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Abstract
While interest in social determinants of individual behavior has led to a rich theoretical literature
and many efforts to measure these influences, a mature “social econometrics” has yet to
emerge. This chapter provides a critical overview of the identification of social interactions.
We consider linear and discrete choice models as well as social networks structures. We also
consider experimental and quasi-experimental methods. In addition to describing the state of
the identification literature, we indicate areas where additional research is especially needed
and suggest some directions that appear to be especially promising.
JEL Codes: C21, C23, C31, C35, C72, Z13
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Like other tyrannies, the tyranny of the majority was at first, and is still vulgarly, held in dread,
chiefly as operating through the acts of the public authorities. But reflecting persons perceived
that when society is itself the tyrant-society, collectively over the separate individuals who com-
pose it-its means of tyrannising are not restricted to the acts which it may do by the hands of
its political functionary. Society can and does execute its own mandates: and if it issues wrong
mandates instead or right, or mandates at all in things with which it ought not to meddle, it
practices a social tyranny more formidable than many kinds of political oppression, since, though
not usually upheld by such extreme penalties, it leaves fewer means of escape, penetrating more
deeply into the details of life, and enslaving the soul itself. Protection, therefore, against the tyr-
anny of the magistrate is not enough: there needs protection also against the tyranny of prevail-
ing opinion and feeling; against the tendency of society to impose, by means other than civil
penalties, its own ideas and rules of conduct on those who dissent from them; to fetter the devel-
opment and, if possible prevent the formation, of any individuality not in harmony with its ways,
and compel all characters to themselves upon the model of its own.

John Stuart Mill, On Liberty (1859)1
1. INTRODUCTION

This chapter explores identification problems that arise in the study of social econom-

ics. We survey some of the existing empirical work, but do so in the context of differ-

ent identification strategies. Our concern is understanding general conditions under

which the finding of evidence of social interactions is possible and when it is not;

we therefore do not focus on particular contexts. A valuable complement to our chap-

ter is Epple and Romano (this volume) who provide an integration of theoretical,

econometric, and empirical work on the specific question of peer effects in education.

While there now exists a rich literature which develops theoretical models of social

interactions, as well as an enormous number of empirical papers that purport to find evi-

dence for or against the presence of social interactions in particular contexts, the condi-

tions under which social interactions are identified have yet to be comprehensively

evaluated.2 The main identification challenges facing an empiricist are now relatively well

understood. These challenges come in three forms. One set of issues involves classical

simultaneous equations problems. This set amounts to asking whether, for an equilibrium

set of individual choices, one can differentiate between social interactions that derive
n Liberty and other Writings, S. Collini ed., Cambridge: Cambridge University Press, p. 8.

he empirical work is surveyed in Brock and Durlauf (2001b), Ioannides and Loury (2004), and Durlauf (2004).

heoretical models are surveyed elsewhere in this Handbook.
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from direct interdependences between the choices and social interactions that derive

from predetermined social factors. A second set of issues involves the possible presence

of unobserved group-level characteristics. A third set of issues addresses the identification

challenges that arise from the endogeneity of the groups that act as carriers of social inter-

actions and the effects of self-selection. The research frontier in the study of social inter-

actions thus involves efforts to achieve identification in the presence of these challenges.

We will discuss a range of results on when point or partial identification holds.

These challenges all involve the canonical identification question for social interac-

tions empirics: given an individual’s membership in some group, can the analyst distin-

guish a role for the characteristics and behaviors of others in the group in influencing

that individual’s choices? We will thus generally speak of individuals as members of

groups and describe social interactions in terms of those groups; the partial exception

to this will occur when we consider networks which will characterize social structures

across a population as a whole. In social interactions models, groups are typically defined

in terms of exogenous categories such as ethnicity, gender or religion or endogenous

categories such as residential neighborhoods, friendship networks, schools and firms.

The former, of course, may not literally be exogenous, but rather the determination of

whether an individual is a member of the category is treated as predetermined from

the perspective of the behaviors under study. The distinction between exogenous and

endogenous categories is of particular importance if one wants to use social interactions

to understand a phenomenon such as inequality; without a model of how category mem-

berships are determined a social economics theory of inequality will be incomplete.

Even for the case of exogenous categories, outstanding questions exist as to why

particular categories act as the carriers of social influence whereas others do not. To

be concrete, one could group individuals by eye color rather than race, yet there is

no serious argument that the latter helps define peer interactions and the like. Issues

of salience have received recent treatment in the economics of identity, e.g., Akerlof

and Kranton (2000; 2002) and Austen-Smith and Fryer (2005). It seems evident that

the salience of particular categories is history dependent. Loury (2002) makes a strong

argument for this to be the case in terms of racial stigma in the United States.3

This chapter ignores two important dimensions of the econometrics of social interac-

tions. First, we do not discuss issues of estimation, and refer the reader to papers such as

Aradillas-Lopez (2010), Bajari, Hong, Krainer, and Nekipelov (forthcoming), Cooley

