}, \text { and } \\
w\left(a_{j G}=i, j, \boldsymbol{\epsilon}_{j G}\right) & =\gamma_{j}(i)+\tau_{i j}+\epsilon_{a j G}
\end{aligned}
$$

$$
\text { where } \boldsymbol{\alpha}_{i}(j)=\sum_{k=0}^{z_{i j}}(\beta S)^{k} \alpha_{i j k}, \quad \text { and } \quad \gamma_{j}(i)=\sum_{k=0}^{z_{i j}}(\beta S)^{k} \gamma_{i j k} .
$$

$\square \quad \alpha_{i j k}$ (or $\gamma_{i j k}$) be the $k^{\prime} t h$ period marital output accrued to a type i male (or j female) when married to a type j female (or i male) today.
\square If male g (or female G) chooses to remain single, then

$$
v\left(a_{i g}=0, i, \boldsymbol{\epsilon}_{i g}\right)=\alpha_{i 0}+\epsilon_{i 0 g}, \quad \text { and } \quad w\left(a_{j G}=0, j, \boldsymbol{\epsilon}_{j G}\right)=\gamma_{0 j}+\epsilon_{0 j G}
$$

The Model - Convenient representation

\square Rust's framework permits Value function to have convenient form,

$$
\begin{aligned}
V_{\alpha}\left(i, \boldsymbol{\epsilon}_{i g}\right) & =\max _{a \in \mathcal{D}}\left\{\tilde{v}_{i a}+\epsilon_{i a g}\right\} \\
W_{\gamma}\left(j, \boldsymbol{\epsilon}_{j G}\right) & =\max _{a \in \mathcal{D}}\left\{\tilde{w}_{a j}+\epsilon_{a j G}\right\}
\end{aligned}
$$

$\square \quad$ where the mean components, $\tilde{v}_{i j}$ and $\tilde{w}_{i j}$ are also referred to as the choice specific value functions for type i males and j females respectively.

$$
\begin{aligned}
\tilde{w}_{i j} & =\left(\gamma_{j}(i)+\tau_{i j}\right) \mathbb{I}(i \neq 0)+\gamma_{0 j} \mathbb{I}(i=0)+\sum_{j^{\prime}} \mathcal{R}_{i}\left(j^{\prime} \mid j\right) \cdot \boldsymbol{W}_{j^{\prime}} \\
\tilde{v}_{i j} & =\left(\boldsymbol{\alpha}_{i}(j)-\tau_{i j}\right) \mathbb{I}(j \neq 0)+\alpha_{i 0} \mathbb{I}(j=0)+\sum_{i^{\prime}} \mathcal{F}_{j}\left(i^{\prime} \mid i\right) \cdot \boldsymbol{V}_{i^{\prime}}
\end{aligned}
$$

$\square \quad \boldsymbol{V}_{i}$ and \boldsymbol{W}_{j} are the integrated value function (value function where the unobservable state is integrated out)

$$
\boldsymbol{V}_{i}=\int V_{\boldsymbol{\alpha}}\left(i, \boldsymbol{\epsilon}_{g}\right) d H\left(\boldsymbol{\epsilon}_{g}\right), \quad \boldsymbol{W}_{j}=\int W_{\gamma}\left(j, \boldsymbol{\epsilon}_{G}\right) d H\left(\boldsymbol{\epsilon}_{G}\right)
$$

The Model - Choice Probabilities

$\square \quad$ Define the conditional choice probability $\mathcal{P}_{i j}$ for males and $\mathcal{Q}_{i j}$ for females:

$$
\begin{aligned}
\mathcal{P}_{i j} & =\int \mathbb{I}\left\{j=\arg \max _{a \in \mathcal{D}}\left(\tilde{v}_{i a}+\epsilon_{i a g}\right)\right\} h(d \boldsymbol{\epsilon}), \\
\mathcal{Q}_{i j} & =\int \mathbb{I}\left\{i=\arg \max _{a \in \mathcal{D}}\left(\tilde{w}_{a j}+\epsilon_{a j G}\right)\right\} h(d \boldsymbol{\epsilon}) .
\end{aligned}
$$

