Unobserved Heterogeneity in Matching Games

Jeremy T. Fox¹ Chenyu Yang²

¹University of Michigan and NBER

²University of Michigan

BFI Matching Problems June 2012

Outline

2 Baseline Model

3 Model Variants

- Other Observed Characteristics
- Data on Unmatched Firms
- Agent-Specific Characteristics

イロト イロト イヨト イヨト 三日

- One-Sided Matching
- Many-to-Many Matching

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Goodyear sold tires to Chrysler, etc.

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available
 - Goodyear sold tires to Chrysler, etc.
- What we can learn from data listing these relationships?

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available
 - Goodyear sold tires to Chrysler, etc.
- What we can learn from data listing these relationships?
- Matching games model relationship formation
 - Inputs: payoffs to matches
 - Outputs: stable matches
 - Firms on all sides of the market can be competing to match with the best partners

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available
 - Goodyear sold tires to Chrysler, etc.
- What we can learn from data listing these relationships?
- Matching games model relationship formation
 - Inputs: payoffs to matches
 - Outputs: stable matches
 - Firms on all sides of the market can be competing to match with the best partners
- What can we learn if we impose that the relationships in the data are a stable match?

Example of Matching for Car Parts

- Loosely inspired by Fox (2010a)
- Two suppliers of tires, Goodyear and Bridgestone

- Upstream firms
- Two assemblers of cars, Chrysler and Hyundai
 - Downstream firms

Example of Matching for Car Parts

- Loosely inspired by Fox (2010a)
- Two suppliers of tires, Goodyear and Bridgestone
 - Upstream firms
- Two assemblers of cars, Chrysler and Hyundai
 - Downstream firms
- Matching game determines whether we see the assignment (list of matches)

 $\{\langle Goodyear, Chrysler \rangle, \langle Bridgestone, Hyundai \rangle\}$

or the assignment

 $\{\langle Goodyear, Hyundai \rangle, \langle Bridgestone, Chrysler \rangle\}$

(ロ) (型) (ヨ) (ヨ) (ヨ) (マ)

What Matches Will Form?

- Matches occur according to pairwise stability
- Example assignment, a list of matches

 $\{\langle Goodyear, Chrysler \rangle, \langle Bridgestone, Hyundai \rangle\}$

- Stability: Chrysler and Bridgestone could not both be better off by matching
- In transferable utility, money can compensate for a loss in direct structural profits

Available Data

- Assignment is
 - $\{\langle {\rm Goodyear}, {\rm Chrysler} \rangle\,, \langle {\rm Bridgestone}, {\rm Hyundai} \rangle\}$
- In terms of characteristics (experience, quality), assignment is
 {((low, low), (high, low)), ((high, high), (low, high))}

Available Data

Assignment is

 $\{\langle {\rm Goodyear}, {\rm Chrysler} \rangle\,, \langle {\rm Bridgestone}, {\rm Hyundai} \rangle\}$

- In terms of characteristics (experience, quality), assignment is
 {((low, low), (high, low)), ((high, high), (low, high))}
- Quality not in data, observe only data

 $\{\langle (low), (high) \rangle, \langle (high), (low) \rangle\}$

- No data on rejections of partners, choice sets, transfers
- See hedonic models and labor panel literature for data on transfers (e.g, Heckman, Matzkin and Nesheim 2010, Chiappori, McCann, Nesheim 2010, Eeckhout and Kircher 2011)

Unobserved Characteristics

• Investigate the identification of objects such as distribution *G* of unobserved characteristics

G (quality)

イロト 不良 アイヨア イヨア ヨー ろくぐ

• Can we learn G from data on who matches with whom?

Literature Context for Unobserved Characteristics

- Matching empirical literature has modeled sorting on observed characteristics
 - Dozens of empirical papers by now
 - Including Choo & Siow (2006), Sorensen (2007), Fox (2010a)
 - Usually i.i.d. errors at match or type of matches level (or "rank order property")
 - Identification literature similar: Fox (2010b), Graham (2011), Galichon and Salanie (2011), etc.

Literature Context for Unobserved Characteristics

- Matching empirical literature has modeled sorting on observed characteristics
 - Dozens of empirical papers by now
 - Including Choo & Siow (2006), Sorensen (2007), Fox (2010a)
 - Usually i.i.d. errors at match or type of matches level (or "rank order property")
 - Identification literature similar: Fox (2010b), Graham (2011), Galichon and Salanie (2011), etc.
- Ackerberg and Botticini (2002) study matching between farmers and landlords
 - Matching-like IV's correct an outcome regression for bias from sorting on tenant risk aversion and landlord monitoring ability
 - Finds substantial bias, consistent with sorting on unobservables

Real-Time Literature Review

- Compared to Bernard's talk this morning
- Finite number of agents per market (firms in IO)
- Many different matching markets (say component categories)
- At least one continuous characteristic per match / agent (not finite number of observed types)
- Nonparametric on the joint distribution of unobservables
- No restriction on joint dependence of unobservables within a market (no i.i.d. errors)

ション ふゆ アメリア メリア しょうくしゃ

Unobserved, Heterogeneous Preferences

- Agents may also have unobserved, heterogeneous preferences
 - Like random coefficients in demand models
- Chrysler cares more about experience than Hyundai?
- Unobserved preferences may be important in marriage
 - Observationally identical men married to observationally different women