(2008), de Paula (2009), Graham (2008), and Krauth (2006a), to see the progress that

has been made in understanding the properties of various estimators. Second, we do
3 The relationship between behaviors, group memberships and salience is, in our view, best understood in terms of

time scales. In many cases, behavior choices are on a fast time scale relative to endogenous group membership. The

time scale for membership is in turn fast relative to the process by which salience is determined. This perspective has

the potential for unifying these three features of socioeconomic environments both with respect to theory and with

respect to econometrics, but has yet to be pursued.
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not directly address the estimation of treatment effects when social interactions are pres-

ent. While we discuss the relationship between evidence of treatment effects from exper-

imental interventions in group formations, we do not discuss the evaluation of evidence

of intervention effects per se. Graham (2010) provides an extensive synthesis of work on

such questions. Similarly, we do not discuss how social interactions affect the analysis of

treatment effects; see Manski (2010) for recent work that addresses this question.

Section 2 of this chapter outlines a baseline model of decisionmaking in group con-

texts. Section 3 describes linear models of social interactions. Section 4 extends the

analysis of linear models to social network and spatial interactions models. Section 5

describes discrete choice models of social interactions. Section 6 discusses identification

in the context of experimental data. Section 7 proposes some dimensions along which

we think new directions on the identification of social interactions ought to proceed,

noting efforts that have already been made along these lines. Section 8 concludes.

We leave this introduction with a final observation. Loury’s analysis of the historical

specificity of stigma towards African Americans hints at a more general claim: empirical

evidence in the social economics literature ought not to be limited to statistical studies.

Within economics, a number of authors have produced persuasive evidence of social

interactions via clever choices of environments to study. Examples include Costa and

Kahn (2007) who show how a range of outcomes for prisoners in the U.S. Civil War

are associated with social networks and Young and Burke (2001) who show how the

terms of tenant contracts in Illinois cluster around a small set of simple fractional division

rules even though these rules are unrelated to the sorts of contracts predicted by theory.

Durlauf (2006) argues, more generally, that social psychology experiments, ethnographic

studies, and historical analyses may well provide more persuasive evidence of social inter-

actions than the existing body of formal statistical studies. We do not believe that the rel-

ative weakness of econometrically oriented studies must hold in principle. Rather, we

wish to emphasize that econometric studies of social interactions are one part of a larger

body of evidence that is relevant to their assessment and to their incorporation in policy

evaluation. In fact, one reason why we regard the continuing study of identification pro-

blems for social interactions as so important is that statistically rigorous empirical work

has, in our view, been the main source of empirical progress in the social sciences.
2. DECISION MAKING IN GROUP CONTEXTS

Our baseline model of social interactions studies the joint behavior of individuals who are

members of a common group g. The population size of a group is denoted as ng. Our objec-

tive is to probabilistically describe the individual choices of each i, oi. Choices are made

from the elements of some set of possible behaviors Oig. This set is both individual- and

group-specific, though the econometric literature has typically not exploited the fact that

different groups may offer different choices. This is an unexplored and interesting
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possibility. For each i, o�ig denotes the choices of others in the group, which are one pos-

sible source of social interactions. From the perspective of econometric evaluation, it is use-

ful to distinguish between five forms of influences on individual choices. These influences

have different implications for how one models the choice problem. These forms are:
4

5

6

xi
Li and Lee (

For purpose

case where

Throughou

See surveys

overviews o

specific theo
An R-vector of observable (to the modeler) individual-specific

characteristics;
yg
 An S-vector of observable (to the modeler) group-specific characteristics;
mei ðo�igÞ
 A probability measure, unobservable (to the modeler), that describes the

beliefs individual i possesses about behaviors of others in the group;4
ei
 A vector of random individual-specific characteristics describing i,

unobservable to the modeler; and
ag
 A vector of random group-specific characteristics, unobservable to the

modeler.
The distinction between observable and unobservable determinants of individual

choices corresponds to the standard difference between observable and unobservable

heterogeneity in econometrics, or even more crudely, between the data oig, xi, yg
and the full range of factors affecting choices. Among the different sources of unob-

served heterogeneity, mei ðo�igÞ functions very differently from ei and ag since the logic
of the choice problem determines the structure of mei ðo�igÞ in ways that do not apply to

the other terms, which are shocks from the perspective of the modeler.

