Pricing the Biological Clock: Reproductive Capital on the US Marriage Market

Corinne Low

June 4, 2012

Fertility, Career, and Marriage

- Older women have a much lower chance of conceiving than younger women (Women lose 97% of eggs by 40, Kelsey and Wallace 2010)
- Women face tradeoff between career and family (e.g., dearth of women in math-intensive fields, Williams and Ceci 2012)
- Older women face difficulty on marriage market (1986 TIME: "Better chance of getting killed by a terrorist")
- Does the age-fertility relationship create a tradeoff for women between income and optimal marriage?
- What accounts for the recent reversal in this trend, with older, educated women being increasingly likely to marry? (Stevenson and Isen 2010)

Summary

- I am interested in the economic value of fertility, and how this value may influence women's decisions.
- I propose a matching model of the marriage market that incorporates fertility, which I call reproductive capital
- Suppose investing heavily in one's career (e.g., tenure, surgical residency, becoming partner at a law firm...) yields large earnings gains but delays marriage and childbearing
- Creates choice for women between going on the marriage market as high income, low fertility (richer and older) or low income, high fertility (poorer and younger)
- Introducing this second factor allows for non-assortative matching on income at the top of the distribution

Model set-up

I develop a matching model with two relevant factors, fertility and income (Most closely related to Chiappori et al (2010)).

The model has four stages:

1. Women choose whether or not to invest in career
2. Matching occurs between men and women (those who have and have not invested)
3. The couple either has a child or does not
4. The couple allocates their income between private consumption and their child (a public good), if they have one

Model set-up

- Men characterized by income, y^{h}
- Women endowed with potential income, s
- If women invest, they will get their full potential income, but doing so takes time, resulting in a loss of fertility
- If they do not invest, they have less income, but higher fertility

Model set-up

- Men characterized by income, y^{h}
- Women endowed with potential income, s
- If women invest, they will get their full potential income, but doing so takes time, resulting in a loss of fertility
- If they do not invest, they have less income, but higher fertility
- Thus, women characterized by $\left(y^{w}, \pi\right)= \begin{cases}(\delta s, P) & \text { if no investment } \\ (s, p) & \text { if investment }\end{cases}$ (where $\delta<1$ and $p<P$)
- Note $P-p$ is the same for all women, whereas $s-\delta s$ is increasing in s

Stage 1: Women choose whether or not to invest

Figure: Income versus skill

Stage 1: Women choose whether or not to invest

Figure: Income versus skill

Stages 3-4: Household decisions

We will solve the model backwards:

- First, how will couple allocate in stage 4 if they have a child?
- Therefore, what will be the expected surplus in stage 3 ?
- Knowing this, what matching is optimal in stage 2?

Stages 3-4: Household decisions

We will solve the model backwards:

- First, how will couple allocate in stage 4 if they have a child?
- Therefore, what will be the expected surplus in stage 3 ?
- Knowing this, what matching is optimal in stage 2?

$$
\begin{aligned}
& u^{h}\left(q^{h}, Q\right)=q^{h}(Q+1) \\
& u^{w}\left(q^{w}, Q\right)=q^{w}(Q+1) \\
& \text { BC: } q^{h}+q^{w}+Q=y^{h}+y^{w} \\
& \Rightarrow\left(q^{h}+q^{w}\right)^{*}=\frac{y^{h}+y^{w}+1}{2} \\
& \Rightarrow Q^{*}=\frac{y^{h}+y^{w}-1}{2}
\end{aligned}
$$

Stages 3-4: Household decisions

We will solve the model backwards:

- First, how will couple allocate in stage 4 if they have a child?
- Therefore, what will be the expected surplus in stage 3 ?
- Knowing this, what matching is optimal in stage 2?

$$
\begin{aligned}
& u^{h}\left(q^{h}, Q\right)=q^{h}(Q+1) \\
& u^{w}\left(q^{w}, Q\right)=q^{w}(Q+1) \\
& \text { BC: } q^{h}+q^{w}+Q=y^{h}+y^{w} \\
& \Rightarrow\left(q^{h}+q^{w}\right)^{*}=\frac{y^{h}+y^{w}+1}{2} \\
& \Rightarrow Q^{*}=\frac{y^{h}+y^{w}-1}{2}
\end{aligned}
$$

$$
T=\pi \frac{\left(y^{h}+y^{w}+1\right)^{2}}{4}+(1-\pi)\left(y^{h}+y^{w}\right)
$$

