Becker Meets Ricardo: Multisector Matching with Social and Cognitive Skills

Robert J. McCann Xianwen Shi Aloysius Siow Ronald Wolthoff

University of Toronto

June 2012

- social skills are important in education, labor and marriage
 - market participants value and screen for social skills
 - social skills affect market outcomes in all three sectors
- why are social skills valued?
 - need a model of social interaction where individuals have heterogenous social skills
 - it should also differentiate cognitive skills from social skills

- develops a theory of social and cognitive skills, and a tractable multisector matching framework
- builds on several classical ideas:
 - cognitive skills are complementary in production: Becker
 - there are gains to specialization: Smith
 - task assignment based on comparative advantage: Ricardo
- assumes a common team production for all three sectors
 - output is produced by completing two tasks
 - specialization improves productivity, but needs costly coordination
 - individuals differ in communication/coordination costs (social skills)
 - individuals with higher social skills are more efficient in coordination

- full task specialization in labor, but partial specialization in marriage
- many-to-one matching in teams in the labor market, a commonly observed organizational form
- matching patterns differ across sectors:
 - labor market: managers and workers sort by cognitive skills
 - marriage market: spouses sort by both social and cognitive skills
 - education market: students with different social and cognitive skills attend the same school
- equilibrium is a solution to a linear programming problem
 - great for simulation and estimation

• Garicano (2000), Garicano and Rossi-Hansberg (2004, 2006)

- study how communication costs affect organization design, matching, occupation choice etc., where individuals differ by cognitive skills only
- using a different production technology, we extend them by:
 - adding another dimension of heterogeneity: communication costs
 - studying multisector (school, work and marriage) matching

- risk-neutral individuals live for two periods
 - enter education market as students; then work and marry as adults
 - one unit of time endowment for each sector
 - free entry of firms and schools
- individuals are heterogenous in two dimensions
 - (fixed) gross social skill η , with $\eta \in \left[\eta, \overline{\eta}\right]$
 - initial cognitive ability *a*, with $a \in [\underline{a}, \overline{\overline{a}}]$
 - education transforms *a* into adult cognitive skill *k*, with $k \in [\underline{k}, \overline{k}]$
- individuals' net payoff: wage (ω) + marriage payoff (h) tuition (τ)
 - individual decision: who to match with in each sector

• output is produced by completion of two tasks, I and C

- $-\theta_i^I, \theta_i^C$: times *i* spent on task *I* and *C* respectively
- time constraint in each sector: $\theta_i^I + \theta_i^C \leq 1$
- single agent production:

$$\beta k_i \min \left\{ \theta_i^I, \gamma \theta_i^C \right\}$$
 (Single)

- $\beta < 1$: potential gain to specialization
- $-\gamma > 1$: task *C* takes less time to complete
- no need for coordination: gross social skill η_i does not enter production

• consider a two-person team with (η_i, k_i) and (η_j, k_j)

 $-\theta_i^I, \theta_j^C$: times *i* and *j* spend on task *I* and task *C* respectively

- specialization needs coordination
 - only individual on task *C* bears (one-sided) coordination cost:
 - $-(1-\eta_j) \theta_j^C$ for coordination, remaining time $\eta_j \theta_j^C$ for production
- team output:

$$\sqrt{k_i k_j} \min \left\{ \theta_i^I, \gamma \eta_j \theta_j^C \right\}$$
 (Team)

- compared to single agent production: $\beta k_i \min \{\theta_i^I, \gamma \theta_i^C\}$
 - we drop $\beta < 1$: gains to specialization (Smith)
 - $\sqrt{k_i k_j}$: complementarity in cognitive skills (Becker)
 - who should do task C: comparative advantage (Ricardo)

- team production technology: $\sqrt{k_i k_j} \min \{\theta_i^I, \gamma \eta_j \theta_j^C\}$
- define social skill *n*: $n \equiv \gamma \eta_j$
- team production technology: $\sqrt{k_i k_j} \min \left\{ \theta_i^I, n_j \theta_j^C \right\}$
 - individuals with higher *n*, when assigned to *C*, are more productive
- assume team production is always superior to working alone

Proposition. Full task specialization is optimal, i.e., an individual is assigned to task *I* or *C* throughout.

- many-to-one matching: one member on task C (manager, with social skill n) "supervises" n other members on task I (workers)
- workers' social skills have no value for team production

Proposition. Task assignment according to comparative advantage: there is a cutoff $\hat{n}(k)$ such that a type-(n, k) individual does task *C* if and only if $n \ge \hat{n}(k)$.