Individual choices oig are characterized as representing the maximization of some

payoff function V,

oig 2 argmaxl2Oig
V ðl; xi; yg; mei ðo�igÞ; ei; agÞ: ð1Þ

The decision problem facing an individual, a function of preferences (embodied in the

specification of V ); constraints (embodied in the specification of Oig); and beliefs

(embodied in the specification of mei ðo�igÞ).5 Thus, it is based on completely standard

microeconomic reasoning. While the equilibria of these models can exhibit a range

of interesting properties, such as multiple equilibria and bifurcations of the equilibrium

properties of the environment around certain parameter values, these are properties of

equilibria generated by this standard choice framework.6

As suggested above this choice model with social interactions is closed by the

assumptions under which mei ðo�igÞ is determined. Without some structure on these
2009) consider the use of survey data to render beliefs observable; we discuss their work in section 5.vi.

s of the elucidation of the basic theory of choice in the presence of social interactions, we focus on the

beliefs are latent variables.

t, probability measures are denoted by m(�).
by Blume and Durlauf (2001), Brock and Durlauf (2001b) and Durlauf and Ioannides (2010) for

f these and other theoretical features of these models as well as the bibliographies of these papers for

retical contributions.



859Identification of Social Interactions

Author's personal copy
beliefs, the model is consistent with any observed pattern of undominated choices. The

standard assumption in the theoretical and econometric literatures, which we follow,

closes the model by imposing an equilibrium condition: self-consistency between sub-

jective beliefs mei ðo�igÞ and the objective conditional probabilities of the behaviors of

others given i’s information set Fi,

mei ðo�igÞ ¼ mðo�igjFiÞ: ð2Þ
The requirement in (2) is usually called self-consistency in the social interactions litera-

ture and is nothing more than an equilibrium condition, from the perspective of empiri-

cal analysis. We assume that for each i, Fi consists of, for all (xj)j2g, yg, ei and ag. In other

words, each agent knows his own characteristics xi, as well as those of others in the

group, the observed and unobserved group-level characteristics of his group (and of other

groups), and his idiosyncratic error. Agents do not observe the ej’s of others.
From the perspective of modeling individual behaviors, it is typically assumed that agents

do not account for the effect of their choices on the decisions of others via expectations

formation.The equilibrium in thismodel can be seen as a Bayes-Nash equilibriumof a simul-

taneous-move incomplete-information game. The individual decisions are described by

oig ¼ cðxi; yg;mðo�igjFiÞ; ei; agÞ: ð3Þ
Existence of an equilibrium for the group-wide vector of choices og is equivalent to

establishing that there exists a joint probability measure of these choices such that (3) is

consistent with this joint probability measure. In applications in the literature, this is typ-

ically assured by a standard fixed point theorem, e.g., Brock and Durlauf (2001a), Cooley

(2008). Notice that it is possible for yg and m(o�igjFi) to appear in equation (1) but not in

equation (3). In this case, group behaviors and characteristics act as externalities but do

not influence individual behaviors. This distinction is discussed in Cooper and John

(1988). From the perspective of the empirical study of social interactions, equation (3)

has been the main object of interest. Typically, (3) is assumed to exhibit a form of super-

modularity in the sense that the redistribution of probability mass of m(o�igjFi) towards
larger (in an element-by-element pairwise comparison sense) vectors of choices of others

increases oig. Milgrom and Roberts (1990) and Vives (1990) launched the now immense

literature in economics on how supermodularity affects equilibrium outcomes for a wide

range of environments; ideas from this literature often indirectly appear in the empirical

social interactions literature, but with the exception of Aradillas-Lopez (2009), discussed

in section 5.vi.d, this literature has been underutilized in the study of identification.

The distinction between yg and m(o�igjFi) is important in the social econometrics

literature. Following Manski (1993), the former is known as a contextual effect whereas

the latter (including the case of perfect foresight) is known as an endogenous effect.

The importance of this distinction is that contextual interactions involve the interac-

tions of predetermined (from the perspective of the model) attributes of one agent
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affecting another whereas endogenous interactions allow for the possibility of simulta-

neity of interactions in individual outcomes.

To see how identification problems arise in a social interactions explanation of

inequality, consider the stylized fact that the probability that a student graduates from

high school is negatively associated with growing up in a poor neighborhood. Among

the many possible explanations for this bivariate relationship are the following:

1. Heterogeneity in educational outcomes is determined by family-specific invest-

ment. Poor parents, following Becker and Tomes (1979) or Loury (1981), invest

fewer resources in their children’s education. If parental income is a sufficient statis-

tic for parental investment, then the mechanism for lower graduation rates among

poorer individuals is observable, constituting an element of xi. The low graduation

rate/poor neighborhood relationship is due to the interfamily correlation of low

incomes that defines a poor neighborhood.

2. Effort choices by students depend on their assessments of the payoff to education.

Poor neighborhoods contain distributions of role models that adversely affect educa-

tional choices. If a poor neighborhood tends to contain individuals whose incomes

are relatively low compared to educational levels (as would occur via self-selection

of lower incomes into poor neighborhoods), then the payoff to education may appear

less attractive to high school students and thereby affect effort in high school as well as

graduation decisions.7 Relative to our candidate explanations, observed occupations,

and educational levels of adults in a community are observable, and so are included in

elements of yg. This is an example of how contextual effects can link poverty and low

graduation rates.

