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Spread of school choice around the globe

学校選択制

 

マッチング理論×？：いくつかの事例
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Spread of school choice around the globe

学校選択制

 

マッチング理論×？：いくつかの事例

School authorities take into account 
preferences of students/parents
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Market design researchers have been  
offering specific mechanisms

Resulting real-life system reforms:
Boston, NYC, New Orleans
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Market design researchers have been  
offering specific mechanisms

Their aim=
Assigning students to schools
efficiently, fairly, and simply 

Resulting real-life system reforms:
Boston, NYC, New Orleans
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“If we implement choice among public schools, 
we unlock the values of competition. 
Schools that compete for students will 

make those changes 
that allow them to succeed.” 

from National Governors’ Association Report
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Focus of much of policy debate 
on school choice

=How to improve school quality 
by promoting competition
(rather than how to assign 

students to schools with fixed quality)
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Motivation

We introduce several criteria of 
whether a SC mechanism incentivizes 

schools to improve their quality 
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A mechanism     
respects improvements of school quality 
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A mechanism     
respects improvements of school quality 

if
when a school improves & thereby
becomes more preferred by students,
that school becomes weakly better off
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Motivation

 

determine if these criteria are satisfied 
by focal SC mechanisms.

We introduce several criteria of 
whether a SC mechanism incentivizes 
schools to improve their quality &
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“Boston” mech.
@Many cities
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“Top Trading Cycles” mech.
@New Orleans

“Student-Optimal Stable”
@Boston, NYC etc

“Boston” mech.
@Many cities
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Result
For incentivizing schools to improve,

SOSM > Boston > TTC
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Result

Criteria SOSM Boston TTC

RI in General Environments × × ×
RI for Desirable Students in General Environments × × ×

RI in Large Environments ! × ×
RI for Desirable Students in Large Environments ! × ×

RI in Terms of Enrollment ! ! ×
RI of Student Quality ! ! !

———

SOSM Boston TTC

RI in General Markets × × ×
RI by Desirable Students × × ×

RI in Large Markets ◦ × ×
RI by Desirable Students in Large Markets ◦ × ×

RI in Terms of Enrollment ◦ ◦ ×

SOSM Boston TTC

RI (by Desirable Students) in General Markets × × ×
RI (by Desirable Students) in Large Markets ◦ × ×

RI in Terms of Enrollment ◦ ◦ ×
RI by Very Desirable Student ◦ ◦ ×

SOSM Boston TTC

RI in General Markets × × ×

3

For incentivizing schools to improve,
SOSM > Boston > TTC
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Too Many Results
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Model
SchoolsStudents

Each school has a quota & 
a preference over sets of students.

s1 with >s1

sm with >sm

c1 with >c1

cn with >cn
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A Criterion of Promoting Competition:
Respecting Improvements of School Quality
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A Criterion of Promoting Competition:
Respecting Improvements of School Quality

A student preference profile is 
an improvement for school c over another    
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A Criterion of Promoting Competition:
Respecting Improvements of School Quality

A student preference profile is 
an improvement for school c over another    
if
all students rank c weakly higher
(while keeping rankings of 
the other schools unchanged)
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A Criterion of Promoting Competition:
Respecting Improvements of School Quality

A mechanism     
respects improvements of school quality 

if
any improvement for any school c 
makes c weakly better off
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A Criterion of Promoting Competition:
Respecting Improvements of School Quality

A mechanism     
respects improvements of school quality 

if
any improvement for any school c 
makes c weakly better off

※Balinaki-Sonmez (99): RI of student quality
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Stable Mechanisms
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e.g. “Student-Optimal Stable” Mechanism
=Student-Proposing
  Deferred Acceptance Mechanism
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SOSM Does Not 
Respect Improvements
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SOSM Does Not 
Respect Improvements

Students

Equivalently, a mechanism ϕ respects improvements of school quality at school preference

profile �C if there do not exist a school c and student preference profiles �S and ��
S such

that ��
S is a disimprovement for school c over �S while ϕc(��

S,�C) �c ϕc(�S,�C).

This definition requires that the outcome of a mechanism be weakly better for a school

if that school becomes more preferred by students. If a school’s effort to improve its quality

makes it more attractive to students, then the concept of respecting improvements of school

quality seems to be a natural and mild criterion for schools to have incentives to invest in

quality improvement.

The concept of respecting improvements was introduced by Balinski and Sönmez (1999)

in the context of centralized college admission. In their work, a mechanism respects improve-

ments of student quality if whenever a student improves in colleges’ preference rankings, that

student is better off. They show that the student-optimal stable mechanism is the unique

stable mechanism that respects improvements of student quality.12 The current definition

is a natural adaptation of their notion to the case in which a school improves in students’

preference rankings. The main difference between our concept and that of Balinski and

Sönmez (1999) is that we consider improvements of school quality rather than those of stu-

dent quality. Because the matching model is asymmetric between schools and students in

the sense that schools have multiple seats while each student can attend only one school,

the result by Balinski and Sönmez (1999) cannot be directly applied. In fact, as we will see

in the next section, no stable mechanism respects improvements of school quality, which is

in sharp contrast to the result by Balinski and Sönmez (1999).

3.1 Stable Mechanisms

We first investigate whether stable mechanisms such as the student-optimal stable mechanism

respect improvements. The following example offers a negative answer to this question.

Example 1. Let S = {s, s̄}, C = {c, c̄}. Consider preferences such that,

�s:c̄, c, ∅,

�s̄:c̄, c, ∅,

�c:s, s̄, ∅,

�c̄:s̄, s, ∅,

where the notational convention is that student s prefers c̄ most, c second, and ∅ third, and

12See our discussion in Section 6.2.
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Schools

so forth (this notation is used throughout).13 The capacities of the schools are given by

qc = 2 and qc̄ = 1.14

Note that at the first step of the student-proposing deferred acceptance algorithm under

the preference profile �≡ (�s,�s̄,�c,�c̄), both students s and s̄ apply to c̄. Since qc̄ = 1, c̄

rejects s. Then s applies to c, where she is accepted. The algorithm terminates at this step,

producing the student-optimal stable matching,

ϕS
(�) =

�
c c̄

s s̄

�
,

where this matrix notation represents the matching where c is matched with s while c̄

is matched with s̄. (Again, this notation is used throughout.) At the first step of the

school-proposing deferred acceptance algorithm under preference profile �, school c proposes

to both s and s̄ while c̄ proposes to s̄. Student s̄ keeps c̄ and rejects c while student

s keeps c. Since school c has proposed to all students, the algorithm terminates. Thus

the school-optimal stable matching ϕC(�) is equal to ϕS(�). Since it is well-known that

ϕS
s (�) �s µs �s ϕC

s (�) for any stable matching µ, it follows that this market has a unique

stable matching, ϕS(�) = ϕC(�).

