Dynamics converging to optimal transport

Young-Heon Kim
University of British Columbia
Based on joint work with Jeff Street (Irvine) and Micah Warren (Princeton)

June 4, 2012

Matching Problems: Economics meets Mathematics, June 4-6, 2012 Becker Friedman Institute for Research in Economics University of Chicago

Optimal transportation on the round sphere

- Source domain: $M=S^{n}=\bar{M}$: Target domain
- Transportation cost $c(x, \bar{x})=\frac{1}{2} \operatorname{dist}^{2}(x, \bar{x})$.
- $\rho(x)$: source mass distribution $\bar{\rho}(\bar{x})$: target mass distribution

$$
0<\rho, \bar{\rho} \in C^{\infty} \cdot \int_{M} \rho d \operatorname{vol}_{M}=\int_{\bar{M}} \bar{\rho} d \mathrm{vol}_{\bar{M}}
$$

- Transportation map $F: M \rightarrow \bar{M}$, Borel measurable $F_{\#} \rho=\bar{\rho}$, i.e., $\rho\left(F^{-1}(\Omega)\right)=\bar{\rho}(\Omega)$ for all Borel $\Omega \subset \bar{M}$.
Question: Find and describe the optimal transportation

$$
\underset{F_{\#} \rho=\bar{\rho}}{\operatorname{argmin}} \int_{M} c(x, F(x)) \rho(x) d \operatorname{vol}_{M}(x)
$$

Optimal maps

Theorem (Monge, Kantorovich, Brenier, McCann, $\cdots \cdots$, Ma, Trudinger, Wang, Loeper, …)

- ق! Optimal Map $T^{\text {I }}$
- $T=T_{\phi}(x)=\exp _{x} \nabla \phi(x)$ for the c-potential $\phi \in C^{\infty}(M, \mathbf{R})$ which is strictly c-convex: i.e. $D_{x x}^{2} \phi+D_{x x}^{2} c\left(x, T_{\phi}(x)\right)>0$ for all $x \in M$.

PDE: Monge-Ampère type equations for mass transport

$$
T_{\#} \rho=\bar{\rho} \& c \text {-potential } \phi \quad \Longrightarrow \quad \text { "Monge-Ampère type equation" }
$$

$$
|d T(x)|=\frac{\rho(x)}{\bar{\rho}(T(x))}
$$

$$
T_{\#} \rho=\bar{\rho} \Longrightarrow \operatorname{det}\left(D_{x x}^{2} \phi(x)+D_{x x}^{2} c\left(x, T_{\phi}(x)\right)=\left|D_{x \bar{x}}^{2} c\left(x, T_{\phi}(x)\right)\right| \frac{\rho(x)}{\bar{\rho}\left(T_{\phi}(x)\right)}\right.
$$

Dynamics: heat flow for optimal transport

$$
\frac{\partial}{\partial t} u=\theta(x, u)
$$

where

$$
\begin{aligned}
\theta(x, u)= & \log \operatorname{det}\left(D_{x x}^{2} u(x)+D_{x x}^{2} c\left(x, T_{u}(x)\right)\right) \\
& -\log \left|\operatorname{det}\left(-D_{x} D_{\bar{x}} c\left(x, T_{u}(x)\right)\right)\right|-\log \rho(x)+\log \bar{\rho}\left(T_{u}(x)\right)
\end{aligned}
$$

and

$$
T_{u}(x):=\exp _{x} \nabla u(x)
$$

Note: $\theta=0 \Longrightarrow T_{\#} \rho=\bar{\rho}$ and T becomes optimal.
Question: Starting from the identity map $T_{0}(x)=x$, (i.e. $u_{0} \equiv 0$), does the flow exist and converge to the optimal map?

$$
\text { rmk: }\left(T_{0}\right)_{\#} \rho \neq \bar{\rho}
$$

Why interesting?

- It may describe the dynamics to optimal transport.
- It gives an algorithm for finding the optimal map.
- It may give an alternative way to show smoothness of optimal map (via parabolic smoothing).

Dynamics: heat flow for optimal transport

$$
\frac{\partial}{\partial t} u=\theta(x, u)
$$

where

$$
\begin{aligned}
\theta(x, u)= & \log \operatorname{det}\left(D_{x x}^{2} u(x)+D_{x x}^{2} c\left(x, T_{u}(x)\right)\right) \\
& -\log \left|\operatorname{det}\left(-D_{x} D_{\bar{x}} c\left(x, T_{u}(x)\right)\right)\right|-\log \rho(x)+\log \bar{\rho}\left(T_{u}(x)\right)
\end{aligned}
$$

and

$$
T_{u}(x):=\exp _{x} \nabla u(x)
$$

Note: $\theta=0 \Longrightarrow T_{\#} \rho=\bar{\rho}$ and T becomes optimal.
Question: Starting from the identity map $T_{0}(x)=x$, (i.e. $u_{0} \equiv 0$), does the flow exist and converge to the optimal map?
rmk: $\left(T_{0}\right)_{\#} \rho \neq \bar{\rho}$.