Stage 2: Matching game

What kind of matching equilibrium can we expect? On either side of the investment threshold, π is constant, and thus match is unidimensional:

$$
\frac{\partial^{2} T}{\partial y^{h} \partial y^{w}}>0
$$

\Rightarrow Assortative matching conditional on investment choice

Stage 2: Matching game

What kind of matching equilibrium can we expect? On either side of the investment threshold, π is constant, and thus match is unidimensional:

$$
\frac{\partial^{2} T}{\partial y^{h} \partial y^{w}}>0
$$

\Rightarrow Assortative matching conditional on investment choice

What happens at the threshold? Examine how MRS of wife's two characteristics is changing in husband's income:

$$
\begin{aligned}
& \frac{d \pi}{d y^{w}}=-\frac{\frac{\partial T}{\partial y^{w}}}{\frac{\partial T}{\partial \pi}} \\
& \frac{\partial\left|\frac{d \pi}{d y^{w}}\right|}{\partial y^{h}}<0
\end{aligned}
$$

\Rightarrow Value of fertility increasing in y^{h}. Richer men "care more" about fertility
\Rightarrow Non-assortative matching possible at threshold

Stage 2: Matching game

- Let male income be distributed $U(1, Y)$
- And female potential income be distributed $U(0, S)$

Stage 2: Matching game

- Let male income be distributed $U(1, Y)$
- And female potential income be distributed $U(0, S)$

Figure: Stable equilibrium when $\frac{P-p}{p}>\frac{S}{Y-1}$

Stage 2: Possible matching equilibria

Figure: Equilibrium 1

- Three-segment equilibrium when $\frac{P-p}{p}>\frac{S}{Y-1}$

Figure: Equilibrium 2

- Assortative-matching equilibrium when $\frac{P-p}{P}<\frac{S}{Y-1}$ and $1-\delta$ sufficiently large

Potential historical transitions

Note that S, market opportunities for women, have likely changed over time (e.g. Hsieh et al 2012)

Potential historical transitions

Note that S, market opportunities for women, have likely changed over time (e.g. Hsieh et al 2012)

Figure: Phase 1

- Initially, the potential earnings for highly educated women are so low that few invest

Potential historical transitions

Note that S, market opportunities for women, have likely changed over time (e.g. Hsieh et al 2012)

Figure: Phase 1
Figure: Phase 2

- Initially, the potential earnings for highly educated women are so low that few invest
- As women's potential income (S) grows, some invest, but match with worse men

Potential historical transitions

Note that S, market opportunities for women, have likely changed over time (e.g. Hsieh et al 2012)

Figure: Phase 1
Figure: Phase 2

- As women's potential income (S) grows, some invest, but match with worse men

Figure: Phase 3

- Finally, S can compensate for lower fertility, and assortative matching returns

Higher education only recently offers a "marriage premium"

Figure: Spousal income by wife's education level

Higher education only recently offers a "marriage premium"

VARIABLES	(1) Husband's income	(2) Husband's income	(3) Log husb. income	(4) Log husb. income
after1990	$\begin{gathered} 2,238 * * * \\ (460.9) \end{gathered}$	$\begin{gathered} 2,238 \\ (4,213) \end{gathered}$	$\begin{gathered} -0.0748 * * * \\ (0.00627) \end{gathered}$	$\begin{aligned} & -0.0748 \\ & (0.0621) \end{aligned}$
highly_ed	$\begin{gathered} -2,892^{* * *} \\ (690.6) \end{gathered}$	$\begin{aligned} & -2,892^{*} \\ & (1,396) \end{aligned}$	$\begin{gathered} -0.0523^{* * *} \\ (0.00940) \end{gathered}$	$\begin{aligned} & -0.0523^{*} \\ & (0.0223) \end{aligned}$
highly Xafter	$\begin{gathered} 7,142^{* * *} \\ (794.6) \end{gathered}$	$\begin{gathered} 7,142^{* * *} \\ (1,458) \end{gathered}$	$\begin{gathered} 0.0960^{* * *} \\ (0.0108) \end{gathered}$	$\begin{aligned} & 0.0960^{* *} \\ & (0.0246) \end{aligned}$
Constant	$\begin{gathered} 64,240^{* * *} \\ (402.7) \end{gathered}$	$\begin{gathered} 64,240^{* * *} \\ (3,343) \end{gathered}$	$\begin{aligned} & 10.89 * * * \\ & (0.00547) \end{aligned}$	$\begin{aligned} & 10.89 * * * \\ & (0.0504) \end{aligned}$
Clustered Errors	N	Y	N	Y
Observations	135,886	135,886	134,333	134,333
R -squared	0.002	0.002	0.001	0.001