Now, consider the preference relation ��
s̄ such that

��
s̄: c, c̄, ∅.

Note that ��
s̄ is an improvement for school c over �s̄. At the first step of the student-

proposing deferred acceptance algorithm under preference profile (��
s̄,�−s̄),

15 student s ap-

plies to c̄ while student s̄ applies to c. The algorithm terminates immediately at this step,

producing the student-optimal stable matching

ϕS
(��

s̄,�−s̄) =

�
c c̄

s̄ s

�
.

On the other hand, at the first step of the school-proposing deferred acceptance algorithm

under preference profile (��
s̄,�−s̄), school c proposes to both s and s̄ while c̄ proposes to

13Throughout the paper, we denote singleton set {x} by x when there is no confusion.
14Note that, strictly speaking, the information on school preferences over individual students and the

capacity does not uniquely specify that school’s preference relation over groups of students. Whenever we
specify a school’s preferences over individual students and its capacity only, it should be understood to mean
an arbitrary responsive preference relation consistent with the given information.

15Subscript −i indicates C ∪ S \ {i}, that is, the set of all agents except for i. For instance, �−s̄ is the
profile of preferences of all students and schools except for student s̄.

12
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s (�) �s µs �s ϕC

s (�) for any stable matching µ, it follows that this market has a unique

stable matching, ϕS(�) = ϕC(�).
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s̄ such that
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s̄: c, c̄, ∅.

Note that ��
s̄ is an improvement for school c over �s̄. At the first step of the student-

proposing deferred acceptance algorithm under preference profile (��
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SOSM Does Not 
Respect Improvements

Students

Equivalently, a mechanism ϕ respects improvements of school quality at school preference

profile �C if there do not exist a school c and student preference profiles �S and ��
S such

that ��
S is a disimprovement for school c over �S while ϕc(��

S,�C) �c ϕc(�S,�C).

This definition requires that the outcome of a mechanism be weakly better for a school

if that school becomes more preferred by students. If a school’s effort to improve its quality

makes it more attractive to students, then the concept of respecting improvements of school

quality seems to be a natural and mild criterion for schools to have incentives to invest in

quality improvement.

The concept of respecting improvements was introduced by Balinski and Sönmez (1999)

in the context of centralized college admission. In their work, a mechanism respects improve-

ments of student quality if whenever a student improves in colleges’ preference rankings, that

student is better off. They show that the student-optimal stable mechanism is the unique

stable mechanism that respects improvements of student quality.12 The current definition

is a natural adaptation of their notion to the case in which a school improves in students’

preference rankings. The main difference between our concept and that of Balinski and

Sönmez (1999) is that we consider improvements of school quality rather than those of stu-

dent quality. Because the matching model is asymmetric between schools and students in

the sense that schools have multiple seats while each student can attend only one school,

the result by Balinski and Sönmez (1999) cannot be directly applied. In fact, as we will see

in the next section, no stable mechanism respects improvements of school quality, which is

in sharp contrast to the result by Balinski and Sönmez (1999).

3.1 Stable Mechanisms

We first investigate whether stable mechanisms such as the student-optimal stable mechanism

respect improvements. The following example offers a negative answer to this question.

Example 1. Let S = {s, s̄}, C = {c, c̄}. Consider preferences such that,

�s:c̄, c, ∅,

�s̄:c̄, c, ∅,

�c:s, s̄, ∅,

�c̄:s̄, s, ∅,

where the notational convention is that student s prefers c̄ most, c second, and ∅ third, and

12See our discussion in Section 6.2.
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Schools

so forth (this notation is used throughout).13 The capacities of the schools are given by

qc = 2 and qc̄ = 1.14

Note that at the first step of the student-proposing deferred acceptance algorithm under

the preference profile �≡ (�s,�s̄,�c,�c̄), both students s and s̄ apply to c̄. Since qc̄ = 1, c̄

rejects s. Then s applies to c, where she is accepted. The algorithm terminates at this step,

producing the student-optimal stable matching,

ϕS
(�) =

�
c c̄

s s̄

�
,

where this matrix notation represents the matching where c is matched with s while c̄

is matched with s̄. (Again, this notation is used throughout.) At the first step of the

school-proposing deferred acceptance algorithm under preference profile �, school c proposes

to both s and s̄ while c̄ proposes to s̄. Student s̄ keeps c̄ and rejects c while student

s keeps c. Since school c has proposed to all students, the algorithm terminates. Thus

the school-optimal stable matching ϕC(�) is equal to ϕS(�). Since it is well-known that

ϕS
s (�) �s µs �s ϕC

s (�) for any stable matching µ, it follows that this market has a unique

stable matching, ϕS(�) = ϕC(�).

Now, consider the preference relation ��
s̄ such that

��
s̄: c, c̄, ∅.

Note that ��
s̄ is an improvement for school c over �s̄. At the first step of the student-

proposing deferred acceptance algorithm under preference profile (��
s̄,�−s̄),

15 student s ap-

plies to c̄ while student s̄ applies to c. The algorithm terminates immediately at this step,

producing the student-optimal stable matching

ϕS
(��

s̄,�−s̄) =

�
c c̄

s̄ s

�
.

On the other hand, at the first step of the school-proposing deferred acceptance algorithm

under preference profile (��
s̄,�−s̄), school c proposes to both s and s̄ while c̄ proposes to

13Throughout the paper, we denote singleton set {x} by x when there is no confusion.
14Note that, strictly speaking, the information on school preferences over individual students and the

capacity does not uniquely specify that school’s preference relation over groups of students. Whenever we
specify a school’s preferences over individual students and its capacity only, it should be understood to mean
an arbitrary responsive preference relation consistent with the given information.

15Subscript −i indicates C ∪ S \ {i}, that is, the set of all agents except for i. For instance, �−s̄ is the
profile of preferences of all students and schools except for student s̄.
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SOSM Does Not 
Respect Improvements

Students

Equivalently, a mechanism ϕ respects improvements of school quality at school preference

profile �C if there do not exist a school c and student preference profiles �S and ��
S such

that ��
S is a disimprovement for school c over �S while ϕc(��

S,�C) �c ϕc(�S,�C).

This definition requires that the outcome of a mechanism be weakly better for a school

if that school becomes more preferred by students. If a school’s effort to improve its quality

makes it more attractive to students, then the concept of respecting improvements of school

quality seems to be a natural and mild criterion for schools to have incentives to invest in

quality improvement.