Why interesting?

- It may describe the dynamics to optimal transport.
- It gives an algorithm for finding the optimal map.
- It may give an alternative way to show smoothness of optimal map (via parabolic smoothing).

Dynamics: heat flow for optimal transport

$$
\frac{\partial}{\partial t} u=\theta(x, u)
$$

where

$$
\begin{aligned}
\theta(x, u)= & \log \operatorname{det}\left(D_{x x}^{2} u(x)+D_{x x}^{2} c\left(x, T_{u}(x)\right)\right) \\
& -\log \left|\operatorname{det}\left(-D_{x} D_{\bar{x}} c\left(x, T_{u}(x)\right)\right)\right|-\log \rho(x)+\log \bar{\rho}\left(T_{u}(x)\right)
\end{aligned}
$$

Question: Starting from the identity map $T_{0}(x)=x$, (i.e. $u_{0} \equiv 0$), does the flow exist and converge to the optimal map?
Theorem (K., Streets \& Warren)
Yes. Moreover, the convergence is exponentially fast! That is,

$$
\left\|T_{u}-T_{\phi}\right\|_{C^{k}} \lesssim e^{-\delta_{k} t}, \text { for all large } t>0, \quad k=0,1,2, \cdots
$$

Rmk:

[Kitagawa] obtained similar results on "good" domains in \mathbf{R}^{n} with "good" costs.

How to show?

$$
\begin{gathered}
\frac{\partial}{\partial t} u=\theta(x, u) \\
\theta(x, u)=\log \operatorname{det}\left(D_{x x}^{2} u(x)+D_{x x}^{2} c\left(x, T_{u}(x)\right)\right) \\
-\log \left|\operatorname{det}\left(-D_{x} D_{\bar{x}} c\left(x, T_{u}(x)\right)\right)\right|-\log \rho(x)+\log \bar{\rho}\left(T_{u}(x)\right)
\end{gathered}
$$

A serious obstacle: On global manifold domains $M, \bar{M}, c \notin C_{l o c}^{2}$ on cut locus.

- On $S^{n} .\left|D_{x} \operatorname{dist}^{2}(x, \bar{x})\right| \rightarrow \infty$ as $x \rightarrow-\bar{x} . \operatorname{Cut}(\bar{x})=-\bar{x}$.

KEY for global manifold domains: show for maps $T_{u}(x)=\exp _{x} \nabla u(x)$,

$$
\text { if } \gamma \leq\left|\operatorname{det} D T_{u}\right| \leq \frac{1}{\gamma} \text {, }
$$

then T_{u} "Stay Away from cut locus".
i.e. $\operatorname{dist}\left(T_{u}(x), \operatorname{Cut}(x)\right) \geq \delta(\gamma, M)>0, \forall x \in M$.

This is not known in general case.

How to show?

$$
\begin{gathered}
\frac{\partial}{\partial t} u=\theta(x, u) \\
\theta(x, u)=\log \operatorname{det}\left(D_{x x}^{2} u(x)+D_{x x}^{2} c\left(x, T_{u}(x)\right)\right) \\
-\log \left|\operatorname{det}\left(-D_{x} D_{\bar{x}} c\left(x, T_{u}(x)\right)\right)\right|-\log \rho(x)+\log \bar{\rho}\left(T_{u}(x)\right)
\end{gathered}
$$

A serious obstacle: On global manifold domains $M, \bar{M}, c \notin C_{l o c}^{2}$ on cut locus.

- On $S^{n} .\left|D_{x} \operatorname{dist}^{2}(x, \bar{x})\right| \rightarrow \infty$ as $x \rightarrow-\bar{x} . \operatorname{Cut}(\bar{x})=-\bar{x}$.

KEY for global manifold domains: show for maps $T_{u}(x)=\exp _{x} \nabla u(x)$,

$$
\text { if } \gamma \leq\left|\operatorname{det} D T_{u}\right| \leq \frac{1}{\gamma} \text {, }
$$

then T_{u} "Stay Away from cut locus".
i.e. $\operatorname{dist}\left(T_{u}(x), \operatorname{Cut}(x)\right) \geq \delta(\gamma, M)>0, \forall x \in M$.