Paper's Contribution

• Data on many matching markets

- Who matches with whom (dependent variable)
- Observed agent characteristics (independent variables)

Paper's Contribution

- Data on many matching markets
 - Who matches with whom (dependent variable)
 - Observed agent characteristics (independent variables)

ション ふゆ アメリア メリア しょうくしゃ

- Explore (non)-identification of distributions of
- Unobserved characteristics
- Onobserved preferences
- **O** Unobserved complementarities

Paper's Contribution

- Data on many matching markets
 - Who matches with whom (dependent variable)
 - Observed agent characteristics (independent variables)
- Explore (non)-identification of distributions of
- Unobserved characteristics
- Our Construction of the second sec
- Our Constant Const
 - Mathematical similarities to multinomial choice models

うして ふゆう ふほう ふほう しょうく

• Emphasize unique aspects of matching

Analogy to Regression Models

- Analog to $y = x'\beta_i + \epsilon_i$
- Assignment (list of matches) dependent variable, y in regression
- **Observed characteristics** independent variables, *x*'s in regression
- Unobserved characteristics (quality) like error ϵ_i in regression
- Unobserved preferences like random coefficients, β_i

イロト 不良 アイヨア イヨア ヨー ろくぐ

• Want to learn $G(\epsilon_i, \beta_i)$

Outline

2 Baseline Model

3 Model Variants

- Other Observed Characteristics
- Data on Unmatched Firms
- Agent-Specific Characteristics

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

- One-Sided Matching
- Many-to-Many Matching

Scope of Baseline Model

Baseline model

- One-to-one, two-sided matching (marriage?)
- Equal numbers of upstream, downstream firms

- All firms must be matched
- One observed characteristic per match
- No random coefficients

Scope of Baseline Model

• Baseline model

- One-to-one, two-sided matching (marriage?)
- Equal numbers of upstream, downstream firms
- All firms must be matched
- One observed characteristic per match
- No random coefficients
- Paper / project / end of talk
 - Number of firms can differ across sides
 - Unmatched firms in data
 - Multiple observed characteristics per match
 - Characteristics at firm, not match level
 - Heterogeneous coefficients on characteristics
 - Many-to-many matching

Physical and Full Matches

- One-to-one matching
 - Upstream firms u_1 , u_2 ; downstream firms d_1 , d_2

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Physical and Full Matches

- One-to-one matching
 - Upstream firms u_1 , u_2 ; downstream firms d_1 , d_2
- Upstream firm u and downstream firm d can form physical match $\langle u, d \rangle$

- Upstream firm listed first
- Have data listing the matches that form

Physical and Full Matches

- One-to-one matching
 - Upstream firms u_1 , u_2 ; downstream firms d_1 , d_2
- Upstream firm u and downstream firm d can form physical match $\langle u, d \rangle$
 - Upstream firm listed first
 - Have data listing the matches that form
- In game solution, u and d form full match $\langle u, d, t_{\langle u, d \rangle} \rangle$

- $t_{\langle u,d\rangle}$ transfers d pays to u
- No data on transfers: often confidential

Match Production

• Total production from match $\langle u,d\rangle$ is

$$z_{\langle u,d\rangle} + e_{\langle u,d\rangle}$$

- $z_{\langle u,d\rangle}$ regressor specific to match $\langle u,d\rangle$
- $e_{\langle u,d \rangle}$ unobservable for match $\langle u,d \rangle$

Match Production

• Total production from match $\langle u,d\rangle$ is

$$z_{\langle u,d\rangle} + e_{\langle u,d\rangle}$$

- $z_{\langle u,d \rangle}$ regressor specific to match $\langle u,d \rangle$
- $e_{\langle u,d \rangle}$ unobservable for match $\langle u,d \rangle$
- $e_{\langle u,d
 angle}$ nests $e_{\langle u,d
 angle} = e_u \cdot e_d$
- Match production is sum of upstream, downstream profits

Matching Production

• N firms on each side of market

$$\left(\begin{array}{cccc} z_{\langle 1,1\rangle} + e_{\langle 1,1\rangle} & \cdots & z_{\langle 1,N\rangle} + e_{\langle 1,N\rangle} \\ \vdots & \ddots & \vdots \\ z_{\langle N,1\rangle} + e_{\langle N,1\rangle} & \cdots & z_{\langle N,N\rangle} + e_{\langle N,N\rangle} \end{array}\right)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

- Rows: upstream firms
- Columns: downstream firms

E and *Z* Matrices

$$E = \begin{pmatrix} e_{\langle 1,1 \rangle} & \cdots & e_{\langle 1,N \rangle} \\ \vdots & \ddots & \vdots \\ e_{\langle N,1 \rangle} & \cdots & e_{\langle N,N \rangle} \end{pmatrix}, \ Z = \begin{pmatrix} z_{\langle 1,1 \rangle} & \cdots & z_{\langle 1,N \rangle} \\ \vdots & \ddots & \vdots \\ z_{\langle N,1 \rangle} & \cdots & z_{\langle N,N \rangle} \end{pmatrix}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Z in data
- E not in data, observed to agents