The concept of respecting improvements was introduced by Balinski and Sönmez (1999)

in the context of centralized college admission. In their work, a mechanism respects improve-

ments of student quality if whenever a student improves in colleges’ preference rankings, that

student is better off. They show that the student-optimal stable mechanism is the unique

stable mechanism that respects improvements of student quality.12 The current definition

is a natural adaptation of their notion to the case in which a school improves in students’

preference rankings. The main difference between our concept and that of Balinski and

Sönmez (1999) is that we consider improvements of school quality rather than those of stu-

dent quality. Because the matching model is asymmetric between schools and students in

the sense that schools have multiple seats while each student can attend only one school,

the result by Balinski and Sönmez (1999) cannot be directly applied. In fact, as we will see

in the next section, no stable mechanism respects improvements of school quality, which is

in sharp contrast to the result by Balinski and Sönmez (1999).

3.1 Stable Mechanisms

We first investigate whether stable mechanisms such as the student-optimal stable mechanism

respect improvements. The following example offers a negative answer to this question.

Example 1. Let S = {s, s̄}, C = {c, c̄}. Consider preferences such that,

�s:c̄, c, ∅,

�s̄:c̄, c, ∅,

�c:s, s̄, ∅,

�c̄:s̄, s, ∅,

where the notational convention is that student s prefers c̄ most, c second, and ∅ third, and

12See our discussion in Section 6.2.
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Schools

so forth (this notation is used throughout).13 The capacities of the schools are given by
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Note that at the first step of the student-proposing deferred acceptance algorithm under

the preference profile �≡ (�s,�s̄,�c,�c̄), both students s and s̄ apply to c̄. Since qc̄ = 1, c̄

rejects s. Then s applies to c, where she is accepted. The algorithm terminates at this step,

producing the student-optimal stable matching,

ϕS
(�) =

�
c c̄

s s̄

�
,

where this matrix notation represents the matching where c is matched with s while c̄

is matched with s̄. (Again, this notation is used throughout.) At the first step of the

school-proposing deferred acceptance algorithm under preference profile �, school c proposes

to both s and s̄ while c̄ proposes to s̄. Student s̄ keeps c̄ and rejects c while student

s keeps c. Since school c has proposed to all students, the algorithm terminates. Thus

the school-optimal stable matching ϕC(�) is equal to ϕS(�). Since it is well-known that

ϕS
s (�) �s µs �s ϕC

s (�) for any stable matching µ, it follows that this market has a unique

stable matching, ϕS(�) = ϕC(�).

Now, consider the preference relation ��
s̄ such that

��
s̄: c, c̄, ∅.

Note that ��
s̄ is an improvement for school c over �s̄. At the first step of the student-

proposing deferred acceptance algorithm under preference profile (��
s̄,�−s̄),

15 student s ap-

plies to c̄ while student s̄ applies to c. The algorithm terminates immediately at this step,

producing the student-optimal stable matching

ϕS
(��

s̄,�−s̄) =

�
c c̄

s̄ s

�
.

On the other hand, at the first step of the school-proposing deferred acceptance algorithm

under preference profile (��
s̄,�−s̄), school c proposes to both s and s̄ while c̄ proposes to

13Throughout the paper, we denote singleton set {x} by x when there is no confusion.
14Note that, strictly speaking, the information on school preferences over individual students and the

capacity does not uniquely specify that school’s preference relation over groups of students. Whenever we
specify a school’s preferences over individual students and its capacity only, it should be understood to mean
an arbitrary responsive preference relation consistent with the given information.

15Subscript −i indicates C ∪ S \ {i}, that is, the set of all agents except for i. For instance, �−s̄ is the
profile of preferences of all students and schools except for student s̄.
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Impossibility for Stable Mechanisms

Proposition
No stable mechanism

respects improvements.
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Impossibility for Stable Mechanisms

Proposition
No stable mechanism

respects improvements.

Proof
In the example, verify that 

the stable matching is unique 
at each preference profile.
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Pareto Efficient Mechanisms 
(for Students)
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Pareto Efficient Mechanisms 
(for Students)

(1) “Boston” mechanism: 

 
 

SOSM is not PE, but others are.
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Pareto Efficient Mechanisms 
(for Students)

(1) “Boston” mechanism: 

・Used in many school districts.
・Recently under attack due to 
 instability & poor incentive property.

SOSM is not PE, but others are.
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Pareto Efficient Mechanisms 
(for Students)

(2) “Top Trading Cycles” mech.: 

SOSM is not PE, but others are.
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Pareto Efficient Mechanisms 
(for Students)

(2) “Top Trading Cycles” mech.: 

・Not only PE but also strategyproof.
・Started to be used in New Orleans

SOSM is not PE, but others are.
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Impossibility for PE Mechanisms 

Proposition
No PE mechanism

respects improvements.
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Impossibility for PE Mechanisms 

Proposition
No PE mechanism

respects improvements.

Proof
By a complicated counterexample 
(explained later if time permits)
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When Does a Stable/PE Mechanism 
Respect Improvements?
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Theorem (Informal)
There is a stable or PE mechanism 

that respects improvements.
                     
      School preferences
      are “almost” the same 

When Does a Stable/PE Mechanism 
Respect Improvements?
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Theorem (Informal)
There is a stable or PE mechanism 

that respects improvements.
                     
      School preferences
      are “almost” the same 

Very restrictive

When Does a Stable/PE Mechanism 
Respect Improvements?
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Only uniformly negative results so far...
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Only uniformly negative results so far...

What can be said on 
a desirable school choice mechanism?
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SOSM Does NOT 
Respect Improvements

Students

Equivalently, a mechanism ϕ respects improvements of school quality at school preference

profile �C if there do not exist a school c and student preference profiles �S and ��
S such

that ��
S is a disimprovement for school c over �S while ϕc(��

S,�C) �c ϕc(�S,�C).

This definition requires that the outcome of a mechanism be weakly better for a school

if that school becomes more preferred by students. If a school’s effort to improve its quality

makes it more attractive to students, then the concept of respecting improvements of school

quality seems to be a natural and mild criterion for schools to have incentives to invest in

quality improvement.