3. High school graduation decisions are influenced by the choices of peers because of a

direct desire to conform to the behaviors of others. Poorer neighborhoods have the

feature that low values of the m(o�igjFi) are self-reinforcing, whereas high values of

the m(o�igjFi) are self-reinforcing for more affluent neighborhoods. Thus endoge-

nous social interactions can explain the relationship, although one has to be careful

to explain why the peer interactions lead to lower graduation rates in poorer neigh-

borhoods. We can offer three possible explanations: (i) The unique equilibrium

could be characterized by a social multiplier that magnifies the consequences of

income differences. (ii) In the spirit of Brock and Durlauf (2001a), there could be

multiple equilibria in low-income neighborhoods but not in more affluent neighbor-

hoods, because the poor may face lower marginal returns to education, which would

magnify the influence of peer interactions relative to education returns in the equilib-

rium decision rule. (iii) There could be multiple equilibria for both high and low
7 Streufert (2002) formalizes this type of idea and shows that the intuitive story just given is in fact oversimplified in the

sense that the mapping from neighborhood levels of parental education/outcome relationships to student assessments

of the returns to education may not lead to lower estimates of the returns in poorer neighborhoods but the story we

describe is possible.
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income neighborhoods, and an (unmodeled) selection mechanism could favor differ-

ent equilibria in different neighborhoods in a manner correlated with income.

4. Parents transmit a host of skills to their children. Following Cunha and Heckman

(2007) and Heckman (2007), suppose that poorer parents tend to have lower cog-

nitive and noncognitive skills, which help to explain their lower socioeconomic sta-

tus and are in turn transmitted to their children. This would imply that correlations

among ei are the reason why poor neighborhoods have lower graduation rates. This is

an example of correlated unobservables and is suggestive of the standard self-selection

problem in econometrics.

5. Graduation decisions are affected by the quality of schools, where quality involves a

host of factors ranging from the distribution of teacher ability to safety. Poorer

neighborhoods have lower unmeasured school quality, then neighborhood poverty

is a proxy for a low value of ag, i.e., the graduation finding is caused by an unob-

served group effect.

The bottom line is that each of the factors we have identified as determinants of

individual outcomes can produce a relationship between individual outcomes and

neighborhood characteristics, even when the mechanism is individual and not socially

based. Of course, no economist would ever consider arguing that the fact that poor

neighborhoods are associated with lower graduation rates speaks to any of these

mechanisms per se. The identification question is whether these different explanations

are distinguishable given the sorts of data that are available for analysis. It is this ques-

tion that motivates the methods we describe.

We close this section with the observation that the behavioral model (3) cannot be

nonparametrically identified without additional assumptions on structure. One reason

for this is the possible existence of the unobserved group effects ag which cannot be

disentangled from elements of yg: Formally, there exist classes of models such that for

any proposed function f(�) and associated choices of unobservables ag, one can choose

an alternative function f0 and alternative choice of unobservables a0g such that all prob-

ability statements about the observables are identical. Brock and Durlauf (2007) show

this for the binary choice model with social interactions which contains far more struc-

ture than (3), a model we will discuss in section 5 below.

Nonparametric identification may also fail even if one rules out unobserved group

effects; Manski (1993) Proposition 3 gives various cases under which nonparametric

identification fails for a version of the individual decision function equation (3). Specif-

ically, Manski studies an environment in which the expected value of each person’s

choice is determined by8

Eðoigjyg; xiÞ ¼ fðEðoigjygÞ; xiÞ: ð4Þ
8 Appendix 1 contains an example of a model where this is a Bayes-Nash equilibrium condition.
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Each individual is small relative to the population, producing the rational expectations

equilibrium condition

EðoigjygÞ ¼
ð
Eðoigjyg; xÞdFxjyg ð5Þ

where Fxjyg is the conditional distribution function of xi in group g given yg. To say

each individual is small is to say that knowledge of his own xi does not affect the dis-

tribution function of individual characteristics within his group in a non-negligible

way. For the joint model (4) and (5) one set of conditions under which nonparametric

identification fails are 1) the solution to equation (5) is unique and 2) xi is functionally

dependent on yg. It is evident under these conditions that one cannot nonparametri-

cally identify the separate effects of xi and yg in determining oig since differences in out-

comes between two individuals with differences in xi can always be attributed to the

differences in their associated values of yg.

To make this example concrete, suppose that xi is an individual’s income and yg is

the mean income of a residential neighborhood. Functional dependence would occur if

neighborhoods were perfectly segregated by income, i.e., no neighborhood contained

individuals with different incomes. For this case, it would impossible to distinguish the

roles of individual and neighborhood incomes on outcomes since they would coincide.

Less trivially, suppose that neighborhoods are fully segregated by income, which means

that the empirical supports of incomes across neighborhoods never intersect. Suppose

that individual income has no direct effects on outcomes whereas average neighbor-

hood income has a monotonic effect on equilibrium outcomes. In this case, one could

not distinguish an effect of neighborhood incomes on outcomes from the case where

individual incomes directly affect outcomes, but do so in a step function fashion, where

the jumps coincide with income levels that define the lower endpoints of the neigh-

borhood income supports.