Assignments

• Assignment A selects one cell from each row, each column

•
$$A = \{ \langle u_1, d_1 \rangle, \ldots, \langle u_N, d_N \rangle \}$$

$$\begin{pmatrix} X & 0 & \dots & 0 \\ 0 & X & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X \end{pmatrix}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Solution Concept: Pairwise Stability

- Outcome list of full matches
 - $\{\langle u_1, d_1, t_{\langle u_1, d_1 \rangle} \rangle, \ldots, \langle u_N, d_N, t_{\langle u_N, d_N \rangle} \rangle\}$
- Outcome pairwise stable if robust to deviations by pairs of two firms
- Again, assignment A list of physical matches

• $\{\langle u_1, d_1 \rangle, \ldots, \langle u_N, d_N \rangle\}$

• Call assignment **pairwise stable** if underlying outcome pairwise stable

Existence and Uniqueness

- Roth and Sotomayor (1990, Chapter 8)
- Existence of pairwise stable assignment guaranteed
- Pairwise stable outcome is fully stable
 - Robust to deviation by any coalition of firms
 - One such coalition is set of all firms
- Let $S(A, E, Z) = \sum_{\langle u, d \rangle \in A} (z_{\langle u, d \rangle} + e_{\langle u, d \rangle})$
- Pairwise stable assignment A maximizes S(A, E, Z)
- Maximizes sum of production across all assignments
- Uniqueness of assignment with probability 1 if *E*, *Z* arguments have continuous support

(ロ) (型) (ヨ) (ヨ) (ヨ) (マ)

Data Across Markets

- Data (A, Z) from many markets
- Assignment $A = \{\langle u_1, d_1 \rangle, \dots, \langle u_N, d_N \rangle\}$
- Observed characteristics

$$Z = \begin{pmatrix} z_{\langle 1,1 \rangle} & \cdots & z_{\langle 1,N \rangle} \\ \vdots & \ddots & \vdots \\ z_{\langle N,1 \rangle} & \cdots & z_{\langle N,N \rangle} \end{pmatrix}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Full Support on Z

$$Z = \begin{pmatrix} z_{\langle 1,1 \rangle} & \cdots & z_{\langle 1,N \rangle} \\ \vdots & \ddots & \vdots \\ z_{\langle N,1 \rangle} & \cdots & z_{\langle N,N \rangle} \end{pmatrix}$$

- Limiting data are $Pr(A \mid Z)$
- Let Z have full and product support
- Any $Z \in \mathbb{R}^{N^2}$ is observed
- **Special regressor** used for point identification in binary/multinomial choice
 - Ichimura and Thompson (1998), Lewbel (2000), Matzkin (2007), Berry and Haile (2011), Fox and Gandhi (2010), etc.

G(E): Key Primitive in the Model

• Unknown primitive to estimate is the distribution G(E) of

$$E = \begin{pmatrix} e_{\langle 1,1 \rangle} & \cdots & e_{\langle 1,N \rangle} \\ \vdots & \ddots & \vdots \\ e_{\langle N,1 \rangle} & \cdots & e_{\langle N,N \rangle} \end{pmatrix}$$

- Different markets have different unobservable realizations E
- G (E): distribution across markets
- Assume Z independent of E
Identification

• Data generation process

$$\Pr(A \mid Z; G) = \int \mathbb{1}[A \text{ stable} \mid Z, E] dG(E)$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

• *G*(*E*) **identified** if true *G* only distribution that generates data Pr(*A* | *Z*) for all (*A*, *Z*)

Location Normalizations

- Add a constant to the production of all matches involving firm 1
 - Relative production of all assignments remains the same
 - Already non-identification result
- Location normalizations: $e_{\langle i,i \rangle} = 0 \, \forall \, i = 1, \dots, N$

$$E = \begin{pmatrix} 0 & e_{\langle 1,2\rangle} & \cdots & e_{\langle 1,N\rangle} \\ e_{\langle 2,1\rangle} & 0 & \cdots & e_{\langle 2,N\rangle} \\ \vdots & \vdots & \ddots & \vdots \\ e_{\langle N,1\rangle} & e_{\langle N,2\rangle} & \cdots & 0 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

G(E) is Not Identified

• Recall $S(A, E, Z) = \sum_{\langle u, d \rangle \in A} (e_{\langle u, d \rangle} + z_{\langle u, d \rangle})$ governs pairwise stable assignment

• Compare

$$E_{1} = \begin{pmatrix} 0 & e_{\langle 1,2 \rangle} & \cdots & e_{\langle 1,N \rangle} \\ e_{\langle 2,1 \rangle} & 0 & \cdots & e_{\langle 2,N \rangle} \\ \vdots & \vdots & \ddots & \vdots \\ e_{\langle N,1 \rangle} & e_{\langle N,2 \rangle} & \cdots & 0 \end{pmatrix}$$
$$E_{2} = \begin{pmatrix} 0 & e_{\langle 1,2 \rangle} + 1 & \cdots & e_{\langle 1,N \rangle} \\ e_{\langle 2,1 \rangle} - 1 & 0 & \cdots & e_{\langle 2,N \rangle} - 1 \\ \vdots & \vdots & \ddots & \vdots \\ e_{\langle N,1 \rangle} & e_{\langle N,2 \rangle} + 1 & \cdots & 0 \end{pmatrix}$$

• E_{1} and E_{2} have same sums of unobserved production for al assignments

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Non-Identification Theorem

- $S(A, E_1, Z) = S(A, E_2, Z) \forall A, Z$
- Frequencies of E_1 and E_2 cannot be distinguished
- Cannot identify if firms tend to be high quality from these data on matched firms

うして ふゆう ふほう ふほう しょうく

Theorem

The distribution G(E) of market-level unobserved match characteristics is **not** identified.