The concept of respecting improvements was introduced by Balinski and Sönmez (1999)

in the context of centralized college admission. In their work, a mechanism respects improve-

ments of student quality if whenever a student improves in colleges’ preference rankings, that

student is better off. They show that the student-optimal stable mechanism is the unique

stable mechanism that respects improvements of student quality.12 The current definition

is a natural adaptation of their notion to the case in which a school improves in students’

preference rankings. The main difference between our concept and that of Balinski and

Sönmez (1999) is that we consider improvements of school quality rather than those of stu-

dent quality. Because the matching model is asymmetric between schools and students in

the sense that schools have multiple seats while each student can attend only one school,

the result by Balinski and Sönmez (1999) cannot be directly applied. In fact, as we will see

in the next section, no stable mechanism respects improvements of school quality, which is

in sharp contrast to the result by Balinski and Sönmez (1999).

3.1 Stable Mechanisms

We first investigate whether stable mechanisms such as the student-optimal stable mechanism

respect improvements. The following example offers a negative answer to this question.

Example 1. Let S = {s, s̄}, C = {c, c̄}. Consider preferences such that,

�s:c̄, c, ∅,

�s̄:c̄, c, ∅,

�c:s, s̄, ∅,

�c̄:s̄, s, ∅,

where the notational convention is that student s prefers c̄ most, c second, and ∅ third, and

12See our discussion in Section 6.2.
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Schools

��
s̄: c, c̄, ∅.

Improvement for c

) =

�
c c̄

s s̄

�

) =

�
c c̄

s̄ s

�
Before       After

c strictly worse off
despite improvement

Unnaturally few 
schools & students
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Respecting Improvements 
in Large Environments?

School districts usually contain 
many schools & students.
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Respecting Improvements 
in Large Environments?

School districts usually contain 
many schools & students.

In such environments, 
the violation of RI may be rare.
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Consider a model of large environments 
by Kojima-Pathak (08), where

     

Respecting Improvements 
in Large Environments?
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Consider a model of large environments 
by Kojima-Pathak (08), where

(1) size indexed by the # of schools  
     (students also increase as schools do)

Respecting Improvements 
in Large Environments?
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Consider a model of large environments 
by Kojima-Pathak (08), where

(1) size indexed by the # of schools  
     (students also increase as schools do)
(2) preferences drawn from a prob. dist.

Respecting Improvements 
in Large Environments?
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Approximate Respecting Improvements 
in Large Environments
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Approximate Respecting Improvements 
in Large Environments

αc(φ) := Prob that mech. φ does not RI 
for school c at realized preferences
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Approximate Respecting Improvements 
in Large Environments

φ approximately RI in large environments
if ∀c,

αc(φ) → 0
(as the # of school → ∞).

αc(φ) := Prob that mech. φ does not RI 
for school c at realized preferences
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Theorem
Any stable mechanism (e.g. SOSM)

approximately respects improvements
in large environments.
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Theorem
Any stable mechanism (e.g. SOSM)

approximately respects improvements
in large environments.

Theorem
The Boston or TTC mechanism 
does NOT approximately RI
even in large environments.
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Theorem
Any stable mechanism (e.g. SOSM)

approximately respects improvements
in large environments.
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Proof Sketch (0/3)

Violation of RI
=Worse off by an improvement
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Proof Sketch (0/3)

Violation of RI
=Worse off by an improvement
=Better off by a disimprovement
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Proof Sketch (0/3)

Violation of RI
=Worse off by an improvement
=Better off by a disimprovement

Why such a situation may occur?
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Proof Sketch (1/3)

Consider the algorithm in SOSM
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Proof Sketch (1/3)

Other 
schools

School c

Other 
students

Student s
Apply

Accept

Apply

Accept

Consider the algorithm in SOSM
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Proof Sketch (1/3)

Assume c disimproves for s

Other 
schools

School c

Other 
students

Student s
Apply

Accept

Apply

Accept
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Proof Sketch (1/3)

Assume c disimproves for s

Other 
schools

School c

Other 
students

Student s

Apply

Accept

No longer apply
×
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Proof Sketch (1/3)

Assume c disimproves for s

Other 
schools

School c

Other 
students

Student s

Apply

Accept

No longer apply
×

Newly apply → Increase  
congestion
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Proof Sketch (1/3)

Assume c disimproves for s

Other 
schools

School c

Other 
students

Student s

Apply

No longer accept

No longer apply
×

Newly apply → Increase  
congestion

×
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Proof Sketch (1/3)

Other 
schools

School c

Other 
students

Student s

Apply

×
Newly apply

×
No longer accept

No longer apply
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Proof Sketch (1/3)

Others may be more desirable than s for c.

Other 
schools

School c

Other 
students

Student s

Apply

×
Newly apply

×
No longer accept

No longer apply
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Proof Sketch (1/3)

But such chains are rare in the large market

Other 
schools

School c

Other 
students

Student s

Apply

×
Newly apply

×
No longer accept

No longer apply

Tuesday, June 5, 2012



Proof Sketch (2/3)

Key observation:
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Proof Sketch (2/3)

Key observation:

Such a benefit (if any) can be 
replicated by the following behavior 

of the disimproving school.
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Proof Sketch (2/3)

School cStudent s
Apply

Pretend to dislike &
don’t accept

×
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Proof Sketch (2/3)

School cStudent s
Apply

Pretend to dislike &
don’t accept

×

Violation of RI for a school
≅

Profitable preference manipulation 
by that school
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Proof Sketch (2/3)
Lemma

Take any stable mechanism. 
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Proof Sketch (2/3)
Lemma

Take any stable mechanism. 
If it does not RI for a school 

at a preference profile,
then it is not optimal for that school to 

report its true preference 
at that preference profile. 

Tuesday, June 5, 2012



Proof Sketch (3/3)

Take the contraposition: 
For any stable mechanism, 

Strategy-proofness for schools → RI.
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Proof Sketch (3/3)

Take the contraposition: 
For any stable mechanism, 

Strategy-proofness for schools → RI.

Lemma (K-P(08)+Pathak-Sonmez(11))
Any stable mechanism is 

approximately strategy-proof for schools.
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Theorem
The Boston mechanism does NOT

approximately respect improvements
even in large environments.
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Definition of Boston Mechanism

Similar to SOSM, but all matches 
at each step of the algorithm are final.
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Definition of Boston Mechanism

Similar to SOSM, but all matches 
at each step of the algorithm are final.

Step t (≥1): 
Each student who has not been 
matched to any school at Step t-1 
applies for next preferred school (if any)
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Step t (≥1) (Continued): 
Each school considers these students 
and students who are kept from Step t-1 together. 
It accepts most preferred students 
up to its quota & rejects everyone else

Definition of Boston Mechanism
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Step t (≥1) (Continued): 
Each school considers these students 
and students who are kept from Step t-1 together. 
It accepts most preferred students 
up to its quota & rejects everyone else

※Students accepted at a step
will never be rejected in any later step

Definition of Boston Mechanism
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Boston Does NOT Respect Improvements: 
Intuition

In the Boston mechanism, students 
applying in earlier steps are favored 
(regardless of school preferences).
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Boston Does NOT Respect Improvements: 
Intuition

So it may be bad news for a school 
if an undesirable student 

prefers it more & applies earlier.

