Unobserved Heterogeneity in Matching Games

Jeremy T. Fox ${ }^{1}$ Chenyu Yang ${ }^{2}$
${ }^{1}$ University of Michigan and NBER
${ }^{2}$ University of Michigan

BFI Matching Problems June 2012

Outline

(1) Matching Empirical Program
(2) Baseline Model
(3) Model Variants

- Other Observed Characteristics
- Data on Unmatched Firms
- Agent-Specific Characteristics
- One-Sided Matching
- Many-to-Many Matching

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available
- Goodyear sold tires to Chrysler, etc.

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available - Goodyear sold tires to Chrysler, etc.
- What we can learn from data listing these relationships?

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available
- Goodyear sold tires to Chrysler, etc.
- What we can learn from data listing these relationships?
- Matching games model relationship formation
- Inputs: payoffs to matches
- Outputs: stable matches
- Firms on all sides of the market can be competing to match with the best partners

Matching Empirical Program

- Businesses form relationships with each other
- Data listing these relationships are sometimes available
- Goodyear sold tires to Chrysler, etc.
- What we can learn from data listing these relationships?
- Matching games model relationship formation
- Inputs: payoffs to matches
- Outputs: stable matches
- Firms on all sides of the market can be competing to match with the best partners
- What can we learn if we impose that the relationships in the data are a stable match?

Example of Matching for Car Parts

- Loosely inspired by Fox (2010a)
- Two suppliers of tires, Goodyear and Bridgestone
- Upstream firms
- Two assemblers of cars, Chrysler and Hyundai
- Downstream firms

Example of Matching for Car Parts

- Loosely inspired by Fox (2010a)
- Two suppliers of tires, Goodyear and Bridgestone
- Upstream firms
- Two assemblers of cars, Chrysler and Hyundai
- Downstream firms
- Matching game determines whether we see the assignment (list of matches)

$$
\{\langle\text { Goodyear, Chrysler }\rangle,\langle\text { Bridgestone, Hyundai }\rangle\}
$$

or the assignment
$\{\langle$ Goodyear, Hyundai \rangle,\langle Bridgestone, Chrysler $\rangle\}$

What Matches Will Form?

- Matches occur according to pairwise stability
- Example assignment, a list of matches

$$
\{\langle\text { Goodyear, Chrysler }\rangle,\langle\text { Bridgestone, Hyundai }\rangle\}
$$

- Stability: Chrysler and Bridgestone could not both be better off by matching
- In transferable utility, money can compensate for a loss in direct structural profits

Available Data

- Assignment is

$$
\{\langle\text { Goodyear, Chrysler }\rangle,\langle\text { Bridgestone, Hyundai }\rangle\}
$$

- In terms of characteristics (experience, quality), assignment is

$$
\{\langle(\text { low, low }),(\text { high, low })\rangle,\langle(\text { high , high }),(\text { low, high })\rangle\}
$$

Available Data

- Assignment is

$$
\{\langle\text { Goodyear, Chrysler }\rangle,\langle\text { Bridgestone, Hyundai }\rangle\}
$$

- In terms of characteristics (experience, quality), assignment is

$$
\{\langle(\text { low, low }),(\text { high, low })\rangle,\langle(\text { high }, \text { high }),(\text { low, high })\rangle\}
$$

- Quality not in data, observe only data

$$
\{\langle(\text { low }),(\text { high })\rangle,\langle(\text { high }),(\text { low })\rangle\}
$$

- No data on rejections of partners, choice sets, transfers
- See hedonic models and labor panel literature for data on transfers (e.g, Heckman, Matzkin and Nesheim 2010, Chiappori, McCann, Nesheim 2010, Eeckhout and Kircher 2011)

Unobserved Characteristics

- Investigate the identification of objects such as distribution G of unobserved characteristics

$$
G \text { (quality) }
$$

- Can we learn G from data on who matches with whom?

Literature Context for Unobserved Characteristics

- Matching empirical literature has modeled sorting on observed characteristics
- Dozens of empirical papers by now
- Including Choo \& Siow (2006), Sorensen (2007), Fox (2010a)
- Usually i.i.d. errors at match or type of matches level (or "rank order property")
- Identification literature similar: Fox (2010b), Graham (2011), Galichon and Salanie (2011), etc.

Literature Context for Unobserved Characteristics

- Matching empirical literature has modeled sorting on observed characteristics
- Dozens of empirical papers by now
- Including Choo \& Siow (2006), Sorensen (2007), Fox (2010a)
- Usually i.i.d. errors at match or type of matches level (or "rank order property")
- Identification literature similar: Fox (2010b), Graham (2011), Galichon and Salanie (2011), etc.
- Ackerberg and Botticini (2002) study matching between farmers and landlords
- Matching-like IV's correct an outcome regression for bias from sorting on tenant risk aversion and landlord monitoring ability
- Finds substantial bias, consistent with sorting on unobservables

Real-Time Literature Review

- Compared to Bernard's talk this morning
- Finite number of agents per market (firms in IO)
- Many different matching markets (say component categories)
- At least one continuous characteristic per match / agent (not finite number of observed types)
- Nonparametric on the joint distribution of unobservables
- No restriction on joint dependence of unobservables within a market (no i.i.d. errors)