\square The probabilities have the familiar multinomial logit form,

$$
\mathcal{P}_{i j}=\frac{\exp \left(\tilde{v}_{i j}-\tilde{v}_{i 0}\right)}{1+\sum_{r=1}^{Z} \exp \left(\tilde{v}_{i r}-\tilde{v}_{i 0}\right)}, \quad \mathcal{Q}_{i j}=\frac{\exp \left(\tilde{w}_{i j}-\tilde{w}_{i 0}\right)}{1+\sum_{r=1}^{Z} \exp \left(\tilde{w}_{r j}-\tilde{w}_{0 j}\right)} .
$$

The Model - Quasi Demand and Supply

$\square \quad$ Log-odds ratios delivers a system of $(Z \times Z)$ quasi-demand and quasi-supply equations respectively.

$$
\begin{aligned}
& \ln \mathcal{P}_{i j}-\sum_{k=0}^{z_{i j}}(\beta S)^{k} \ln \mathcal{P}_{i+k, 0}=\boldsymbol{\alpha}_{i}(j)-\boldsymbol{\alpha}_{i}(0)-\tau_{i j}-\kappa \\
& \ln \mathcal{Q}_{i j}-\sum_{k=0}^{z_{i j}}(\beta S)^{k} \ln \mathcal{Q}_{0, j+k}=\gamma_{j}(i)-\gamma_{j}(0)+\tau_{i j}-\kappa .
\end{aligned}
$$

where $\kappa=c \beta S\left(1-(\beta S)^{z_{i j}}\right) /(1-\beta S),(c$ is the Euler's constant $)$

$$
\begin{gathered}
\boldsymbol{\alpha}_{i}(j)=\sum_{k=0}^{z_{i j}}(\beta S)^{k} \alpha_{i j k}, \quad \gamma_{j}(i)=\sum_{k=0}^{z_{i j}}(\beta S)^{k} \gamma_{i j k} \\
\boldsymbol{\alpha}_{i}(0)=\sum_{k=0}^{z_{i j}}(\beta S)^{k} \alpha_{i+k, 0}, \quad \text { and } \gamma_{j}(0)=\sum_{k=0}^{z_{i j}}(\beta S)^{k} \gamma_{0, j+k}
\end{gathered}
$$

The Model - Equilibrium

A marriage market equilibrium consists of a vector of males, \boldsymbol{m} and females, \boldsymbol{f} across individual type, the vector of marriage $\boldsymbol{\mu}$, and the vector of transfers, $\boldsymbol{\tau}$ such that the number of i type men who want to marry j type spouses exactly equals the number of j type women who agree to marry type i men for all combinations of (i, j). That is, for each of the $(Z \times Z)$ sub-markets,

$$
m_{i} \mathcal{P}_{i j}=f_{j} \mathcal{Q}_{i j}=\mu_{i j}
$$

The Model - Dynamic Marriage Matching Function

$\square \quad$ Let $p_{i j}$ and $q_{i j}$ denote the maximum likelihood estimators of $\mathcal{P}_{i j}$ and $\mathcal{Q}_{i j}$, that is, $p_{i j}=\mu_{i j} / m_{i}$ and $q_{i j}=\mu_{i j} / f_{j}$.

$$
\mu_{i j}=\Pi_{i j} \sqrt{m_{i} f_{j}} \prod_{k=0}^{z_{i j}}\left(\frac{\mu_{i+k, 0} \mu_{0, j+k}}{m_{i+k} f_{j+k}}\right)^{\frac{1}{2}(\beta S)^{k}}
$$

$$
\text { where } \Pi_{i j}=\sum_{k=0}^{z_{i j}}(\beta S)^{k}\left[\left(\alpha_{i j k}+\gamma_{i j k}\right)-\left(\alpha_{i+k, 0}+\gamma_{0, j+k}\right)\right]-2 \kappa
$$