• individuals with higher social skills become managers/teachers

- problem of a type- (n_m, k_m) manager:
 - choose n_m worker types to maximize

$$\max_{(k_1,\ldots,k_{n_m})}\sum_{i=1}^{n_m}\left[\sqrt{k_mk_i}-\omega(k_i)\right]$$

- in optimum, workers have the same k_w
- manager earns $n_m \phi(k_m) = n_m \max_{k_w} \left[\sqrt{k_m k_w} \omega(k_w) \right]$
- define equilibrium matching $\mu(k_m) \in \arg \max_{k_w} \left[\sqrt{k_m k_w} \omega(k_w) \right]$

Proposition. Equilibrium exhibits positive assortative matching (PAM) along cognitive skills: $\mu'(k) > 0$

- Assume monogamy: Spouses devote all their time in the marriage market with each other
- Proposition. Full specialization is not optimal.
- Proposition. Equilibrium sorts in two dimensions: individuals marry their own type.

- task assignment is exogenous
 - teachers do task C
 - students do task I
- team production function: $\sqrt{a_i k_t} \min \{\theta_i^I, n_t \theta_t^C\}$
 - in equilibrium, a type- (n_t, k_t) teacher can manage n_t students
 - input: student's initial cognitive skill a_i
 - output: student's adult cognitive skill k_i
- better schools (teachers with higher k_t) will charge higher tuition

- choose education/school (k_t) to maximize future net payoff
 - return on education depends on future occupation choice
- conditional on occupation choice, equilibrium exhibits PAM
 - students with higher a_s or n_s attend better schools (higher k_t)

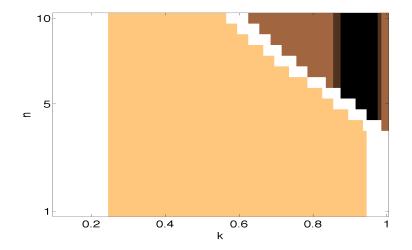
Proposition. There is an educational gap: a student who has marginally more a_s or n_s and switches from being a worker to being a teacher/manager will discretely increase his or her schooling investment

General Equilibrium and Linear Programming

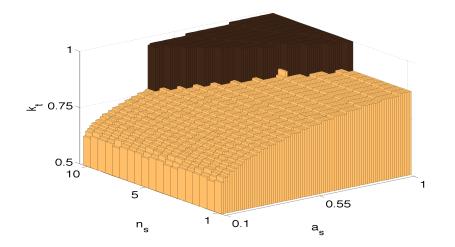
- equilibrium equivalent to a utilitarian social planner solving a linear programming problem
 - chooses number (measure) of (n_m, k_m, n_w, k_w) firms and number of (n_t, k_t, n_s, a_s) schools to maximize:

$$\sum_{\text{firm types}} \text{ # firm type } (n_m, k_m, n_w, k_w) \times (n_m \sqrt{k_m k_w}) \\ + \sum_{\text{marriage types}} \text{ # marriage type } (n, k, n, k) \times (\frac{2n}{n+1}k)$$

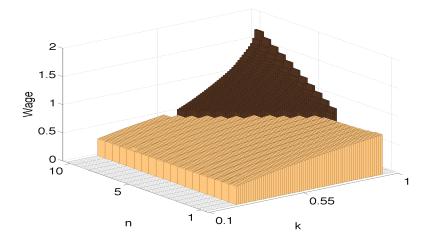
subject to, for each adult type (n, k),

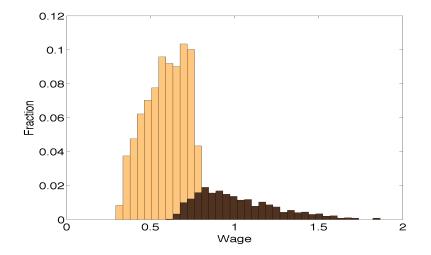

demand by firms + schools \leq supply of adults

and for each student type (n, a),


school slots for students \leq supply of students

wages and student payoffs: multipliers attached to the constraints


Numerical Simulation: Occupation Choice


Numerical Simulation: Education Choice

Numerical Simulation: Equilibrium Wage

Numerical Simulation: Wage Distribution

Related Literature (Partial List)

- importance of non-cognitive (including social) skills
 - Almlund, Duckworth, Heckman and Kautz (2011), Heckman, Stixrud and Urzua (2006) ...
- frictionless transferable utility model of marriage
 - one factor: Becker (1973,1974) ...
 - two factors: Anderson (2003), Chiappori, Oreffice and Quintana-Domeque (2010)
- task assignment and hierarchies
 - Roy (1951), Sattinger (1975) ...
 - Lucas (1978), Rosen (1978, 1982), Garicano (2000), Eeckhout and Kircher (2011) ...
- Linear programming model of frictionless multifactor marriage matching model
 - Chiappori, McCann and Nesheim (2010)

• we present a tractable framework for multisector matching

- all three sectors share qualitatively the same team production function
- team production function incorporates specialization and task assignment
- specify an explicit role for social skills in production
- capture matching patterns in each of the three sectors
- generate predictions consistent with empirical observations
- a first pass theory of social and cognitive skills
 - many possible extensions