Unobserved, Heterogeneous Preferences

- Agents may also have unobserved, heterogeneous preferences
- Like random coefficients in demand models
- Chrysler cares more about experience than Hyundai?
- Unobserved preferences may be important in marriage
- Observationally identical men married to observationally different women

Paper's Contribution

- Data on many matching markets
- Who matches with whom (dependent variable)
- Observed agent characteristics (independent variables)

Paper's Contribution

- Data on many matching markets
- Who matches with whom (dependent variable)
- Observed agent characteristics (independent variables)
- Explore (non)-identification of distributions of
(1) Unobserved characteristics
(2) Unobserved preferences
(3) Unobserved complementarities

Paper's Contribution

- Data on many matching markets
- Who matches with whom (dependent variable)
- Observed agent characteristics (independent variables)
- Explore (non)-identification of distributions of
(1) Unobserved characteristics
(2) Unobserved preferences
(3) Unobserved complementarities
- Mathematical similarities to multinomial choice models
- Emphasize unique aspects of matching

Analogy to Regression Models

- Analog to $y=x^{\prime} \beta_{i}+\epsilon_{i}$
- Assignment (list of matches) dependent variable, y in regression
- Observed characteristics independent variables, x 's in regression
- Unobserved characteristics (quality) like error ϵ_{i} in regression
- Unobserved preferences like random coefficients, β_{i}
- Want to learn $G\left(\epsilon_{i}, \beta_{i}\right)$

Outline

(1) Matching Empirical Program

(2) Baseline Model
(3) Model Variants

- Other Observed Characteristics
- Data on Unmatched Firms
- Agent-Specific Characteristics
- One-Sided Matching
- Many-to-Many Matching

Scope of Baseline Model

- Baseline model
- One-to-one, two-sided matching (marriage?)
- Equal numbers of upstream, downstream firms
- All firms must be matched
- One observed characteristic per match
- No random coefficients

Scope of Baseline Model

- Baseline model
- One-to-one, two-sided matching (marriage?)
- Equal numbers of upstream, downstream firms
- All firms must be matched
- One observed characteristic per match
- No random coefficients
- Paper / project / end of talk
- Number of firms can differ across sides
- Unmatched firms in data
- Multiple observed characteristics per match
- Characteristics at firm, not match level
- Heterogeneous coefficients on characteristics
- Many-to-many matching

Physical and Full Matches

- One-to-one matching
- Upstream firms u_{1}, u_{2}; downstream firms d_{1}, d_{2}

Physical and Full Matches

- One-to-one matching
- Upstream firms u_{1}, u_{2}; downstream firms d_{1}, d_{2}
- Upstream firm u and downstream firm d can form physical match $\langle u, d\rangle$
- Upstream firm listed first
- Have data listing the matches that form

Physical and Full Matches

- One-to-one matching
- Upstream firms u_{1}, u_{2}; downstream firms d_{1}, d_{2}
- Upstream firm u and downstream firm d can form physical match $\langle u, d\rangle$
- Upstream firm listed first
- Have data listing the matches that form
- In game solution, u and d form full match $\left\langle u, d, t_{\langle u, d\rangle}\right\rangle$
- $t_{\langle u, d\rangle}$ transfers d pays to u
- No data on transfers: often confidential

Match Production

- Total production from match $\langle u, d\rangle$ is

$$
z_{\langle u, d\rangle}+e_{\langle u, d\rangle}
$$

- $z_{\langle u, d\rangle}$ regressor specific to match $\langle u, d\rangle$
- $e_{\langle u, d\rangle}$ unobservable for match $\langle u, d\rangle$

Match Production

- Total production from match $\langle u, d\rangle$ is

$$
z_{\langle u, d\rangle}+e_{\langle u, d\rangle}
$$

- $z_{\langle u, d\rangle}$ regressor specific to match $\langle u, d\rangle$
- $e_{\langle u, d\rangle}$ unobservable for match $\langle u, d\rangle$
- $e_{\langle u, d\rangle}$ nests $e_{\langle u, d\rangle}=e_{u} \cdot e_{d}$
- Match production is sum of upstream, downstream profits

Matching Production

- N firms on each side of market

$$
\left(\begin{array}{ccc}
z_{\langle 1,1\rangle}+e_{\langle 1,1\rangle} & \cdots & z_{\langle 1, N\rangle}+e_{\langle 1, N\rangle} \\
\vdots & \ddots & \vdots \\
z_{\langle N, 1\rangle}+e_{\langle N, 1\rangle} & \cdots & z_{\langle N, N\rangle}+e_{\langle N, N\rangle}
\end{array}\right)
$$

- Rows: upstream firms
- Columns: downstream firms

E and Z Matrices

$$
E=\left(\begin{array}{ccc}
e_{\langle 1,1\rangle} & \cdots & e_{\langle 1, N\rangle} \\
\vdots & \ddots & \vdots \\
e_{\langle N, 1\rangle} & \cdots & e_{\langle N, N\rangle}
\end{array}\right), Z=\left(\begin{array}{ccc}
z_{\langle 1,1\rangle} & \cdots & z_{\langle 1, N\rangle} \\
\vdots & \ddots & \vdots \\
z_{\langle N, 1\rangle} & \cdots & z_{\langle N, N\rangle}
\end{array}\right)
$$