Complementarities Drive Matching

- If distribution of *E* not identified, what distribution is?
- Becker (1973): marriage with heterogeneous schooling levels
- Assortative matching when male and female schooling are complements in production

ション ふゆ アメリア メリア しょうくしゃ

- **Complementarities:** positive *cross partial derivativ*e of production with respect to schooling
- Increasing differences if schooling discrete

Unobserved Complementarities

Let

$$c\left(\mathit{u}_{1},\mathit{u}_{2},\mathit{d}_{1},\mathit{d}_{2}\right) \equiv e_{\langle \mathit{u}_{1},\mathit{d}_{1}\rangle} + e_{\langle \mathit{u}_{2},\mathit{d}_{2}\rangle} - e_{\langle \mathit{u}_{1},\mathit{d}_{2}\rangle} - e_{\langle \mathit{u}_{2},\mathit{d}_{1}\rangle}$$

- Unobserved complementarity between the matches $\langle u_1, d_1 \rangle$ and $\langle u_2, d_2 \rangle$
 - Relative to exchange of partners $\langle u_1, d_2 \rangle$ and $\langle u_2, d_1 \rangle$
- One unobserved complementarity for each of two upstream, two downstream firms
- How much matches $\langle u_1, d_1 \rangle$ and $\langle u_2, d_2 \rangle$ gain in unobserved quality over matches $\langle u_1, d_2 \rangle$ and $\langle u_2, d_1 \rangle$

イロト 不良 アイヨア イヨア ヨー ろくぐ

Market-Level Unobserved Complementarities

• Match-specific unobservables for each market

$$E = \begin{pmatrix} 0 & e_{\langle 1,2 \rangle} & \cdots & e_{\langle 1,N \rangle} \\ e_{\langle 2,1 \rangle} & 0 & \cdots & e_{\langle 2,N \rangle} \\ \vdots & \vdots & \ddots & \vdots \\ e_{\langle N,1 \rangle} & e_{\langle N,2 \rangle} & \cdots & 0 \end{pmatrix}$$

Change variables

$$C = (c(u_1, u_2, d_1, d_2) \mid u_1, u_2, d_1, d_2 \in N)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Each valid C must be formed from a valid E

Market-Level Unobserved Complementarities

Lemma

There is a random vector

$$B = (c(u_1, u_2, d_1, d_2) | u_1 = d_1 = 1, u_2, d_2 \in \{2, \dots, N\})$$

of $(N-1)^2$ unobserved complementarities such that any unobserved complementarity $c(u_1, u_2, d_1, d_2)$ in C is equal to a (u_1, u_2, d_1, d_2) -specific sum and difference of terms in B. The indices (u'_1, u'_2, d'_1, d'_2) of the terms in B in the sum do not depend on the realization of E.

Baseline Model

Ex: N = 3 Agents Per Side

$$E=\left(egin{array}{ccc} 0 & e_{\langle 1,2
angle} & e_{\langle 1,3
angle} \ e_{\langle 2,1
angle} & 0 & e_{\langle 2,3
angle} \ e_{\langle 3,1
angle} & e_{\langle 3,2
angle} & 0 \end{array}
ight)$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Ex: N = 3 Agents Per Side

• 12 items in C

$$C = (c(u_1, u_2, d_1, d_2) \mid u_1, u_2, d_1, d_2 \in \{1, 2, 3\})$$

• Definition of *B*, 4 items in *B*

$$egin{aligned} B = (c\,(1,2,1,2)\,,c\,(1,2,1,3)\,,c\,(1,3,1,2)\,,c\,(1,3,1,3)) = \ & \left(-\left(e_{\langle 1,2
angle}+e_{\langle 2,1
angle}
ight)\,,e_{\langle 2,3
angle}-\left(e_{\langle 1,3
angle}+e_{\langle 2,1
angle}
ight)\,,\ & e_{\langle 3,2
angle}-\left(e_{\langle 1,2
angle}+e_{\langle 3,1
angle}
ight)\,,-\left(e_{\langle 1,3
angle}+e_{\langle 3,1
angle}
ight)) \end{aligned}$$

• Example of constructing item in C from B

Distribution of Unobserved Complementarities

Recall

$$C = (c(u_1, u_2, d_1, d_2) \mid u_1, u_2, d_1, d_2 \in N)$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

• Try to identify joint distribution *F*(*C*)

Unobserved Complementarities and Assignments

- Recall $S(A, E, Z) = \sum_{\langle u, d \rangle \in A} (e_{\langle u, d \rangle} + z_{\langle u, d \rangle})$ governs pairwise stable assignment
- Let $\tilde{S}(A, E) = \sum_{\langle u, d \rangle \in A} e_{\langle u, d \rangle}$ be unobserved production from assignment A

Lemma

For each A, $\tilde{S}(A, E)$ is equal to an A-specific sum and difference of unobserved complementarities in C. The indices (u_1, u_2, d_1, d_2) of the terms in the sum do not depend on the realization of E.