In the Boston mechanism, students 
applying in earlier steps are favored 
(regardless of school preferences).
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Theorem
The TTC mechanism does NOT

approximately respect improvements
even in large environments.
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TTC Does NOT Respect Improvements: 
Intuition

An undesirable student for a school 
can be matched with that school 
if he could trade priorities with 

a more desirable student for that school.
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TTC Does NOT Respect Improvements: 
Intuition

So an undesirable student 
pointing to a school earlier

may be bad news for that school.

An undesirable student for a school 
can be matched with that school 
if he could trade priorities with 

a more desirable student for that school.
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Policy Implication

For incentivizing schools to improve,
SOSM is better than the others.

SOSM Boston TTC

RI in Large Environments ! × ×

SOSM Boston TTC

RI in Terms of Enrollment ! ! ×

SOSM Boston TTC

RI for Very Desirable Students ! ! ×

SOSM Boston TTC

RI in General Environments × × ×
RI in Large Environments ! × ×
RI in Terms of Enrollment ! ! ×

RI for Very Desirable Students ! ! ×

SOSM Boston TTC

RI in General Environments × × ×
RI for Desirable Students in General Environments × × ×

RI in Large Environments ! × ×
RI for Desirable Students in Large Environments ! × ×

RI in Terms of Enrollment ! ! ×
RI for Very Desirable Students ! ! ×

RI of Student Quality ! ! !

1
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Policy Implication

For incentivizing schools to improve,
SOSM is better than the others.

Robust to changes in the criterion
of respecting improvements?

SOSM Boston TTC

RI in Large Environments ! × ×

SOSM Boston TTC

RI in Terms of Enrollment ! ! ×

SOSM Boston TTC

RI for Very Desirable Students ! ! ×

SOSM Boston TTC

RI in General Environments × × ×
RI in Large Environments ! × ×
RI in Terms of Enrollment ! ! ×

RI for Very Desirable Students ! ! ×

SOSM Boston TTC

RI in General Environments × × ×
RI for Desirable Students in General Environments × × ×

RI in Large Environments ! × ×
RI for Desirable Students in Large Environments ! × ×

RI in Terms of Enrollment ! ! ×
RI for Very Desirable Students ! ! ×

RI of Student Quality ! ! !

1
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Alternative Criteria of
Promoting Competition
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Alternative Criteria of
Promoting Competition

(1) Respecting improvements 
when schools care only about enrollment 

(2) RI when schools try to improve 
to attract only “desirable” students

Similar results as in the case with RI
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Avenues for Future Research
Empirical test of the different effects of 
the different mech.s on school quality?

Quantification of them by simulations?

Comparison with 
other forms of schools choice?
e.g. Charter schools, vouchers
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General Message

Market design needs to consider 
how different mechanisms induce 

different long-term behavior of agents. 
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Additional Slides
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Model
SchoolsStudents

s1 with >s1

sm with >s2

c1 with >c1

cn with >c2
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Model
SchoolsStudents

Each student has a strict preference
over schools & being unmatched (∅).

s1 with >s1

sm with >sm

c1 with >c1

cn with >c2
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Model
SchoolsStudents

A matching µ assigns each s to
(at most) one school µs.

s1 with >s1

sm with >sm

c1 with >c1

cn with >cm
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Model
SchoolsStudents

In other words, µ assigns each c to
a set of students µc within quotas.

s1 with >s1

sm with >sm

c1 with >c1

cn with >cn
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Model
SchoolsStudents

A mechanism assigns a matching to
each (reported) preference profile.

s1 with >s1

sm with >sm

c1 with >c1

cn with >cn
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Stable Mechanisms

A matching µ is individually rational     

if ∀ student s, µs ≥s ∅.
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Stable Mechanisms

A matching µ is individually rational     

if ∀ student s, µs ≥s ∅.

A matching is stable     
if it is IR and ∄ (s, c) such that
・c >s µs and

・(1) |µc| < qc or (2) ∃s’ ∈µc with s >c s’.
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e.g. “Student-Optimal Stable” Mechanism
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Start at matching where none is matched.

Step t (≥1): 
Each student who has not been 
matched to any school at Step t-1 
applies for next preferred school (if any)

e.g. “Student-Optimal Stable” Mechanism
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Step t (≥1) (Continued): 
Each school considers these students 
and students who are kept from Step t-1 together.

It keeps most preferred students 
up to its quota & rejects everyone else

e.g. “Student-Optimal Stable” Mechanism
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Step t (≥1) (Continued): 
Each school considers these students 
and students who are kept from Step t-1 together. 

It keeps most preferred students 
up to its quota & rejects everyone else

※Students kept at a step
may be rejected in a later step

e.g. “Student-Optimal Stable” Mechanism
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The algorithm stops at a step
where no rejection occurs,
producing a matching.

e.g. “Student-Optimal Stable” Mechanism
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The algorithm stops at a step
where no rejection occurs,
producing a matching.

Fact
SOSM outputs a stable matching & 
is strategy-proof for students.

e.g. “Student-Optimal Stable” Mechanism
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NO Pareto Efficient Mechanism 
Promotes Competition: Proof

Students

Schools

Improvement for c

Before       After

Capacity of both 
schools 1

s̄. Student s̄ rejects c̄. Rejected from its first choice s̄, c̄ proposes to s. Now student s

rejects c. Because school c has proposed to all students, the algorithm terminates. Thus the

college-optimal stable matching ϕC(!′
s̄,!−s̄) is equal to ϕS(!′

s̄,!−s̄). This implies that this

market has a unique stable matching, ϕS(!′
s̄,!−s̄) = ϕC(!′

s̄,!−s̄).

From the arguments above, we have that, for any stable mechanism ϕ,

ϕc(!) = s !c s̄ = ϕc(!′
s̄,!−s̄),

even though !′
s̄ is an improvement for c over !s; hence, ϕ does not respect improvements

of school quality at the school preference profile !C .

The finding from Example 1 can be summarized in the following statement.

Theorem 1. There exists no stable mechanism that respects improvements of school quality

at every school preference profile.