- Z in data
- E not in data, observed to agents

Assignments

- Assignment A selects one cell from each row, each column
- $A=\left\{\left\langle u_{1}, d_{1}\right\rangle, \ldots,\left\langle u_{N}, d_{N}\right\rangle\right\}$

$$
\left(\begin{array}{cccc}
\times & 0 & \cdots & 0 \\
0 & \times & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \times
\end{array}\right)
$$

Solution Concept: Pairwise Stability

- Outcome list of full matches
- $\left\{\left\langle u_{1}, d_{1}, t_{\left\langle u_{1}, d_{1}\right\rangle}\right\rangle, \ldots,\left\langle u_{N}, d_{N}, t_{\left\langle u_{N}, d_{N}\right\rangle}\right\rangle\right\}$
- Outcome pairwise stable if robust to deviations by pairs of two firms
- Again, assignment A list of physical matches
- $\left\{\left\langle u_{1}, d_{1}\right\rangle, \ldots,\left\langle u_{N}, d_{N}\right\rangle\right\}$
- Call assignment pairwise stable if underlying outcome pairwise stable

Existence and Uniqueness

- Roth and Sotomayor (1990, Chapter 8)
- Existence of pairwise stable assignment guaranteed
- Pairwise stable outcome is fully stable
- Robust to deviation by any coalition of firms
- One such coalition is set of all firms
- Let $S(A, E, Z)=\sum_{\langle u, d\rangle \in A}\left(z_{\langle u, d\rangle}+e_{\langle u, d\rangle}\right)$
- Pairwise stable assignment A maximizes $S(A, E, Z)$
- Maximizes sum of production across all assignments
- Uniqueness of assignment with probability 1 if E, Z arguments have continuous support

Data Across Markets

- Data (A, Z) from many markets
- Assignment $A=\left\{\left\langle u_{1}, d_{1}\right\rangle, \ldots,\left\langle u_{N}, d_{N}\right\rangle\right\}$
- Observed characteristics

$$
Z=\left(\begin{array}{ccc}
z_{\langle 1,1\rangle} & \cdots & z_{\langle 1, N\rangle} \\
\vdots & \ddots & \vdots \\
z_{\langle N, 1\rangle} & \cdots & z_{\langle N, N\rangle}
\end{array}\right)
$$

Full Support on Z

$$
Z=\left(\begin{array}{ccc}
z_{\langle 1,1\rangle} & \cdots & z_{\langle 1, N\rangle} \\
\vdots & \ddots & \vdots \\
z_{\langle N, 1\rangle} & \cdots & z_{\langle N, N\rangle}
\end{array}\right)
$$

- Limiting data are $\operatorname{Pr}(A \mid Z)$
- Let Z have full and product support
- Any $Z \in \mathbb{R}^{N^{2}}$ is observed
- Special regressor used for point identification in binary/multinomial choice
- Ichimura and Thompson (1998), Lewbel (2000), Matzkin (2007), Berry and Haile (2011), Fox and Gandhi (2010), etc.

$G(E)$: Key Primitive in the Model

- Unknown primitive to estimate is the distribution $G(E)$ of

$$
E=\left(\begin{array}{ccc}
e_{\langle 1,1\rangle} & \cdots & e_{\langle 1, N\rangle} \\
\vdots & \ddots & \vdots \\
e_{\langle N, 1\rangle} & \cdots & e_{\langle N, N\rangle}
\end{array}\right)
$$

- Different markets have different unobservable realizations E
- $G(E)$: distribution across markets
- Assume Z independent of E

Identification

- Data generation process

$$
\operatorname{Pr}(A \mid Z ; G)=\int 1[A \text { stable } \mid Z, E] d G(E)
$$

- $G(E)$ identified if true G only distribution that generates data $\operatorname{Pr}(A \mid Z)$ for all (A, Z)

Location Normalizations

- Add a constant to the production of all matches involving firm 1
- Relative production of all assignments remains the same
- Already non-identification result
- Location normalizations: $e_{\langle i, i\rangle}=0 \forall i=1, \ldots, N$

$$
E=\left(\begin{array}{cccc}
0 & e_{\langle 1,2\rangle} & \cdots & e_{\langle 1, N\rangle} \\
e_{\langle 2,1\rangle} & 0 & \cdots & e_{\langle 2, N\rangle} \\
\vdots & \vdots & \ddots & \vdots \\
e_{\langle N, 1\rangle} & e_{\langle N, 2\rangle} & \cdots & 0
\end{array}\right)
$$

$G(E)$ is Not Identified

- Recall $S(A, E, Z)=\sum_{\langle u, d\rangle \in A}\left(e_{\langle u, d\rangle}+z_{\langle u, d\rangle}\right)$ governs pairwise stable assignment
- Compare

$$
\begin{gathered}
E_{1}=\left(\begin{array}{cccc}
0 & e_{\langle 1,2\rangle} & \cdots & e_{\langle 1, N\rangle} \\
e_{\langle 2,1\rangle} & 0 & \cdots & e_{\langle 2, N\rangle} \\
\vdots & \vdots & \ddots & \vdots \\
e_{\langle N, 1\rangle} & e_{\langle N, 2\rangle} & \cdots & 0
\end{array}\right) \\
E_{2}=\left(\begin{array}{cccc}
0 & e_{\langle 1,2\rangle}+1 & \cdots & e_{\langle 1, N\rangle} \\
e_{\langle 2,1\rangle}-1 & 0 & \cdots & e_{\langle 2, N\rangle}-1 \\
\vdots & \vdots & \ddots & \vdots \\
e_{\langle N, 1\rangle} & e_{\langle N, 2\rangle}+1 & \cdots & 0
\end{array}\right)
\end{gathered}
$$