うして ふゆう ふほう ふほう しょうく

- Use the overloaded notation $\tilde{S}(A, C)$ for $\tilde{S}(A, E)$
- Can calculate optimal assignment from C and Z
- Hence, assignment probabilities from F(C)

Ex: N = 3 Agents Per Side

$$\begin{aligned} A_1 &= \{ \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle \} \\ A_2 &= \{ \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 3 \rangle \} \\ A_3 &= \{ \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle \} \\ A_4 &= \{ \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle \} \\ A_5 &= \{ \langle 1, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle \} \\ A_6 &= \{ \langle 1, 3 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle \} \end{aligned}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Ex: N = 3 Agents Per Side

• Write sum of unobserved production as sum of elements in C

$$\begin{pmatrix} \tilde{S}(A_{1}, E) \\ \tilde{S}(A_{2}, E) \\ \tilde{S}(A_{3}, E) \\ \tilde{S}(A_{3}, E) \\ \tilde{S}(A_{4}, E) \\ \tilde{S}(A_{5}, E) \\ \tilde{S}(A_{5}, E) \\ \tilde{S}(A_{6}, E) \end{pmatrix} = \begin{pmatrix} 0 \\ -c(1, 2, 1, 2) \\ -c(1, 3, 1, 3) \\ e_{\langle 1, 2 \rangle} + e_{\langle 2, 3 \rangle} + e_{\langle 3, 1 \rangle} \\ e_{\langle 2, 3 \rangle} + e_{\langle 3, 2 \rangle} \\ e_{\langle 1, 3 \rangle} + e_{\langle 2, 1 \rangle} + e_{\langle 3, 2 \rangle} \end{pmatrix} = \begin{pmatrix} 0 \\ -c(1, 3, 1, 3) \\ c(1, 2, 2, 3) - c(1, 3, 1, 3) \\ -c(2, 3, 2, 3) \\ -c(1, 3, 1, 3) + c(2, 3, 1, 2) \end{pmatrix}$$

Unobserved Complementarities Empirically Distinguishable

Recall

$$C = (c(u_1, u_2, d_1, d_2) \mid u_1, u_2, d_1, d_2 \in N)$$

Lemma

Consider two realizations C_1 and C_2 of the random vector C. $C_1 = C_2$ if and only if $\tilde{S}(A, C_1) = \tilde{S}(A, C_2)$ for all assignments A.

• If $C_1 \neq C_2$, there exists A such that $\tilde{S}(A, C_1) \neq \tilde{S}(A, C_2)$

うして ふゆう ふほう ふほう しょうく

• Distribution F(C) is potentially identifiable

Ex: N = 3 Agents Per Side

• Given two realizations C_1 and C_2 , if $\tilde{S}(A, C_1) = \tilde{S}(A, C_2)$ for all A, then $C_1 = C_2$

$$\begin{array}{rcl} c \left(1,2,1,2 \right) &=& \tilde{S} \left(A_{1}, \, C \right) - \tilde{S} \left(A_{2}, \, C \right) \\ c \left(1,2,1,3 \right) &=& \tilde{S} \left(A_{5}, \, C \right) - \tilde{S} \left(A_{6}, \, C \right) \\ c \left(1,3,1,2 \right) &=& \tilde{S} \left(A_{5}, \, C \right) - \tilde{S} \left(A_{4}, \, C \right) \\ c \left(1,3,1,3 \right) &=& \tilde{S} \left(A_{1}, \, C \right) - \tilde{S} \left(A_{3}, \, C \right) \end{array}$$

- If $C_1 = C_2$, then $\tilde{S}(A, C_1) = \tilde{S}(A, C_2)$ for all A
 - Follows from formulas for $\tilde{S}(A, E)$
 - Recall $\tilde{S}(A, C)$ and $\tilde{S}(A, E)$ overloaded notation for same sum

Main Result: F(C) is Identified

- First identify the distribution of \tilde{S} by varying Z across markets
 - Sums of unobserved production for all assignments in a market
- Then change variables to get distribution F(E)
 - Change of variables is one-to-one by previous lemma
 - So F(C) is identified

Theorem

The distribution F(C) of market-level unobserved complementarities is identified in a matching game where all agents must be matched.

The Distribution of \tilde{S}

- $\tilde{S}(A, C)$ sum of unobserved production for assignment A
- N! assignments A in a market
- Differences in assignment production govern pairwise stable assignment
 - Use $A_1 = \{\langle 1, 1 \rangle, \dots, \langle N, N \rangle\}$ as a baseline assignment
 - $\tilde{S}(A_1, C) = 0 \forall C$ by earlier location normalization

•
$$ilde{S} = \left(ilde{S}\left(A_{i}, C
ight)
ight)_{i=2}^{N!}$$
 vector of random variables

Lemma

The CDF $H(\tilde{S})$ of unobserved production for all assignments is identified.