The Model - Dynamic Marriage Matching Function

$\square \quad$ The dynamic marriage matching function also needs to satisfy the accounting constraints given by,

$$
\begin{aligned}
\mu_{0 j}+\sum_{i=1}^{Z} \mu_{i j} & =f_{j} \forall j \\
\mu_{i 0}+\sum_{j=1}^{Z} \mu_{i j} & =m_{i} \forall i \\
\mu_{0 j}, \mu_{i 0}, \mu_{i j} & \geq 0 \forall i, j
\end{aligned}
$$

Inverse Problem

\square Given a matrix of preferences Π, whose elements are non-negative and strictly positive population vectors, \boldsymbol{m} and \boldsymbol{f}, does there exist a unique non-negative marital distribution $\boldsymbol{\mu}$ that is consistent with Π, that satisfies Dynamic Marriage Matching Function and accounting constraints.
\square Reformulate the model to an $I+J$ system with $I+J$ number of unmarrieds of each type, $\mu_{i 0}$ and $\mu_{0 j}$, as unknowns. This reduced system is defined by

$$
\begin{align*}
m_{i}-\mu_{i 0} & =\sum_{i=1}^{I} \Pi_{i j} \sqrt{m_{i} f_{j}} \prod_{k=0}^{z_{i j}}\left(\frac{\mu_{i+k, 0} \mu_{0, j+k}}{m_{i+k} f_{j+k}}\right)^{\frac{1}{2}(\beta S)^{k}} \tag{3}\\
f_{j}-\mu_{0 j} & =\sum_{j=1}^{J} \Pi_{i j}{\sqrt{m_{i} f_{j}}}_{\prod_{k=0}}^{z_{i j}}\left(\frac{\mu_{i+k, 0} \mu_{0, j+k}}{m_{i+k} f_{j+k}}\right)^{\frac{1}{2}(\beta S)^{k}}
\end{align*}
$$

Existence and Uniqueness

\square Existence: Generally the matching model with transferable utilities is equivalent to an optimal transportation (Monge-Kantorovich) linear programming problem.
\square Optimal assignment in (Monge-Kantorovich) linear programming problem correspond to stable matching - optimal assignment shown to exist under mild conditions.
\square See Chiappori, McCann and Nesheim (2009)
\square Uniqueness: Linear programming models on compact convex feasible set have generically unique solutions. However for finite population, stable matching is generally not unique.

Empirical Application - Data

$\square \quad$ Use model to describe changes in the gains to marriage in US from 1970 to 1990
\square Period of significant demographic and social changes: baby boomers, legalization of abortion, unilateral divorce, the pill, labor market changes, etc.
\square Evaluate the importance of dynamics - compare model results with Choo and Siow (2006).
\square Use Vital Statistics for marriages, $\mu_{i j}$ in $71 / 72,81 / 82$ and $91 / 92$ from reporting states - individuals age between 16-75.
\square Use 1970, 19801990 Census to get at unmarrieds, $\mu_{i 0}$ and $\mu_{0 j}$ (again matched on reporting states).

Empirical Application - Data Summary

TABLE 1A

A: US CEnsus Data

	1970	1980	1990
Number of Available Males, (mill.)	16.018	23.412	28.417
Percentage change		46.2	21.4
Number of Available Females, (mill.)	19.592	27.225	31.563
Percentage change		39.0	15.9
Average age of Available Males	30.4	29.6	31.7
Average age of Available Females	39.1	37.1	37.9