3.2 Pareto Efficient Mechanisms for Students

As in many other resource allocation problems, Pareto efficiency for students is a popular

desideratum in school choice because students are considered to be the beneficiaries of public

schooling. While the student-optimal stable mechanism is not Pareto efficient for students,

there are other mechanisms that are. The popular Boston mechanism (under truth-telling

by students) and the theoretically favored top trading cycles mechanism are such examples.

Thus it would be of interest to investigate whether these mechanisms or any other Pareto

efficient mechanism respects improvements of school quality. As the following example shows,

it turns out that there exists no mechanism that is Pareto efficient for students and that

respects improvements of school quality.

Example 2. Suppose that there exists a mechanism ϕ that is Pareto efficient for students

and respects improvements of school quality. Let S = {s, s̄}, C = {c, c̄}, and the preferences

of the schools be given by

!c : s̄, s, ∅,

!c̄ : s, s̄, ∅,

with capacities of qc = qc̄ = 1. First, consider the following preference profile of students:

!s : c̄, ∅,

!s̄ : c, ∅.

13

s̄. Student s̄ rejects c̄. Rejected from its first choice s̄, c̄ proposes to s. Now student s
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ϕc(!) = s !c s̄ = ϕc(!′
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3.2 Pareto Efficient Mechanisms for Students
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Thus it would be of interest to investigate whether these mechanisms or any other Pareto

efficient mechanism respects improvements of school quality. As the following example shows,

it turns out that there exists no mechanism that is Pareto efficient for students and that

respects improvements of school quality.

Example 2. Suppose that there exists a mechanism ϕ that is Pareto efficient for students

and respects improvements of school quality. Let S = {s, s̄}, C = {c, c̄}, and the preferences

of the schools be given by

!c : s̄, s, ∅,

!c̄ : s, s̄, ∅,

with capacities of qc = qc̄ = 1. First, consider the following preference profile of students:
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!s̄ : c, ∅.
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Under !≡ (!s,!s̄,!c,!c̄), the unique Pareto efficient matching is

ϕ(!) =

(
c c̄

s̄ s

)
.

Thus, in the outcome of the mechanism under !, school c̄ is matched with student s.

Now consider the student preference profile !′
S≡ (!s,!′

s̄) where the preference of s̄ has

changed to

!′
s̄ : c̄, c, ∅.

Note that !′
s̄ is an improvement for school c̄ over !s̄; hence, c̄ must obtain at least as good

an outcome under !′≡ (!′
S,!C) as under !, and so c̄ must be matched to s. By Pareto

efficiency, then, s̄ must be matched to c and so ϕ(!′) = ϕ(!).

Finally, consider another student preference profile !′′
S≡ (!′′

s ,!′
s̄) where

!′′
s : c, c̄, ∅.

Note that !′′
S is an improvement for school c over !′

S. Under !′′≡ (!′′
S,!C), the unique

Pareto efficient matching for students is

ϕ(!′′) =

(
c c̄

s s̄

)
,

which implies that c is matched with s in the outcome of the mechanism. However, note

that ϕc(!′) = s̄ !c s = ϕc(!′′) although !′′
S is an improvement for school c over !′

S. This

means that this mechanism does not respect improvements of school quality, which is a

contradiction.

The finding from Example 2 can be summarized in the following statement.

Theorem 2. There exists no mechanism that is Pareto efficient for students and respects

improvements of school quality for every school preference profile.

Recall that the Boston and the top trading cycles mechanisms are Pareto efficient for

students. The above theorem shows that these popular mechanisms do not respect improve-

ments of school quality.

Remark. The above conclusion of Theorem 2 for the Boston mechanism is with respect to

the students’ true preferences, but it is well known that truthtelling is not a dominant strat-

egy under the Boston mechanism. However, Theorem 1 in Section 3.1 sheds some light on
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NO Pareto Efficient Mechanism 
Promotes Competition: Proof

Students

Schools

Improvement for c

Before       After

Capacity of both 
schools 1

s̄. Student s̄ rejects c̄. Rejected from its first choice s̄, c̄ proposes to s. Now student s

rejects c. Because school c has proposed to all students, the algorithm terminates. Thus the

college-optimal stable matching ϕC(��
s̄,�−s̄) is equal to ϕS(��

s̄,�−s̄). This implies that this

market has a unique stable matching, ϕS(��
s̄,�−s̄) = ϕC(��

s̄,�−s̄).

From the arguments above, we have that, for any stable mechanism ϕ,

ϕc(�) = s �c s̄ = ϕc(��
s̄,�−s̄),

even though ��
s̄ is an improvement for c over �s; hence, ϕ does not respect improvements

of school quality at the school preference profile �C .
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Under !≡ (!s,!s̄,!c,!c̄), the unique Pareto efficient matching is

ϕ(!) =

(
c c̄

s̄ s

)
.

Thus, in the outcome of the mechanism under !, school c̄ is matched with student s.

Now consider the student preference profile !′
S≡ (!s,!′

s̄) where the preference of s̄ has

changed to

!′
s̄ : c̄, c, ∅.

Note that !′
s̄ is an improvement for school c̄ over !s̄; hence, c̄ must obtain at least as good

an outcome under !′≡ (!′
S,!C) as under !, and so c̄ must be matched to s. By Pareto

efficiency, then, s̄ must be matched to c and so ϕ(!′) = ϕ(!).

Finally, consider another student preference profile !′′
S≡ (!′′

s ,!′
s̄) where

!′′
s : c, c̄, ∅.

Note that !′′
S is an improvement for school c over !′

S. Under !′′≡ (!′′
S,!C), the unique

Pareto efficient matching for students is

ϕ(!′′) =

(
c c̄

s s̄

)
,

which implies that c is matched with s in the outcome of the mechanism. However, note

that ϕc(!′) = s̄ !c s = ϕc(!′′) although !′′
S is an improvement for school c over !′

S. This

means that this mechanism does not respect improvements of school quality, which is a

contradiction.

The finding from Example 2 can be summarized in the following statement.

Theorem 2. There exists no mechanism that is Pareto efficient for students and respects

improvements of school quality for every school preference profile.

Recall that the Boston and the top trading cycles mechanisms are Pareto efficient for

students. The above theorem shows that these popular mechanisms do not respect improve-

ments of school quality.

Remark. The above conclusion of Theorem 2 for the Boston mechanism is with respect to

the students’ true preferences, but it is well known that truthtelling is not a dominant strat-

egy under the Boston mechanism. However, Theorem 1 in Section 3.1 sheds some light on
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schooling. While the student-optimal stable mechanism is not Pareto efficient for students,

there are other mechanisms that are. The popular Boston mechanism (under truth-telling

by students) and the theoretically favored top trading cycles mechanism are such examples.