Proof: Identifying $H\left(\tilde{S}\right)$ Using Z

• Recall $S(A, E, Z) = \sum_{\langle u, d \rangle \in A} (e_{\langle u, d \rangle} + z_{\langle u, d \rangle})$ governs pairwise stable assignment

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三三 - のへで

Proof: Identifying $H\left(\tilde{S}\right)$ Using Z

- Recall $S(A, E, Z) = \sum_{\langle u, d \rangle \in A} (e_{\langle u, d \rangle} + z_{\langle u, d \rangle})$ governs pairwise stable assignment
- Each E^{\star} gives one C^{*} & one $\tilde{S}^{\star} = \tilde{S}(A, C^{\star})$, set

$$z^{\star}_{\langle u,d \rangle} = -e^{\star}_{\langle u,d \rangle}$$

ション ふゆ アメリア メリア しょうくしゃ

Proof: Identifying
$$H\left(ilde{S}
ight)$$
 Using Z

- Recall $S(A, E, Z) = \sum_{\langle u, d \rangle \in A} (e_{\langle u, d \rangle} + z_{\langle u, d \rangle})$ governs pairwise stable assignment
- Each E^{\star} gives one C^{*} & one $\tilde{S}^{\star} = \tilde{S}(A, C^{\star})$, set

$$z^{\star}_{\langle u, d
angle} = -e^{\star}_{\langle u, d
angle}$$

ション ふゆ アメリア メリア しょうくしゃ

• Then $S(A, E^{\star}, Z^{\star}) = \tilde{S}(A, C^{\star}) + \sum_{\langle u, d \rangle \in A} z^{\star}_{\langle u, d \rangle} = 0 \, \forall A$

Proof: Identifying
$$H\left(ilde{S}
ight)$$
 Using Z

- Recall $S(A, E, Z) = \sum_{\langle u, d \rangle \in A} (e_{\langle u, d \rangle} + z_{\langle u, d \rangle})$ governs pairwise stable assignment
- Each E^{\star} gives one C^{*} & one $\tilde{S}^{\star} = \tilde{S}(A, C^{\star})$, set

$$z^{\star}_{\langle u,d
angle} = -e^{\star}_{\langle u,d
angle}$$

- Then $S(A, E^{\star}, Z^{\star}) = \tilde{S}(A, C^{\star}) + \sum_{\langle u, d \rangle \in A} z^{\star}_{\langle u, d \rangle} = 0 \,\forall A$
- Definition of the CDF

$$H\left(\tilde{S}^{\star}
ight)=\Pr\left(\tilde{S}\left(A,C
ight)\leq\tilde{S}\left(A,C^{\star}
ight),orall\,A
eq A_{1}
ight)$$

ション ふゆ アメリア メリア しょうくしゃ

Proof: Identifying
$$H\left(ilde{S}
ight)$$
 Using Z

$$\begin{aligned} H\left(\tilde{S}^{\star}\right) &= & \Pr\left(\tilde{S}\left(A,C\right) \leq \tilde{S}\left(A,C^{\star}\right), \forall A \neq A_{1}\right) \\ &= & \Pr\left(S\left(A,E,Z^{\star}\right) \leq S\left(A_{1},E,Z^{\star}\right), \forall A \neq A_{1}\right) \\ &= & \Pr\left(S\left(A,E,Z^{\star}\right) \leq 0, \forall A \neq A_{1}\right) \\ &= & \Pr\left(A_{1} \mid Z^{\star}\right) \end{aligned}$$

- Third equality uses choice of Z^* :
- Uses $Pr(A_1 | Z^*)$ for arbitrary assignment A_1 , many Z^*

Special Regressors and Tracing CDFs

- Large and product support on Z traces CDF of sums of unobserved production of assignments
 - Special regressors
 - Ichimura and Thompson (1998), Lewbel (2000), Matzkin (2007), Berry and Haile (2011), Fox and Gandhi (2010)
 - Failure of large and product support gives partial identification of $H\left(\tilde{S}\right)$ and hence $F\left(C\right)$

うして ふゆう ふほう ふほう しょうく

Special Regressors and Tracing CDFs

- Large and product support on Z traces CDF of sums of unobserved production of assignments
 - Special regressors
 - Ichimura and Thompson (1998), Lewbel (2000), Matzkin (2007), Berry and Haile (2011), Fox and Gandhi (2010)
 - Failure of large and product support gives partial identification of $H\left(\tilde{S}\right)$ and hence $F\left(C\right)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ つ

• Given $H(\tilde{S})$, change of variables completes proof of identification of F(C)

Recap of Main Results

• Negative identification result

Theorem

The distribution G(E) of market-level unobserved match characteristics is **not** identified in a matching game where all agents must be matched.

• Positive identification result

Theorem

The distribution F(C) of market-level unobserved complementarities is identified in a matching game where all agents must be matched.