Manski also shows that identification will fail when xi and yg are statistically inde-

pendent. Nonidentification follows from statistical independence because E(oigjyg) will
not vary across groups, and so the effect cannot be distinguished from a constant term.

An obvious example of this would occur if families were distributed across neighbor-

hoods in such a way that each neighborhood had the same mean income in realization.

Manski’s result is in fact more general and is based on the observation that statistical

independence implies that E(oigjyg) ¼
Ð
f((E(oigjyg), x)dFx, which by uniqueness means

that E(oigjyg) must be independent of yg.
9

The implication of the cases where nonparametric identification fails is that identi-

fication of the models that fall into those cases will require various classes of assump-

tions that are not well motivated by economic theory, such as restrictions on
9 The argument may be seen in Manski (1993, p. 539).
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functional forms. One might argue that this means that social interactions empirics

should focus on natural or quasi-natural experiments. We reject this position for several

reasons. First, we strongly concur with general arguments made by Heckman (2000,

2005, 2008) on the nature of empirical economics. The types of empirical questions

one cares about in studying social interactions, such as counterfactuals, are always prop-

erties of models and therefore require assumptions; good empirical work involves asses-

sing factors such as robustness rather than rejecting assumptions per se. Second, the fact

that an empirical claim is conditioned on an assumption that is not suggested by eco-

nomic theory begs the question as to the degree of plausibility of the assumption.

For example, in our earlier discussion of nonidentification of individual income versus

residential neighborhood income effects, the model needed to explain outcomes exclu-

sively as a function of individual incomes required that the mapping between the

expected outcome and individual income follows a step function structure where the

changes were coincident with income levels that defined the levels that separated

neighborhoods. In our view, this is a relatively implausible assumption compared to

a linear model. Again, these types of judgments are the stuff of science. Finally, we will

argue that experimental and quasi-experimental analyses are also dependent on assump-

tions that are not justified by economic theory. Evidence of social interaction effects

based on econometric models with nonexperimental data should be treated with a

modesty, which reflects the degree of belief one is willing to place on identifying

assumptions, but should not be dismissed altogether.
3. LINEAR MODELS OF SOCIAL INTERACTION

i. Basic structure
a. Description
Much of the empirical literature on social economics has involved variations of a

general linear model, dubbed by Manski (1993) the linear-in-means model

oig ¼ kþ cxi þ dyg þ Jme
ig þ ei; ð6Þ

where me
ig denotes the average behavior in the group, i.e.,

me
ig ¼

1

ng

X
j2g

EðojjFiÞ: ð7Þ

Following our definitions of the variables, note that k and J are scalars whereas c and d

are R- and S-vectors, respectively.10 Claims about social interactions are, from the

econometric perspective, equivalent to statements about the values of d and J. The

statement that social interactions matter is equivalent to the statement that at least
10 Throughout, coefficient vectors such as c are row vectors whereas variable vectors such as xi are column vectors.
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some element of the union of the parameters in d and the scalar J are nonzero. The

statement that contextual social interactions are present means that at least one ele-

ment of d is nonzero. The statement that endogenous social interactions matter

means that J is nonzero. In Manski’s original formulation, yg ¼ �xg, where

�xg ¼ 1
ng

P
j2gxj denotes the average across individuals i of individual characteristics xi

within a given group g, which explains the model’s name. Regardless of whether

they are equal, we assume that both yg and �xg are observable to individuals, and dis-

cuss how to relax this below.

The linear in means model is typically invoked without any explicit attention to

individual decision problems and associated equilibria as described in section 2. Appen-

dix 1 provides an explicit derivation of the model from individual decision problems

and shows how (6) describes the unique decision rules in a Bayes-Nash equilibrium

under a particular functional form assumption on individual preferences.

We initially study the model under two assumptions on the errors. First we assume

that the expected value of ei is 0, conditional on the information set (xi, �xg, yg, i 2 g),11

for each g and i 2 g Eðeijxi; �xg; yg; i 2 gÞ ¼ 0: ð8Þ
Second we assume that

for each i; j; g; h such that i 6¼ j or g 6¼ h

cov ðeiejjxi; xg; yg; i 2 g; xj; xh; yh; j 2 hÞ ¼ 0:
ð9Þ

Equation (9) eliminates conditional covariation between the errors. The inclusion of

the group memberships, e.g., i 2 g, rules out some relationship between the identity

of the group and model errors, thereby allowing us to treat groups as exchangeable.