This is not known in general case.
But, holds for

- $M=\bar{M}=S^{n}, c=\operatorname{dist}^{2} / 2$. [Delanoë \& Loeper]
- $M=\bar{M}=S_{r_{1}}^{n_{1}} \times \cdots \times S_{r_{k}}^{n_{k}}, c=\operatorname{dist}^{2} / 2$. [Figalli, K. \& McCann]

Linearized operator

To show $\gamma \leq\left|\operatorname{det} D T_{u}\right| \leq \frac{1}{\gamma}$ (so that "stay away from cut locus" holds), use maximum principle for the linearized operator.

$$
\begin{gathered}
\frac{\partial}{\partial t} u=\theta(x, u) \\
\theta(x, u)=\log \operatorname{det}\left(D_{x x}^{2} u(x)+D_{x x}^{2} c\left(x, T_{u}(x)\right)\right) \\
-\log \left|\operatorname{det}\left(-D_{x} D_{\bar{x}} c\left(x, T_{u}(x)\right)\right)\right|-\log \rho(x)+\log \bar{\rho}\left(T_{u}(x)\right)
\end{gathered}
$$

Let $w_{i j}(x)=D_{x_{i} x_{j}}^{2} u(x)+D_{x_{i} x_{j}}^{2} c\left(x, T_{u}(x)\right)$
L : linearized operator of $u \rightarrow \theta(x, u)$.

$$
L v:=\left.\frac{d}{d s}\right|_{s=0} \theta(x, u+s v)=w^{i j} D_{x_{i} x_{j}}^{2} v-[\cdots] D_{x_{k}} v
$$

Note: L has no zeroth order term. \Longrightarrow elliptic/parabolic maximum principle
Note:

$$
\frac{\partial}{\partial t} \theta=L \theta
$$

"maximum principle" \Longrightarrow " θ is bounded"
\Longrightarrow "log $\left|\operatorname{det} D T_{u}\right| \leq C "$
\Longrightarrow " T_{u} stays away from cut locus"
key inequality
$w_{i j}(x)=D_{x_{i} x_{j}}^{2} u(x)+D_{x_{i} x_{j}}^{2} c\left(x, T_{u}(x)\right)$
Lemma
Let $\left\{\frac{\partial}{\partial x_{i}}\right\}$ be orthonormal basis. Then,

$$
\frac{\partial}{\partial t} w_{11}-L w_{11} \leq-\sum_{i} w^{i i} \mathbf{M T W}_{\mathrm{i}}^{1} w_{11}^{2}+C(\rho, \bar{\rho})\left(1+\sum_{i} w_{i i}^{2}+\sum_{i} w^{i i} \sum_{i} w_{i i}\right)
$$

Here, MTW is the Ma-Trudinger-Wang curvature tensor.

- MTW > 0 on S^{n}. [Loeper]

Apply maximum principle and stay away from cut locus, "Lemma" $\Longrightarrow "\left|w_{i j}\right| \leq C "$
$\Longrightarrow C_{1} \leq w_{i j} \leq C_{2} " \Longrightarrow$ " L and θ are uniformly elliptic"
$\Longrightarrow \Longrightarrow$ "the exponential convergence to optimal map".

Ma-Trudinger-Wang curvature

Definition (Ma-Trudinger-Wang curvature)

$$
A(x, p)=-D_{x x}^{2} c\left(x, \exp _{x} p\right)
$$

$$
\operatorname{MTW}_{\xi}^{\eta}=D_{p_{\eta} p_{\eta}}^{2}\left[A(x, p) x_{\xi} x_{\xi}\right]=-c^{\bar{k} a} c^{\bar{b}}\left[c_{i j \bar{k}]}+c_{i j \bar{n}} c^{\bar{n} m} c_{m \bar{k}]}\right] \xi^{i} \xi^{j} \eta^{a} \eta^{b}
$$

- Trivial: For $c=|x-y|^{2} / 2$ on $\mathbf{R}^{n}, \mathbf{M T W} \equiv 0$
- Some examples due to [Ma, Trudinger, Wang]. e.g. MTW >0 for $c=\log |x-y|$ on $S^{n} \subset \mathbf{R}^{n+1}$
- [Loeper] For $c=$ dist 2 on S^{n}, MTW >0.
- other examples due to [K. \& McCann], [Figalli, Rifford \& Villani] , [Delanoë \& Ge], \cdot.
Rmk: Verifying MTW condition is difficult.
Rmk: MTW ≥ 0 is related to continuity/smoothness of optimal transport as well as the geometry of the domain:

Thank You Very Much!