- E_{1} and E_{2} have same sums of unobserved production for all assignments

Non-Identification Theorem

- $S\left(A, E_{1}, Z\right)=S\left(A, E_{2}, Z\right) \forall A, Z$
- Frequencies of E_{1} and E_{2} cannot be distinguished
- Cannot identify if firms tend to be high quality from these data on matched firms

Theorem

The distribution $G(E)$ of market-level unobserved match characteristics is not identified.

Complementarities Drive Matching

- If distribution of E not identified, what distribution is?
- Becker (1973): marriage with heterogeneous schooling levels
- Assortative matching when male and female schooling are complements in production
- Complementarities: positive cross partial derivative of production with respect to schooling
- Increasing differences if schooling discrete

Unobserved Complementarities

- Let

$$
c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \equiv e_{\left\langle u_{1}, d_{1}\right\rangle}+e_{\left\langle u_{2}, d_{2}\right\rangle}-e_{\left\langle u_{1}, d_{2}\right\rangle}-e_{\left\langle u_{2}, d_{1}\right\rangle}
$$

- Unobserved complementarity between the matches $\left\langle u_{1}, d_{1}\right\rangle$ and $\left\langle u_{2}, d_{2}\right\rangle$
- Relative to exchange of partners $\left\langle u_{1}, d_{2}\right\rangle$ and $\left\langle u_{2}, d_{1}\right\rangle$
- One unobserved complementarity for each of two upstream, two downstream firms
- How much matches $\left\langle u_{1}, d_{1}\right\rangle$ and $\left\langle u_{2}, d_{2}\right\rangle$ gain in unobserved quality over matches $\left\langle u_{1}, d_{2}\right\rangle$ and $\left\langle u_{2}, d_{1}\right\rangle$

Market-Level Unobserved Complementarities

- Match-specific unobservables for each market

$$
E=\left(\begin{array}{cccc}
0 & e_{\langle 1,2\rangle} & \cdots & e_{\langle 1, N\rangle} \\
e_{\langle 2,1\rangle} & 0 & \cdots & e_{\langle 2, N\rangle} \\
\vdots & \vdots & \ddots & \vdots \\
e_{\langle N, 1\rangle} & e_{\langle N, 2\rangle} & \cdots & 0
\end{array}\right)
$$

- Change variables

$$
C=\left(c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \mid u_{1}, u_{2}, d_{1}, d_{2} \in N\right)
$$

- Each valid C must be formed from a valid E

Market-Level Unobserved Complementarities

Lemma

There is a random vector

$$
B=\left(c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \mid u_{1}=d_{1}=1, u_{2}, d_{2} \in\{2, \ldots, N\}\right)
$$

of $(N-1)^{2}$ unobserved complementarities such that any unobserved complementarity $c\left(u_{1}, u_{2}, d_{1}, d_{2}\right)$ in C is equal to a ($u_{1}, u_{2}, d_{1}, d_{2}$)-specific sum and difference of terms in B. The indices $\left(u_{1}^{\prime}, u_{2}^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}\right)$ of the terms in B in the sum do not depend on the realization of E.

Ex: $N=3$ Agents Per Side

$$
E=\left(\begin{array}{ccc}
0 & e_{\langle 1,2\rangle} & e_{\langle 1,3\rangle} \\
e_{\langle 2,1\rangle} & 0 & e_{\langle 2,3\rangle} \\
e_{\langle 3,1\rangle} & e_{\langle 3,2\rangle} & 0
\end{array}\right)
$$

Ex: $N=3$ Agents Per Side

- 12 items in C

$$
C=\left(c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \mid u_{1}, u_{2}, d_{1}, d_{2} \in\{1,2,3\}\right)
$$

- Definition of $B, 4$ items in B

$$
\begin{gathered}
B=(c(1,2,1,2), c(1,2,1,3), c(1,3,1,2), c(1,3,1,3))= \\
\left(-\left(e_{\langle 1,2\rangle}+e_{\langle 2,1\rangle}\right), e_{\langle 2,3\rangle}-\left(e_{\langle 1,3\rangle}+e_{\langle 2,1\rangle}\right)\right. \\
\left.e_{\langle 3,2\rangle}-\left(e_{\langle 1,2\rangle}+e_{\langle 3,1\rangle}\right),-\left(e_{\langle 1,3\rangle}+e_{\langle 3,1\rangle}\right)\right)
\end{gathered}
$$

- Example of constructing item in C from B

$$
\begin{gathered}
c(2,3,2,3)=e_{\langle 2,2\rangle}+e_{\langle 3,3\rangle}-\left(e_{\langle 2,3\rangle}+e_{\langle 3,2\rangle}\right) \\
=-\left(e_{\langle 2,3\rangle}+e_{\langle 3,2\rangle}\right) \\
=c(1,2,1,2)-c(1,2,1,3)-c(1,3,1,2)+c(1,3,1,3)
\end{gathered}
$$