From equations (6) and (7), and assuming that each individual is small enough rela-

tive to the group that the effect of his knowledge of his own ei on me
ig can be ignored,

equilibrium implies that each actor’s expected average behavior will be equal to a com-

mon value. This common value is derived in appendix 1 and is described by

me
ig ¼ mg � kþ c�xg þ dyg

1� J
: ð10Þ

This equation says that the individuals’ expectations of average behavior in the group

equal the average behavior of the group, and this in turn depends linearly on the aver-

age of the individual determinants of behavior, �xg, and the contextual interactions that

the group members experience in common, yg. The condition J < 1, which is required

for equation (10) to make sense, is guaranteed to hold in the game-model of appendix

1. There, J maps the marginal rate of substitution between private return and social

conformity, a non-negative real number, into the interval [0, 1).
11 The conditioning argument i 2 g means that one is conditioning on the fact that i is a member of group g.
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b. Reduced form
Substitution of (10) into (6) eliminates mg and so provides a reduced form version of

the linear in means model in that the individual outcomes are determined entirely by

observables and the individual-specific error:

oig ¼ k

1� J
þ cxi þ J

1� J
c�xg þ d

1� J
yg þ ei: ð11Þ

Much of the empirical literature has ignored the distinction between endogenous and

contextual interactions, and has focused on this reduced form, i.e., focused on the

regression

oig ¼ p0 þ p1xi þ p2yg þ ei; ð12Þ
where the parameters p0, p1, p2 are taken as the objects of interest in the empirical exer-

cise. A comparison of (12) with (11) indicates how findings in the empirical literature

that end with the reporting of p0, p1, p2 inadequately address the task of fully character-
izing the social interactions that are present in the data. For example, from the perspec-

tive of (12), the presence of social interactions is equivalent to p2 6¼ 0, whereas from

the perspective of (6) this is neither necessary nor sufficient for social interactions to

be present since J ¼ 0 is neither necessary nor sufficient for p2 ¼ 0. To be clear, this

observation does not mean that estimates of (12) are uninformative, rather that these

estimates should be mapped to structural parameters in the sense of (6) when identifica-

tion holds, and that if identification does not hold, then the informational limits of (12)

in terms of distinguishing types of social interactions should be made explicit.

Equation (12) is nonetheless the source of much of the current econometric evi-

dence on social interactions. Datcher (1982) should be regarded as a seminal contribu-

tion to the social economics literature since it appears to be the first empirical study to

propose (11) as an estimating equation. Her empirical specification has generally

remained the empirical standard despite the importance that Manski (1993) subse-

quently attached to the contextual versus endogenous distinction in econometric work.

An exception is Gaviria and Raphael (2001), although they do this by arguing that

contextual interactions are not relevant for their context, teen behaviors.

The reduced form version of the linear in means model illustrates some features of the

structure that are of interest. First, the linear in means model limits the effects of reallo-

cations of individuals across groups. To see this, suppose one thinks of each choice in the

population as oig ¼ f(xi, yg) þ ei. Suppose that yg is a scalar and that yg ¼ �xg. This means

that oig ¼ f(xi, x�ig) þ ei, where x�ig denotes the vector of individual characteristics

other than xi among group g members with typical element x�ijg. Finally, assume all

groups are of equal size. Under the linear functional form (11), for all j, @2f/@xix�ijg

¼ 0. This is the condition under which all allocations of individuals across groups pro-

duce the same expected population-wide average outcome for
P

j2g ojg. This was first
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recognized in Becker’s (1973) analysis of efficiency in the marriage market, in which

groups are of size 2 and naturally extends to groups of any size. (See Durlauf and Seshadri

(2003).) It is the case, extending an example of the type in Durlauf and Seshadri (2003),

that if groups are of different sizes, the reallocation of individuals across them can affect

average outcomes. This nonetheless does not diminish the qualitative point that the fact

that all cross partial derivatives equal 0 in the reduced form of the linear in means model

severely restricts the effects of reallocations of group memberships.

Second, if policies are available to influence xi and/or yg, then these interactions can

be identified even if the structural parameters are not identified. This observation is ela-

borated in Manski (2010) who emphasizes the distinction between structural model

identification and potential outcomes identification, which lies at the heart of treatment

effect analysis. Another way to think about this distinction is that for many policy con-

texts, the structural model is of no intrinsic interest. Brock, Durlauf, and West (2003)

argue that this is the case for a range of macroeconomic contexts. However, this type

of identification will not allow the policy analyst to address issues where the endoge-

nous social interactions are themselves of fundamental policy relevance, as may be

the case if these interactions alter the distribution of individuals across groups.

ii. Instrumental variables and the reflection problem
We first consider the estimates of the regression coefficients for (6) under the expecta-

tions formation restriction (10). It is obvious that if �og is projected against the union of

elements of �xg and yg, this produces the population mean mg. Hence, we can proceed as

if mg is observable. Put differently, our identification arguments rely on the analogy

principle which means that one works with population moments to construct identifi-

cation arguments.12 Since yg appears in (10), it will not facilitate identification. As we

shall see, identification via instrumental variables is determined by the informational

content of �xg relative to yg.