Thus it would be of interest to investigate whether these mechanisms or any other Pareto

efficient mechanism respects improvements of school quality. As the following example shows,

it turns out that there exists no mechanism that is Pareto efficient for students and that
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Under !≡ (!s,!s̄,!c,!c̄), the unique Pareto efficient matching is

ϕ(!) =

(
c c̄

s̄ s

)
.

Thus, in the outcome of the mechanism under !, school c̄ is matched with student s.

Now consider the student preference profile !′
S≡ (!s,!′

s̄) where the preference of s̄ has

changed to

!′
s̄ : c̄, c, ∅.

Note that !′
s̄ is an improvement for school c̄ over !s̄; hence, c̄ must obtain at least as good

an outcome under !′≡ (!′
S,!C) as under !, and so c̄ must be matched to s. By Pareto

efficiency, then, s̄ must be matched to c and so ϕ(!′) = ϕ(!).

Finally, consider another student preference profile !′′
S≡ (!′′

s ,!′
s̄) where

!′′
s : c, c̄, ∅.

Note that !′′
S is an improvement for school c over !′

S. Under !′′≡ (!′′
S,!C), the unique

Pareto efficient matching for students is

ϕ(!′′) =

(
c c̄

s s̄

)
,

which implies that c is matched with s in the outcome of the mechanism. However, note

that ϕc(!′) = s̄ !c s = ϕc(!′′) although !′′
S is an improvement for school c over !′

S. This

means that this mechanism does not respect improvements of school quality, which is a

contradiction.

The finding from Example 2 can be summarized in the following statement.

Theorem 2. There exists no mechanism that is Pareto efficient for students and respects

improvements of school quality for every school preference profile.

Recall that the Boston and the top trading cycles mechanisms are Pareto efficient for

students. The above theorem shows that these popular mechanisms do not respect improve-

ments of school quality.

Remark. The above conclusion of Theorem 2 for the Boston mechanism is with respect to

the students’ true preferences, but it is well known that truthtelling is not a dominant strat-

egy under the Boston mechanism. However, Theorem 1 in Section 3.1 sheds some light on
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When Does a Stable/PE Mechanism 
Promote Competition?

A school preference profile is 
virtually homogeneous

if
all schools rank students 
in exactly the same way
except top min qc studentsc
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When Does a Stable Mechanism 
Promote Competition?

Theorem
There is a stable mechanism 
that respects improvements.

Every school’s capacity is 1 or
school preferences are VH 
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When Does a PE Mechanism 
Promote Competition?

Theorem
There is a PE mechanism 

that respects improvements.

School preferences
are virtually homogeneous 
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Relationship between VH & “acyclicity”

Virtual Homogeneity

Acyclicity 
(Ergin)

Acyclicity (Kesten)

Essential Homogeneity 
(Kojima)

Strong x-acyclicity (Haeringer and Klijn)

x-acyclicity (Haeringer and Klijn)

Figure 1: Relationship Between Virtual Homogeneity and Other Properties.

mechanism satisfies the corresponding property (under the assumption that students truth-

fully report their preferences) while “×” means that it is not the case. In addition, for the

Boston mechanism, which is not strategy-proof, marks in parentheses indicate results under

the assumption that students play a Nash equilibrium. Specifically, “(!)” (“!” in paren-

theses) means that for any selection of a Nash equilibrium at each preference profile, the

corresponding mechanism satisfies the corresponding property. On the other hand, “(×)”

means that there exists a selection of a Nash equilibrium at each preference profile such that

the corresponding mechanism does not satisfy the corresponding property.

SOSM Boston TTC
RI in General Markets × × ×

RI for Desirable Students in General Markets × × ×
RI in Large Markets ! ×(!) ×

RI for Desirable Students in Large Markets ! ×(!) ×
RI in Terms of Enrollment ! ! ×

RI for Very Desirable Students ! !(×) ×
RI of Student Quality ! !(×) !

Table 2: An Exhaustive List of The Results.
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Large Market Model

Respecting Improvements of School Quality
in Large Markets

We now consider a large market model.

A random market is a tuple Γ̃ = (C , S , k ,D), where
k is a positive integer and
D is a pair (DC ,DS) of probability distributions.

Each random market induces a market by randomly
generating preferences of students.

DS = (pc)c∈C is a probability distribution on C .
Preferences of each student s are drawn independently
without replacement using probability distribution DS to
form the preference list of students of length k .

The preference distribution of schools is completely
general: DC may be any distribution (or even degenerate).
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Large Market ModelLarge Markets

Definition
A sequence of random markets (Γ̃n)n∈N is regular if there
exist positive integers k , q̃ and q̂ such that

1 kn ≤ k for all n,
2 qc ≤ q̂ for all n and c ∈ C n,
3 |Sn| ≤ q̃n for all n, and
4 for all n and c ∈ C n, every s ∈ Sn is acceptable to c at

any realization of preferences for c at DCn .

We also impose the condition that the market is
sufficiently thick, i.e. that there are no ‘super-popular’
schools.

For example, if pc
pc̄

≤ T for some T ∈ R for all c , c̄ ∈ C ,
the market is sufficiently thick.
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Definition of TTC MechanismThe Top Trading Cycles Mechanism
Step t: Each student s ∈ S points to her most preferred
school (if any); students who do not point at any school
are assigned to ∅. Each school c ∈ C points to its most
preferred student. As there are a finite number of schools
and students, there exists at least one cycle, i.e. a
sequence of distinct schools and students
(s1, c1, s2, c2, . . . , sK , cK ) such that student s1 points at
school c1, school c1 points to student s2, student s2
points to school c2, . . . , student sK points to school cK ,
and, finally, school cK points to student s1. Every student
sk (k = 1, . . . ,K ) is assigned to the school she is pointing
at.

The top trading cycles mechanism is strategy-proof and
Pareto efficient for students

But it is not stable.
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ill Behavior of TTC: Example
Students         Schools

In addition, the next result demonstrates that the Boston mechanism also respects im-

provements in terms of enrollment.

Proposition 2. The Boston mechanism respects improvements of school quality in terms of

enrollment at every school preference profile.25

Proof. See the Appendix.

Given that all stable mechanisms and the Boston mechanism, a Pareto efficient mecha-

nism for students, respect improvements in terms of enrollment, some readers may suspect

that the TTC mechanism, which is also Pareto efficient as well as strategy-proof for stu-

dents, would satisfy the criterion. However, as demonstrated by the following result, the

top trading cycles mechanism does not necessarily respect improvements of school quality

in terms of enrollment.