Distribution of Unobserved Complementarities

- Recall

$$
C=\left(c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \mid u_{1}, u_{2}, d_{1}, d_{2} \in N\right)
$$

- Try to identify joint distribution $F(C)$

Unobserved Complementarities and Assignments

- Recall $S(A, E, Z)=\sum_{\langle u, d\rangle \in A}\left(e_{\langle u, d\rangle}+z_{\langle u, d\rangle}\right)$ governs pairwise stable assignment
- Let $\tilde{S}(A, E)=\sum_{\langle u, d\rangle \in A} e_{\langle u, d\rangle}$ be unobserved production from assignment A

Lemma

For each $A, \tilde{S}(A, E)$ is equal to an A-specific sum and difference of unobserved complementarities in C. The indices $\left(u_{1}, u_{2}, d_{1}, d_{2}\right)$ of the terms in the sum do not depend on the realization of E.

- Use the overloaded notation $\tilde{S}(A, C)$ for $\tilde{S}(A, E)$
- Can calculate optimal assignment from C and Z
- Hence, assignment probabilities from $F(C)$

Ex: $N=3$ Agents Per Side

$$
\begin{aligned}
& A_{1}=\{\langle 1,1\rangle,\langle 2,2\rangle,\langle 3,3\rangle\} \\
& A_{2}=\{\langle 1,2\rangle,\langle 2,1\rangle,\langle 3,3\rangle\} \\
& A_{3}=\{\langle 1,3\rangle,\langle 2,2\rangle,\langle 3,1\rangle\} \\
& A_{4}=\{\langle 1,2\rangle,\langle 2,3\rangle,\langle 3,1\rangle\} \\
& A_{5}=\{\langle 1,1\rangle,\langle 2,3\rangle,\langle 3,2\rangle\} \\
& A_{6}=\{\langle 1,3\rangle,\langle 2,1\rangle,\langle 3,2\rangle\}
\end{aligned}
$$

Ex: $N=3$ Agents Per Side

- Write sum of unobserved production as sum of elements in C

$$
\begin{gathered}
\left(\begin{array}{c}
\tilde{S}\left(A_{1}, E\right) \\
\tilde{S}\left(A_{2}, E\right) \\
\tilde{S}\left(A_{3}, E\right) \\
\tilde{S}\left(A_{4}, E\right) \\
\tilde{S}\left(A_{5}, E\right) \\
\tilde{S}\left(A_{6}, E\right)
\end{array}\right)= \\
\left(\begin{array}{c}
e_{\langle 1,2\rangle}+e_{\langle 2,1\rangle} \\
e_{\langle 1,3\rangle}+e_{\langle 3,1\rangle} \\
e_{\langle 1,2\rangle}+e_{\langle 2,3\rangle}+e_{\langle 3,1\rangle} \\
e_{\langle 2,3\rangle}+e_{\langle 3,2\rangle} \\
e_{\langle 1,3\rangle}+e_{\langle 2,1\rangle}+e_{\langle 3,2\rangle}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-c(1,2,1,2) \\
-c(1,3,1,3) \\
c(1,2,2,3)-c(1,3,1,3) \\
-c(2,3,2,3) \\
-c(1,3,1,3)+c(2,3,1,2)
\end{array}\right)
\end{gathered}
$$

Unobserved Complementarities Empirically Distinguishable

- Recall

$$
C=\left(c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \mid u_{1}, u_{2}, d_{1}, d_{2} \in N\right)
$$

Lemma

Consider two realizations C_{1} and C_{2} of the random vector C. $C_{1}=C_{2}$ if and only if $\tilde{S}\left(A, C_{1}\right)=\tilde{S}\left(A, C_{2}\right)$ for all assignments A.

- If $C_{1} \neq C_{2}$, there exists A such that $\tilde{S}\left(A, C_{1}\right) \neq \tilde{S}\left(A, C_{2}\right)$
- Distribution $F(C)$ is potentially identifiable

Ex: $N=3$ Agents Per Side

- Given two realizations C_{1} and C_{2}, if $\tilde{S}\left(A, C_{1}\right)=\tilde{S}\left(A, C_{2}\right)$ for all A, then $C_{1}=C_{2}$

$$
\begin{aligned}
& c(1,2,1,2)=\tilde{S}\left(A_{1}, C\right)-\tilde{S}\left(A_{2}, C\right) \\
& c(1,2,1,3)=\tilde{S}\left(A_{5}, C\right)-\tilde{S}\left(A_{6}, C\right) \\
& c(1,3,1,2)=\tilde{S}\left(A_{5}, C\right)-\tilde{S}\left(A_{4}, C\right) \\
& c(1,3,1,3)=\tilde{S}\left(A_{1}, C\right)-\tilde{S}\left(A_{3}, C\right)
\end{aligned}
$$

- If $C_{1}=C_{2}$, then $\tilde{S}\left(A, C_{1}\right)=\tilde{S}\left(A, C_{2}\right)$ for all A
- Follows from formulas for $\tilde{S}(A, E)$
- Recall $\tilde{S}(A, C)$ and $\tilde{S}(A, E)$ overloaded notation for same sum

Main Result: $F(C)$ is Identified

- First identify the distribution of \tilde{S} by varying Z across markets
- Sums of unobserved production for all assignments in a market
- Then change variables to get distribution $F(E)$
- Change of variables is one-to-one by previous lemma
- So $F(C)$ is identified

Theorem

The distribution $F(C)$ of market-level unobserved complementarities is identified in a matching game where all agents must be matched.