As first recognized by Manski (1993), identification can fail for the linear in means

model when one focuses on the mapping from reduced form regression parameters to

the structural parameters. This may be most easily seen under Manski’s original

assumption that yg ¼ �xg. This means that every contextual effect is the average of a

corresponding individual characteristic. In this case, equation (10) reduces to

mg ¼ kþ ðc þ dÞyg
1� J

: ð13Þ

This means that the regressor mg in equation (6) is linearly dependent on the other

regressors, i.e., the constant and yg. This linear dependence means that identification

fails: the comovements of mg and yg are such that one cannot disentangle their respec-

tive influences on individuals. Manski (1993) named this failure the reflection problem.
12 Goldberger (1991, p. 117) gives a concise description.
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Metaphorically, if one observes that oig is correlated with the expected average behav-

ior in a neighborhood, (13) indicates it may be possible that this correlation is due to

the fact that mg may simply reflect the role of yg in influencing individuals.

Under what conditions is this model identified? A necessary condition is that

Manski’s assumption that yg ¼ �xg is relaxed. This will allow for the possibility mg is

not linearly dependent on the constant and yg. The reason for this is the presence

of the term c�xg/(1�J ) in equation (10). This term can break the reflection problem.

This will happen if the c�xg/(1�J ) term is not linearly dependent on a constant and yg.

When this is so, mg cannot be linearly dependent on the other regressors in equation

(10). This immediately leads to the argument in Brock and Durlauf (2001b) that a

necessary condition for identification in the linear in means model, is that there exists

at least one element of xi whose group level average is not an element of yg, while

Durlauf and Tanaka (2008) provide a sufficient set of conditions. Necessity and suf-

ficiency can be linked as follows. Let proj(ajb, c) denote the linear projection of the

scalar random variable a onto the elements of the random vectors b and c.13 Consider

the projections proj(ogj1, yg, �xg) and proj(ogj1, yg), where 1 is simply a random vari-

able with mean 1 and variance 0, corresponding to the constant term in (6). The first

projection provides an optimal linear forecast (in the variance minimizing sense) of

the group average choice, �og ¼ (1/ng)
P

i2g oig, conditioning on the random vari-

ables defined by 1 and the elements of yg and �xg, whereas the second projection pro-

vides the optimal linear forecast when only 1 and the elements of yg are used. The

difference between the two projections thus measures the additional contribution

to predicting �og beyond what can be achieved using �xg in addition to 1 and yg. When

this marginal contribution is nonzero, then it is possible to estimate equation (10)

using instrumental variables for �og or equivalently estimate (6) when (10) is imposed

by instrumenting mg.
14 Formally,

Theorem 1. Identification in the linear in means model. Identification of the

parameters k, c, J and d requires that proj(�ogj1, yg, �xg) � proj(�ogj1, yg) 6¼ 0.

The intuition for the theorem is simple; identification requires that one can project

�og (equivalently) onto a space of variables such that the projection is not collinear with

the other regressors in the model. As such, the theorem verifies that identification in

the linear in means model is a species of identification of a linear simultaneous equa-

tions system, as argued above.15

Theorem 1 was derived under the assumption that �xg and yg are known to the indi-

vidual decisionmakers at the time that their choices are made. This assumption is a
13 Formally, this is the projection of a onto the Hilbert space generated around the elements of b and c where the inner

product between any two elements is the expected value of their product so that the metric measuring the length of

an element is the square root of the inner product of an element with itself.
14 Recall that in equilibrium, proj(�ogj1, yg, �xg) ¼ proj(mgj1, yg, �xg) and proj(�ogj1, yg) ¼ proj(mgj1, yg).
15 The conditions of the theorem do not preclude a functional dependence of xi on yg, which, combined with the

uniqueness of mg, means that the nonparametric analog to the model is not identified, following Manski (1993,

Proposition 3). This observation builds on discussion in Manski (1993, p. 539).
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strong one and further may appear to be inconsistent with our assumption that �og is

unobservable to them. This latter concern is not tenable: in a context such as residential

neighborhoods, it is possible for a contextual effect such as average income to be

observable whereas the school effort levels of children in the neighborhood are not.

However, it is important to understand the implications of relaxing informational

assumptions on identification. This is the contribution of Graham and Hahn (2005).

The models they study can be subsumed as variants of a modified version of

equation (6):

oig ¼ kþ cxi þ dEðygjFÞ þ Jmg þ ei ð14Þ
where individuals are assumed to possess a common information set F. As such, it is

clear that the conditions for identification in theorem 1 are easily generalized. One

simply needs a set of additional instruments qg such that the elements of qg can jointly

instrument E(yg) and mg. As they observe, the variables qg constitute exclusion restric-

tions and so require prior information on the part of the analyst. For their context, yg is

a strict subset of �xg, so it is difficult to justify the observability of those elements of �xg
that do not appear in yg when the others are by assumption not observable. In our

view, the appropriate route to uncovering valid instruments qg, under the Graham

and Hahn information assumptions, most likely requires the development of an auxil-

iary model of xi and hence �xg. In other words, Graham and Hahn’s concerns reflect the

incompleteness of (14) in the sense that the individual characteristics are not themselves

modeled. Hence, we interpret their argument as one that calls for the embedding of

outcomes such as (14) in a richer simultaneous equation system, possibly one including

dynamics, which describes how individual characteristics are determined. We fully

agree with Graham and Hahn that in isolation, finding valid instruments for (14) is dif-

ficult, but would argue that this difficulty reflects the limitations of studying oig in iso-

lation rather than as one of a set of equilibrium outcomes.