Empirical Application - Data Summary continues

TABLE 1B

B: Vital Statistics Data

	$1969-71$	$1979-81$	$1989-91$
Average Number of marriages (mill.)	3.236	3.449	3.220
Percentage change		6.6	-7.11
Average age of Married Males	27.1	29.2	31.2
Average age of Married Females	24.5	26.4	28.9
Average couple age difference	2.6	2.7	2.3

Plot of Singles and Married from 1970-1990

a) Single Males from Census Data

c) Married Males from Vital Statistics

b) Single Females from Census Data

d) Married Females from Vital Statistics

Comparing Dynamic and Static Gains for 71/72 $\mu_{i j}$

a) Observed new marriages in 1971/72

b) Dynamic Gains, $2 \ln \Pi_{\mathrm{ij}}$ for 1971/72

c) Static Gains, $2 \ln \pi_{i j}$ for $1971 / 72$

Comparing Dynamic and Static Gains by gender for 11/72 $\mu_{i j}$

Comparing Changes between 70-80 in Static and Dynamic Gains

a) 70-80 Dynamic Diff: ($\left.2 \ln \Pi_{i j}^{70}-2 \ln \cap_{i j}^{10}\right)$ for males

c) 70-80 Dynamic Diff: ($\left.2 \ln \Pi_{i j}^{70}-2 \ln \Pi_{i j}^{80}\right)$ for females

b) 70-80 Static Diff: $\left(2 \ln \pi_{i j}^{70}-2 \ln \pi_{i j}^{80}\right)$ for males

d) 70-80 Static Diff: $\left(2 \ln \pi_{i j}^{70}-2 \ln \pi_{i j}^{80}\right)$ for females

Test for Model

\square Rewrite quasi-demand and supply in terms of the maximum likelihood estimators $p_{i j}$ and $q_{i j}$. That is,

$$
\begin{aligned}
& \ln \left(p_{i j} / \prod_{k=0}^{z_{i j}} p_{i+k, 0}^{\left.(\beta S)^{k}\right)}=\boldsymbol{\alpha}_{i}(j)-\boldsymbol{\alpha}_{i}(0)-\tau_{i j}-\kappa,\right. \\
& \ln \left(q_{i j} / \prod_{k=0}^{z_{i j}} q_{i+k, 0}^{(\beta S S)^{k}}\right)=\gamma_{j}(i)-\gamma_{j}(0)+\tau_{i j}-\kappa . \\
& \text { Let } n_{i j}(\boldsymbol{\mu}, \boldsymbol{m}, \boldsymbol{f})=\ln \left(p_{i j} / \prod_{k=0}^{z_{i j}} p_{i+k, 0}^{\left.(\beta S)^{k}\right) \quad \text { and }}\right. \\
& \mathcal{N}_{i j}(\boldsymbol{\mu}, \boldsymbol{m}, \boldsymbol{f})=\ln \left(q_{i j} / \prod_{k=0}^{z_{i j}} q_{i+k, 0}^{\left.(\beta S)^{k}\right)}\right.
\end{aligned}
$$

Proposition 2: Holding $\alpha_{i j k}, \gamma_{i j k}$, and $\delta_{i j k}$ fixed for all (i, j, k), any changes in available men m_{i} or women f_{j} that leads to an increase in $n_{i j}(\boldsymbol{\mu}, \boldsymbol{m}, \boldsymbol{f})$ would also lead to a decrease in $\mathcal{N}_{i j}(\boldsymbol{\mu}, \boldsymbol{m}, \boldsymbol{f})$ and vice versa.

Plot of $\mathcal{N}_{i j}$ and $n_{i j}$ on simulated data

a) Test of Model on Simulated data

Comparing CT and NH

Comparing IL and IN

c) Singles for IL and IN

b) Married Men for IL and IN

d) Test of Model

Conclusion

\square Proposed an tractable dynamic marriage matching model that maintains many of the convenient properties of the static Choo and Siow (2006) model.
$\square \quad$ Demonstrate that the dynamic components to marital returns is large among the young.
\square Also propose a test for the model.