The Distribution of \tilde{S}

- $\tilde{S}(A, C)$ sum of unobserved production for assignment A
- N ! assignments A in a market
- Differences in assignment production govern pairwise stable assignment
- Use $A_{1}=\{\langle 1,1\rangle, \ldots,\langle N, N\rangle\}$ as a baseline assignment
- $\tilde{S}\left(A_{1}, C\right)=0 \forall C$ by earlier location normalization
- $\tilde{S}=\left(\tilde{S}\left(A_{i}, C\right)\right)_{i=2}^{N!}$ vector of random variables

Lemma

The CDF H (\tilde{S}) of unobserved production for all assignments is identified.

Proof: Identifying $H(\tilde{S})$ Using Z

- Recall $S(A, E, Z)=\sum_{\langle u, d\rangle \in A}\left(e_{\langle u, d\rangle}+z_{\langle u, d\rangle}\right)$ governs pairwise stable assignment

Proof: Identifying $H(\tilde{S})$ Using Z

- Recall $S(A, E, Z)=\sum_{\langle u, d\rangle \in A}\left(e_{\langle u, d\rangle}+z_{\langle u, d\rangle}\right)$ governs pairwise stable assignment
- Each E^{\star} gives one $C^{*} \&$ one $\tilde{S}^{\star}=\tilde{S}\left(A, C^{\star}\right)$, set

$$
z_{\langle u, d\rangle}^{\star}=-e_{\langle u, d\rangle}^{\star}
$$

Proof: Identifying $H(\tilde{S})$ Using Z

- Recall $S(A, E, Z)=\sum_{\langle u, d\rangle \in A}\left(e_{\langle u, d\rangle}+z_{\langle u, d\rangle}\right)$ governs pairwise stable assignment
- Each E^{\star} gives one $C^{*} \&$ one $\tilde{S}^{\star}=\tilde{S}\left(A, C^{\star}\right)$, set

$$
z_{\langle u, d\rangle}^{\star}=-e_{\langle u, d\rangle}^{\star}
$$

- Then $S\left(A, E^{\star}, Z^{\star}\right)=\tilde{S}\left(A, C^{\star}\right)+\sum_{\langle u, d\rangle \in A} z_{\langle u, d\rangle}^{\star}=0 \forall A$

Proof: Identifying $H(\tilde{S})$ Using Z

- Recall $S(A, E, Z)=\sum_{\langle u, d\rangle \in A}\left(e_{\langle u, d\rangle}+z_{\langle u, d\rangle}\right)$ governs pairwise stable assignment
- Each E^{\star} gives one $C^{*} \&$ one $\tilde{S}^{\star}=\tilde{S}\left(A, C^{\star}\right)$, set

$$
z_{\langle u, d\rangle}^{\star}=-e_{\langle u, d\rangle}^{\star}
$$

- Then $S\left(A, E^{\star}, Z^{\star}\right)=\tilde{S}\left(A, C^{\star}\right)+\sum_{\langle u, d\rangle \in A} z_{\langle u, d\rangle}^{\star}=0 \forall A$
- Definition of the CDF

$$
H\left(\tilde{S}^{\star}\right)=\operatorname{Pr}\left(\tilde{S}(A, C) \leq \tilde{S}\left(A, C^{\star}\right), \forall A \neq A_{1}\right)
$$

Proof: Identifying $H(\tilde{S})$ Using Z

$$
\begin{aligned}
H\left(\tilde{S}^{\star}\right) & =\operatorname{Pr}\left(\tilde{S}(A, C) \leq \tilde{S}\left(A, C^{\star}\right), \forall A \neq A_{1}\right) \\
& =\operatorname{Pr}\left(S\left(A, E, Z^{\star}\right) \leq S\left(A_{1}, E, Z^{\star}\right), \forall A \neq A_{1}\right) \\
& =\operatorname{Pr}\left(S\left(A, E, Z^{\star}\right) \leq 0, \forall A \neq A_{1}\right) \\
& =\operatorname{Pr}\left(A_{1} \mid Z^{\star}\right)
\end{aligned}
$$

- Third equality uses choice of Z^{\star} :
- Uses $\operatorname{Pr}\left(A_{1} \mid Z^{*}\right)$ for arbitrary assignment A_{1}, many Z^{*}

Special Regressors and Tracing CDFs

(1) Large and product support on Z traces CDF of sums of unobserved production of assignments

- Special regressors
- Ichimura and Thompson (1998), Lewbel (2000), Matzkin (2007), Berry and Haile (2011), Fox and Gandhi (2010)
- Failure of large and product support gives partial identification of $H(\tilde{S})$ and hence $F(C)$

Special Regressors and Tracing CDFs

(1) Large and product support on Z traces CDF of sums of unobserved production of assignments

- Special regressors
- Ichimura and Thompson (1998), Lewbel (2000), Matzkin (2007), Berry and Haile (2011), Fox and Gandhi (2010)
- Failure of large and product support gives partial identification of $H(\tilde{S})$ and hence $F(C)$
(1) Given $H(\tilde{S})$, change of variables completes proof of identification of $F(C)$

Recap of Main Results

- Negative identification result

Theorem

The distribution $G(E)$ of market-level unobserved match characteristics is not identified in a matching game where all agents must be matched.