Economic Intuition for Unobserved Complementarities

- Transferable utility matching games
- Becker (1973) shows complementarities govern sorting
 - One characteristic (schooling) per agent
- Positive assortative matching could occur if men want to marry women with
 - Same level of schooling (horizontal preferences)
 - Highest level of schooling (vertical preferences)
- Have both match-specific observables and unobservables
- Nevertheless, can learn about the distribution of unobserved complementarities

イロト 不良 アイヨア イヨア ヨー ろくぐ

Unobserved Heterogeneity in Matching Games Model Variants

Outline

2 Baseline Model

3 Model Variants

- Other Observed Characteristics
- Data on Unmatched Firms
- Agent-Specific Characteristics

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

- One-Sided Matching
- Many-to-Many Matching

Model Variants Other Observed Characteristics

Other Observed Characteristics X

• Researcher observes other market-level characteristics X

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

- In addition to special regressors in Z
- Firm or agent specific characteristics
- Number of firms could vary, be in X

Model Variants

Other Observed Characteristics

Example of Production with X

Total match production

$$(x_{u} \cdot x_{d})' \beta_{\langle u,d \rangle,1} + x_{\langle u,d \rangle}' \beta_{\langle u,d \rangle,2} + \mu_{\langle u,d \rangle} + z_{\langle u,d \rangle}$$

- x_u vector of upstream firm characteristics
- x_d vector of downstream firm characteristics
- $x_u \cdot x_d$ all interactions between upstream, downstream characteristics
- $x_{\langle u,d\rangle}$ vector of match-specific characteristics
- $\beta_{\langle u,d\rangle,1}$, $\beta_{\langle u,d\rangle,2}$ random coefficients specific to match
 - Can be sum of **random preferences** of upstream, downstream firms

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

- $\mu_{\langle u, d \rangle}$ random intercept
 - $\bullet\,$ Can capture unobserved characteristics of both u and d

$$X = \left(N, (x_u)_{u \in N}, (x_d)_{d \in N}, (x_{\langle u, d \rangle})_{u, d \in N}\right)$$

Unobserved Heterogeneity in Matching Games Model Variants Other Observed Characteristics

More on Example with X

• Total match production

$$(x_{u} \cdot x_{d})' \beta_{\langle u,d \rangle,1} + x_{\langle u,d \rangle}' \beta_{\langle u,d \rangle,2} + \mu_{\langle u,d \rangle} + z_{\langle u,d \rangle}$$

Now define

$$e_{\langle u,d\rangle} = (x_u \cdot x_d)' \beta_{\langle u,d\rangle,1} + x_{\langle u,d\rangle}' \beta_{\langle u,d\rangle,2} + \mu_{\langle u,d\rangle}$$

and

$$c(u_1, u_2, d_1, d_2) \equiv e_{\langle u_1, d_1 \rangle} + e_{\langle u_2, d_2 \rangle} - e_{\langle u_1, d_2 \rangle} - e_{\langle u_2, d_1 \rangle}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Unobserved Heterogeneity in Matching Games Model Variants Other Observed Characteristics

Condition on X

- Previous theorems did not use X, can condition on X
- Example model makes the distribution $F(C \mid X)$ of

$$C = (c(u_1, u_2, d_1, d_2) \mid u_1, u_2, d_1, d_2 \in N)$$

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

depend on X

- Still require independence of Z and ψ
- Prior arguments identify $F(C \mid X)$

Model Variants Data on Unmatched Firms

Data on Unmatched Firms

- Full matching model allows firms to be unmatched in stable assignments
- In some IO applications, data on these unmatched firms
 - Potential merger partners, single people in marriage
- Say we can have data on unmatched firms
- Let $\langle u, 0 \rangle$ be a physical match for an unmatched upstream firm
 - Also, use $\langle 0, d
 angle$
- Assignments like this allowed

$$\{\langle u_1, 0 \rangle, \langle 0, d_1 \rangle, \langle u_2, d_2 \rangle\}$$

イロト 不良 アイヨア イヨア ヨー ろくぐ

Model Variants

Data on Unmatched Firms

Unmatched Has 0 Production

- No special regressor for single matches
- $e_{\langle u,0
 angle} = 0$ for single matches as a location normalization, so

$$E = \begin{pmatrix} e_{\langle 1,1 \rangle} & \cdots & e_{\langle 1,N_d \rangle} \\ \vdots & \ddots & \vdots \\ e_{\langle N_u,1 \rangle} & \cdots & e_{\langle N_u,N_d \rangle} \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model Variants

Data on Unmatched Firms

Unmatched Has 0 Production

- No special regressor for single matches
- $e_{\langle u,0
 angle} = 0$ for single matches as a location normalization, so

$$\mathsf{E} = \begin{pmatrix} e_{\langle 1,1 \rangle} & \cdots & e_{\langle 1,N_d \rangle} \\ \vdots & \ddots & \vdots \\ e_{\langle N_u,1 \rangle} & \cdots & e_{\langle N_u,N_d \rangle} \end{pmatrix}$$

- Without unmatched firms, could not identify G(E)
- Only distribution F(C) of unobservable complementarities

Theorem

The distribution $G(E \mid X)$ of market-level unobservables is constructively identified with data on unmatched agents.

