Multi-marginal optimal transportation and hedonic pricing

Brendan Pass

University of Alberta

June 4, 2012

Brendan Pass Multi-marginal optimal transportation and hedonic pricing

- Probability measures μ_i on $X_i \subseteq \mathbb{R}^n$, i = 1, 2, ...m.
 - distribution of *types i*.
- Space $Z \subseteq \mathbb{R}^n$ of *contracts*.
- Utility functions $f_i : X_i \times Z \to \mathbb{R}$.
 - $f_i(x_i, z)$ = preference of type $x_i \in X_i$ for contract $z \in Z$.

A B + A B +

Equilibrium: two formulations

Carlier-Ekeland (2010): Look for a measure ν on Z and couplings π_i of μ_i and ν maximizing:

$$\sum_{i=1}^m \int_{X_i \times Z} f_i(x_i, z) d\pi_i$$

Proved:

- **1** Uniqueness when $\mu_1 \ll dx_1$ and $z \mapsto D_{x_1}f_1(x_1, z)$ is injective.
- 2 Purity when $\mu_i \ll dx_i$ and $z \mapsto D_{x_i}f_i(x_i, z)$ is injective.

Question: What does ν look like?

Carlier-Ekeland (2010): Look for a measure ν on Z and couplings π_i of μ_i and ν maximizing:

$$\sum_{i=1}^m \int_{X_i \times Z} f_i(x_i, z) d\pi_i$$

Proved:

1 Uniqueness when $\mu_1 \ll dx_1$ and $z \mapsto D_{x_1}f_1(x_1, z)$ is injective.

2 Purity when $\mu_i \ll dx_i$ and $z \mapsto D_{x_i}f_i(x_i, z)$ is injective.

Question: What does ν look like?

Chiappori-McCann-Nesheim (2010): Set

 $b(x_1, x_2, ..., x_m) = \max_z \sum_{i=1}^m f_i(x_i, z)$ and look for a **coupling** γ of $\mu_1, \mu_2, ..., \mu_m$ maximizing:

$$\int_{X_2\times X_2\times \ldots\times X_m} b(x_1, x_2, \ldots, x_m) d\gamma,$$

A multi-marginal optimal transportation problem. Questions: Uniqueness? Structure? Purity?

Theorem (P 2011)

Assume

- For all i, f_i is C² and the matrix D²_{xiz}f_i of mixed, second order partial derivatives is everywhere non-singular.
- For each $(x_1, x_2, ..., x_m)$ the maximum is attained by a unique $z(x_1, x_2, ..., x_m) \in Z$.
- **6** $\sum_{i=1}^{m} D_{zz}^2 f_i(x_i, z(x_1, x_2, ..., x_m))$ is non-singular.

 \Rightarrow spt(γ) is contained in an n-dimensional, Lipschitz submanifold $S \subseteq X_1 \times X_2 \times ... \times X_m \subseteq \mathbb{R}^{nm}$.

- Special case of a more general result.
- Hedonic pricing surpluses b work very nicely here.

同 ト イ ヨ ト イ ヨ ト

Geometry of $spt(\gamma)$

Set

$$M = \begin{bmatrix} 0 & D_{x_1x_2}^2 b & D_{x_1x_3}^2 b & \dots & D_{x_1x_m}^2 b \\ D_{x_2x_1}^2 b & 0 & D_{x_2x_3}^2 b & \dots & D_{x_2x_m}^2 b \\ D_{x_3x_1}^2 b & D_{x_3x_2}^2 b & 0 & \dots & D_{x_3x_m}^2 b \\ \dots & \dots & \dots & \dots & \dots & \dots \\ D_{x_mx_1}^2 b & D_{x_mx_2}^2 b & D_{x_mx_3}^2 b & \dots & 0 \end{bmatrix}$$

- A symmetric, $(nm) \times (nm)$ matrix.
- Signature:
 - *n*-positive eigenvalues.
 - m(n-1)-negative eigenvalues.
- $\operatorname{spt}(\gamma)$ is *spacelike*:
 - $\vec{x^{\tau}}M\vec{x} \ge 0$ for all tangent vectors $\vec{x} \in X_1 \times X_2 \times ... \times X_m$ to spt (γ) .

Understanding the geometry of spt(γ) lets us prove things about ν :

Theorem (P 2012)

u is absolutely continuous with respect to Lebesgue measure.

This, in turn, lets us prove more things about γ :

Theorem (P 2012)Assume• $\mu_1 << dx_1.$ • $z \mapsto D_{x_1} f_1(x_1, z)$ is injective.• $x_i \mapsto D_z f_i(x_i, z)$ is injective. $\Rightarrow \gamma$ is unique and pure.