Proposition 3. The TTC mechanism does not respect improvements of school quality in

terms of enrollment at all school preference profiles.

Proof. Consider the following environment. There are schools c1, c2, c3, and c4, and students

s1, s2, s3, and s4. School c1 has a capacity of 2 seats while each of the other schools has a

capacity of 1 seat. The preference profile � of students and schools is given by:

�s1 : c3, c1, ∅, �c1 : s1, s2, s3, s4, ∅,

�s2 : c2, c1, ∅, �c2 : s1, s2, . . . , ∅

�s3 : c3, c1, ∅, �c3 : s4, s3, s2, s1, ∅

�s4 : c2, c4, ∅, �c4 : s4, . . . , ∅.

Under this preference profile, the TTC outcome is

�
c1 c2 c3 c4

{s2, s3} s4 s1 ∅

�
,

thus two positions of c1 are filled.

Now consider an alternative preference relation of student s1, ��
s1

: c1, c3, ∅. Note that this

is an improvement for school c1 upon �s1 . However, the TTC outcome under the preference

25In Proposition 2, we implicitly assume that students report true preferences. The Boston mechanism is
not strategy-proof, so it is of interest to analyze whether the result holds even when students are strategic.
As mentioned in the Remark in Section 3.2, Ergin and Sönmez (2006) show that the set of Nash equilib-
rium outcomes under the Boston mechanism coincides with the set of stable matchings. By this fact and
Proposition 1, it follows that the Boston mechanism also respects improvements of school quality in terms
of enrollment when students play Nash equilibria.

23
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Capacity of every other school=1
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Improvement of c1 for desirable s1
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Alternative Criteria of
Promoting Competition

(1) Respecting improvements 
when schools care only about enrollment 

School preferences are often 
just “priorities” set by law. 
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Alternative Criteria of
Promoting Competition

(1) Respecting improvements 
when schools care only about enrollment 

・Schools with too few enrollment often closed. 
・Budgets often determined based on enrollment.
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A mechanism     
respects improvements in terms of enrollment 

if any improvement for any school c 
weakly increases c’s enrollment

※No logical relationship between 
original RI & RI in terms of enrollment
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Theorem

SOSM Boston TTC

RI in Large Environments ! × ×

SOSM Boston TTC

RI in Terms of Enrollment ! ! ×

SOSM Boston TTC

RI for Very Desirable Students ! ! ×

SOSM Boston TTC

RI in General Environments × × ×
RI in Large Environments ! × ×
RI in Terms of Enrollment ! ! ×

RI for Very Desirable Students ! ! ×

SOSM Boston TTC

RI in General Environments × × ×
RI for Desirable Students in General Environments × × ×

RI in Large Environments ! × ×
RI for Desirable Students in Large Environments ! × ×

RI in Terms of Enrollment ! ! ×
RI for Very Desirable Students ! ! ×

RI of Student Quality ! ! !

1

By the previous example. 
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ill Behavior of TTC: Example
Students         Schools

Capacity of c1=2
Capacity of every other school=1
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Alternative Criteria of
Promoting Competition

(1) Respecting improvements 
when schools care only about enrollment 

(2) RI when schools try to improve 
to attract only “desirable” students
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Alternative Criterion 

A mechanism     
respecting improvements for desirable students 
if it respects improvements 
in preferences of “desirable” students

※RI→RI for DS

=Weakly preferred to some student
to whom a school is originally matched 

(before improvements occur)
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Alternative Criterion

Theorem

Same result
as in the case with original RI 

SOSM Boston TTC

RI for Desirable Students in General Environments ! × ×
RI for Desirable Students in Large Environments ! × ×

General Stable Mech General PE Mech

RI in General Environments × ×
RI in Large Environments ! ×
RI in Terms of Enrollment ! ×

RI for DS in General Environments × ?

RI for DS in Large Environments ! ?

RI for Very Desirable Student × ×
RI of Student Quality × ×

———

SOSM Boston TTC

RI in General Markets × × ×
RI by Desirable Students × × ×

RI in Large Markets ◦ × ×
RI by Desirable Students in Large Markets ◦ × ×

RI in Terms of Enrollment ◦ ◦ ×

SOSM Boston TTC

RI (by Desirable Students) in General Markets × × ×
RI (by Desirable Students) in Large Markets ◦ × ×

RI in Terms of Enrollment ◦ ◦ ×
RI by Very Desirable Student ◦ ◦ ×

2
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SOSM Boston TTC
RI in General Markets × × ×

RI by Desirable Students in General Markets × × ×
RI in Large Markets � × ×

RI for Desirable Students in Large Markets � × ×
RI in Terms of Enrollment � � ×

Table 1: Summary of the Main Results. RI stands for respect improvements.

theoretical and empirical. First, by modeling quality investment explicitly, one could study

the magnitude of the effects brought to light by our work. As discussed in Section 3, we have

not modeled quality explicitly and instead have defined improvements by changes of student

preferences; this modeling decision allows us to consider a very general class of improvements.

However, see the recent work by Azevedo and Leshno (2011), who, building on our work here,

explicitly model investment using a uni-dimensional quality measure in order to quantify the

marginal effects of investment. Their study has not obtained any asymptotic comparison

result among different mechanisms48, but their framework may provide a promising approach

to study issues of school quality more generally.

Second, if data on submitted preferences in real school choice systems is available, it

would be possible to analyze how often schools in practice are better off when less preferred

by certain students, i.e., how often schools have incentives to discourage student interest.

Finally, and more ambitiously, empirical work could quantify the effect of different school

choice mechanisms on the quality of a public school system and its rate of improvement.

We would further suggest that empirical work in this area also study how different school

choice mechanisms affect different types of students: As discussed at the end of Section 4,

the Boston and the TTC mechanisms provide incentives for schools to make themselves

less attractive to “less desirable” students. As these “less desirable” students are likely to

be students who are already low-achieving, members of a disadvantaged minority group, or

have special needs, the use of the Boston and the TTC mechanisms may further disadvantage

these students.

Another important research direction would be to relate the current study, which focuses

on public school choice, with other forms of school choice, such as vouchers and charter school

48Note that Azevedo and Leshno (2011) focus on stable matchings, providing no framework in which
to study unstable mechanisms such as the Boston and TTC mechanisms. Moreover, they define a large
matching market, but it is quite different from the large market in our sense. In their model, the number of
students is large (in fact a continuum), but the number of schools remain fixed and finite. Thus it is unclear
whether their model can be used to obtain asymptotic comparisons of different school choice mechanisms.
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