- Positive identification result

Theorem

The distribution $F(C)$ of market-level unobserved complementarities is identified in a matching game where all agents must be matched.

Economic Intuition for Unobserved Complementarities

- Transferable utility matching games
- Becker (1973) shows complementarities govern sorting
- One characteristic (schooling) per agent
- Positive assortative matching could occur if men want to marry women with
- Same level of schooling (horizontal preferences)
- Highest level of schooling (vertical preferences)
- Have both match-specific observables and unobservables
- Nevertheless, can learn about the distribution of unobserved complementarities

Outline

(1) Matching Empirical Program

(2) Baseline Model

(3) Model Variants

- Other Observed Characteristics
- Data on Unmatched Firms
- Agent-Specific Characteristics
- One-Sided Matching
- Many-to-Many Matching

Other Observed Characteristics X

- Researcher observes other market-level characteristics X
- In addition to special regressors in Z
- Firm or agent specific characteristics
- Number of firms could vary, be in X

Example of Production with X

- Total match production

$$
\left(x_{u} \cdot x_{d}\right)^{\prime} \beta_{\langle u, d\rangle, 1}+x_{\langle u, d\rangle}^{\prime} \beta_{\langle u, d\rangle, 2}+\mu_{\langle u, d\rangle}+z_{\langle u, d\rangle}
$$

- x_{u} vector of upstream firm characteristics
- x_{d} vector of downstream firm characteristics
- $x_{u} \cdot x_{d}$ all interactions between upstream, downstream characteristics
- $X_{\langle u, d\rangle}$ vector of match-specific characteristics
- $\beta_{\langle u, d\rangle, 1}, \beta_{\langle u, d\rangle, 2}$ random coefficients specific to match
- Can be sum of random preferences of upstream, downstream firms
- $\mu_{\langle u, d\rangle}$ random intercept
- Can capture unobserved characteristics of both u and d

$$
X=\left(N,\left(x_{u}\right)_{u \in N},\left(x_{d}\right)_{d \in N},\left(x_{\langle u, d\rangle}\right)_{u, d \in N}\right)
$$

Other Observed Characteristics

More on Example with X

- Total match production

$$
\left(x_{u} \cdot x_{d}\right)^{\prime} \beta_{\langle u, d\rangle, 1}+x_{\langle u, d\rangle}^{\prime} \beta_{\langle u, d\rangle, 2}+\mu_{\langle u, d\rangle}+z_{\langle u, d\rangle}
$$

- Now define

$$
e_{\langle u, d\rangle}=\left(x_{u} \cdot x_{d}\right)^{\prime} \beta_{\langle u, d\rangle, 1}+x_{\langle u, d\rangle}^{\prime} \beta_{\langle u, d\rangle, 2}+\mu_{\langle u, d\rangle}
$$

and

$$
c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \equiv e_{\left\langle u_{1}, d_{1}\right\rangle}+e_{\left\langle u_{2}, d_{2}\right\rangle}-e_{\left\langle u_{1}, d_{2}\right\rangle}-e_{\left\langle u_{2}, d_{1}\right\rangle}
$$

Condition on X

- Previous theorems did not use X, can condition on X
- Example model makes the distribution $F(C \mid X)$ of

$$
C=\left(c\left(u_{1}, u_{2}, d_{1}, d_{2}\right) \mid u_{1}, u_{2}, d_{1}, d_{2} \in N\right)
$$

depend on X

- Still require independence of Z and ψ
- Prior arguments identify $F(C \mid X)$

Data on Unmatched Firms

- Full matching model allows firms to be unmatched in stable assignments
- In some IO applications, data on these unmatched firms
- Potential merger partners, single people in marriage
- Say we can have data on unmatched firms
- Let $\langle u, 0\rangle$ be a physical match for an unmatched upstream firm
- Also, use $\langle 0, d\rangle$
- Assignments like this allowed

$$
\left\{\left\langle u_{1}, 0\right\rangle,\left\langle 0, d_{1}\right\rangle,\left\langle u_{2}, d_{2}\right\rangle\right\}
$$

Data on Unmatched Firms

Unmatched Has 0 Production

- No special regressor for single matches
- $e_{\langle u, 0\rangle}=0$ for single matches as a location normalization, so

$$
E=\left(\begin{array}{ccc}
e_{\langle 1,1\rangle} & \cdots & e_{\left\langle 1, N_{d}\right\rangle} \\
\vdots & \ddots & \vdots \\
e_{\left\langle N_{u}, 1\right\rangle} & \cdots & e_{\left\langle N_{u}, N_{d}\right\rangle}
\end{array}\right)
$$

Data on Unmatched Firms

Unmatched Has 0 Production

- No special regressor for single matches
- $e_{\langle u, 0\rangle}=0$ for single matches as a location normalization, so

$$
E=\left(\begin{array}{ccc}
e_{\langle 1,1\rangle} & \cdots & e_{\left\langle 1, N_{d}\right\rangle} \\
\vdots & \ddots & \vdots \\
e_{\left\langle N_{u}, 1\right\rangle} & \cdots & e_{\left\langle N_{u}, N_{d}\right\rangle}
\end{array}\right)
$$

- Without unmatched firms, could not identify $G(E)$
- Only distribution $F(C)$ of unobservable complementarities

Theorem

The distribution $G(E \mid X)$ of market-level unobservables is constructively identified with data on unmatched agents.