Model Variants

Data on Unmatched Firms

Proof: G(E) is Identified

• Fix
$$E^{\star}$$
, set $z^{\star}_{\langle u,d \rangle} = -e^{\star}_{\langle u,d \rangle}$

- Then the production of all assignments is 0
- All agents indifferent between being unmatched and matched

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
Model Variants

Data on Unmatched Firms

Proof: G(E) is Identified

• Fix
$$E^{\star}$$
, set $z^{\star}_{\langle u,d \rangle} = -e^{\star}_{\langle u,d \rangle}$

- Then the production of all assignments is 0
- All agents indifferent between being unmatched and matched

イロト 不良 アイヨア イヨア ヨー ろくぐ

- Let A_0 be assignment where all agents are unmatched
 - $\tilde{S}(A_0, E) = 0$
 - Agents still unmatched if $e_{\langle u,d \rangle} \leq e^{\star}_{\langle u,d \rangle} orall \ \langle u,d)$

Model Variants Data on Unmatched Firms

Proof: G(E) is Identified

• Fix
$$E^{\star}$$
, set $z^{\star}_{\langle u,d \rangle} = -e^{\star}_{\langle u,d \rangle}$

- Then the production of all assignments is 0
- All agents indifferent between being unmatched and matched
- Let A_0 be assignment where all agents are unmatched
 - $\tilde{S}(A_0, E) = 0$
 - Agents still unmatched if $e_{\langle u,d \rangle} \leq e^{\star}_{\langle u,d \rangle} orall \ \langle u,d \rangle$

• Then

$$G(E^{\star}) = \Pr(E \leq E^{\star} \text{ elementwise}) = \Pr(A_0 \mid Z^{\star})$$

Model Variants Data on Unmatched Firms

Intuition for Identification of G(E)

- Without unmatched agents, can only identify distribution of unobserved complementarities
- With unmatched agents, introduces an element of individual rationality in the data
 - Agent can unilaterally decide to be single
 - Production of all non-single matches must be nonpositive when all other agents are available to match

ション・ 山 マ マ マ マ マ マ マ マ マ マ シ く 日 マ シ く 日 マ

- Look at probability all agents are single given Z
- Individual rationality makes identification similar to
 - Single agent multinomial choice
 - Nash games

Model Variants Agent-Specific Characteristics

Agent-Specific Characteristics in Z

- Results rely on *match-specific* special regressors $z_{\langle u,d\rangle}$
- Now agent-specific regressors z_u and z_d
- $2 \cdot N$ such regressors

$$Z = \left((z_u)_{u \in N}, (z_d)_{d \in N} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model Variants Agent-Specific Characteristics

Agent-Specific Characteristics in Z

- Only matched firms
- Functional form of production

 $e_u \cdot e_d + z_u \cdot z_d$

イロト 不良 アイヨア イヨア ヨー ろくぐ

• Only interactions matter in sorting if agents must be matched

Model Variants Agent-Specific Characteristics

Agent-Specific Characteristics

• With data on unmatched firms, can get at distribution G(E) of

$$\mathsf{E} = \left(\left(e_u
ight)_{u=3}^N, \left(e_d
ight)_{d=2}^N
ight).$$

• Normalizations: $e_u = 0$ for u = 1, $e_d = 0$ for d = 1, $e_u = 1$ for u = 2

Theorem

The distribution $G(E \mid X)$ is identified in the one-to-one matching model with agent-specific characteristics, agent-specific unobservables, and without unmatched agents.

Model Variants One-Sided Matching

One-Sided Matching

- Consider the example of mergers
- Which firm is a target and which is an acquirer is an endogenous outcome
- None of the previous theorems relied on dividing agents into two sides
- Our results automatically generalize to one-sided matching

イロト 不良 アイヨア イヨア ヨー ろくぐ

• Existence issues (Chiappori, Galichon and Salanie 2012)

Model Variants

Many-to-Many Matching

Many-to-Many, Two-Sided Matching

- Many-to-many matching: upstream firms can have multiple downstream firm partners
 - And downstream firms can have multiple upstream firm partners

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model Variants

Many-to-Many Matching

Many-to-Many, Two-Sided Matching

- Many-to-many matching: upstream firms can have multiple downstream firm partners
 - And downstream firms can have multiple upstream firm partners
- Additive separability: production of matches $\langle u_1, d_1 \rangle$ and $\langle u_1, d_2 \rangle$

$$z_{\langle u_1,d_1 \rangle} + e_{\langle u_1,d_1 \rangle} + z_{\langle u_1,d_2 \rangle} + e_{\langle u_1,d_2 \rangle}$$

- Sotomayor (1999)
- Results simply generalize when production is additively separable across multiple matches involving the same firm

Model Variants

Many-to-Many Matching

Multiple Pairwise Stable Assignments

- Transferable utility matching games with production not additively separable across multiple matches may have multiple pairwise stable assignments
- Also may have existence issues
- Need to adopt some sort of solution to games with multiple equilibria

◆ロ ▶ ◆帰 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q @

- Parameterize selection rule
- Broad assumptions about selection rule
- Partial identification
- Identify selection rule?

Unobserved Heterogeneity in Matching Games Model Variants Many-to-Many Matching

Conclusions

- Study identification in matching games
 - Data on assignments (lists of matches)
 - Observed agent, match characteristics
- Without unmatched agents, can identify distribution of unobserved complementarities

イロト 不良 アイヨア イヨア ヨー ろくぐ

• With unmatched agents, can identify distribution of unobserved match *characteristics*