Model Variants
Data on Unmatched Firms

Proof: $G(E)$ is Identified

- Fix E^{\star}, set $z_{\langle u, d\rangle}^{\star}=-e_{\langle u, d\rangle}^{\star}$
- Then the production of all assignments is 0
- All agents indifferent between being unmatched and matched

Model Variants
Data on Unmatched Firms

Proof: $G(E)$ is Identified

- Fix E^{\star}, set $z_{\langle u, d\rangle}^{\star}=-e_{\langle u, d\rangle}^{\star}$
- Then the production of all assignments is 0
- All agents indifferent between being unmatched and matched
- Let A_{0} be assignment where all agents are unmatched
- $\tilde{S}\left(A_{0}, E\right)=0$
- Agents still unmatched if $e_{\langle u, d\rangle} \leq e_{\langle u, d\rangle}^{\star} \forall\langle u, d)$

Data on Unmatched Firms

Proof: $G(E)$ is Identified

- Fix E^{\star}, set $z_{\langle u, d\rangle}^{\star}=-e_{\langle u, d\rangle}^{\star}$
- Then the production of all assignments is 0
- All agents indifferent between being unmatched and matched
- Let A_{0} be assignment where all agents are unmatched
- $\tilde{S}\left(A_{0}, E\right)=0$
- Agents still unmatched if $e_{\langle u, d\rangle} \leq e_{\langle u, d\rangle}^{\star} \forall\langle u, d)$
- Then

$$
G\left(E^{\star}\right)=\operatorname{Pr}\left(E \leq E^{*} \text { elementwise }\right)=\operatorname{Pr}\left(A_{0} \mid Z^{\star}\right)
$$

Intuition for Identification of $G(E)$

- Without unmatched agents, can only identify distribution of unobserved complementarities
- With unmatched agents, introduces an element of individual rationality in the data
- Agent can unilaterally decide to be single
- Production of all non-single matches must be nonpositive when all other agents are available to match
- Look at probability all agents are single given Z
- Individual rationality makes identification similar to
- Single agent multinomial choice
- Nash games

Agent-Specific Characteristics in Z

- Results rely on match-specific special regressors $z_{\langle u, d\rangle}$
- Now agent-specific regressors z_{u} and z_{d}
- $2 \cdot N$ such regressors

$$
Z=\left(\left(z_{u}\right)_{u \in N},\left(z_{d}\right)_{d \in N}\right)
$$

Agent-Specific Characteristics in Z

- Only matched firms
- Functional form of production

$$
e_{u} \cdot e_{d}+z_{u} \cdot z_{d}
$$

- Only interactions matter in sorting if agents must be matched

Agent-Specific Characteristics

- With data on unmatched firms, can get at distribution $G(E)$ of

$$
E=\left(\left(e_{u}\right)_{u=3}^{N},\left(e_{d}\right)_{d=2}^{N}\right) .
$$

- Normalizations: $e_{u}=0$ for $u=1, e_{d}=0$ for $d=1, e_{u}=1$ for $u=2$

Theorem

The distribution $G(E \mid X)$ is identified in the one-to-one matching model with agent-specific characteristics, agent-specific unobservables, and without unmatched agents.

One-Sided Matching

- Consider the example of mergers
- Which firm is a target and which is an acquirer is an endogenous outcome
- None of the previous theorems relied on dividing agents into two sides
- Our results automatically generalize to one-sided matching
- Existence issues (Chiappori, Galichon and Salanie 2012)

Many-to-Many, Two-Sided Matching

- Many-to-many matching: upstream firms can have multiple downstream firm partners
- And downstream firms can have multiple upstream firm partners

Many-to-Many, Two-Sided Matching

- Many-to-many matching: upstream firms can have multiple downstream firm partners
- And downstream firms can have multiple upstream firm partners
- Additive separability: production of matches $\left\langle u_{1}, d_{1}\right\rangle$ and $\left\langle u_{1}, d_{2}\right\rangle$

$$
z_{\left\langle u_{1}, d_{1}\right\rangle}+e_{\left\langle u_{1}, d_{1}\right\rangle}+z_{\left\langle u_{1}, d_{2}\right\rangle}+e_{\left\langle u_{1}, d_{2}\right\rangle}
$$

- Sotomayor (1999)
- Results simply generalize when production is additively separable across multiple matches involving the same firm

Multiple Pairwise Stable Assignments

- Transferable utility matching games with production not additively separable across multiple matches may have multiple pairwise stable assignments
- Also may have existence issues
- Need to adopt some sort of solution to games with multiple equilibria
- Parameterize selection rule
- Broad assumptions about selection rule
- Partial identification
- Identify selection rule?

Conclusions

- Study identification in matching games
- Data on assignments (lists of matches)
- Observed agent, match characteristics
- Without unmatched agents, can identify distribution of unobserved complementarities
- With unmatched agents, can identify distribution of unobserved match characteristics