We now evaluate the reflection problem for some econometric models that differ

from (6) in various ways that are common in empirical work. Once one considers

econometric structures outside the linear cross-section framework, the reflection prob-

lem may not arise, even if there is a one-to-one correspondence between individual

and contextual interactions. We consider three alternative structures.
a. Partial linear in means models
The linear structure in (6) is typically only theoretically justified under strong func-

tional form assumptions for utility, as shown in appendix 1, which leads to the question

of whether relaxation of the linearity assumption affects identification. One such relax-

ation is studied in Brock and Durlauf (2001b) and involves a particular nonlinear gen-

eralization of (6) under rational expectations

oig ¼ kþ cxi þ dyg þ JmðmgÞ þ ei: ð15Þ
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This type of structure is known as a partial linear model. Brock and Durlauf establish that

the parameters of this model are identified for those elements of the space of twice dif-

ferentiable functions, for known m(mg), so long as @2mðmgÞ=@m2
g 6¼ 0, outside of nonge-

neric cases. The intuition is straightforward; the reflection problem requires linear

dependence between group outcomes and certain group-level aggregates, which is ruled

out by the nonlinearity in (15). Note that there does not exist any identification results, as

far as we know, if the functional form for m(mg) is unknown, so in this sense the identifi-

cation of (15) does not exploit results from the semiparametric literature on partial linear

models.16

The finding that partial linear variants of (6) do not suffer from the reflection problem

is not a surprise from the perspective of the simultaneous equations literature. McManus

(1992), in what appears to be an underappreciated paper, illustrates how for a broad class

of parametric nonlinear simultaneous equations models, subsets of nonidentified models

are nongeneric. For example, McManus (1992, p. 8) shows in his pedagogical example

that “. . .First the set of d values which correspond to identified (non identified) models

forms an open and dense (nowhere dense) subset of the real line. . .” He develops a gen-

eral argument which formalizes this basic idea. Brock and Durlauf (2001b, p. 3371) adapt

McManus’s argument to show that “. . .the local nonidentification of the linear-

in-means model can be perturbed away by a C2-small change.” See Brock and Durlauf

(2001b, Chap. 54) for the details of this extension to social interaction models.

This example of generic identifiability of a nonlinear in means model illustrates the

importance of treating the quadratic utility function in appendix 1 as the true prefer-

ence specification as opposed to regarding it as some sort of second-order approxima-

tion. As a second order approximation, the preference specification leads to erroneous

conclusions about identification. Interestingly, a corresponding set of findings have

been developed by Ekeland, Heckman, and Nesheim (2004) in the context of hedonic

models. These authors show that previous claims of lack of identification in hedonic

models are special to linear specifications that derive from a quadratic utility specifica-

tion. While the arguments as to why identification holds for preferences outside the

quadratic case, the hedonic context provides another demonstration of how the use

of quadratic approximations can lead to misleading conclusions on identifiability for

economically important environments.

b. Dynamic linear models
Similarly, dynamic analogs of the linear in means model may not exhibit the reflection

problem. Brock and Durlauf (2001b) illustrate this with the dynamic social interactions

model

oigt ¼ kþ cxit þ dygt þ bmgt�1 þ eit;
16 See Tamer (2008) for a survey.
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where for all s, t 6¼ 0,

cov ðeit; eit�sÞ ¼ 0: ð16Þ
This model avoids linear dependence between the contextual and endogenous vari-

ables since

mgt ¼ kþ c�xgt þ dygt

1� bL
ð17Þ

where L is a lag operator. Equation (17) implies that mgt depends on the entire history

of �xgt and ygt. This model is essentially backwards looking and is driven by the idea

that current behaviors are directly affected by past beliefs. A more natural approach,

of course, is to consider how beliefs about the future affect current behaviors. An

example of a model in this class is

oigt ¼ kþ cxit þ dygt þ bmgtþ1 þ eit ð18Þ
where (16) is again assumed. This model is equivalent to the workhorse geometric

discount model in rational expectations (Hansen and Sargent, 1980).

The equilibrium average choice level for a group equals, following Hansen and

Sargent,17

mgt ¼ k

1� b
þ
X1
s¼0

bsEtðc�xgtþs þ dygtþsÞ: ð19Þ

It is immediate from (19) that the regressors in (18) are linearly independent so long as

�xgt and ygt are not both random walks. Identification of this class of dynamic models

was originally studied in Wallis (1980) and has recently been explored in Binder and

Pesaran (2001).

c. Hierarchical models
In fields such as sociology, social interactions are typically explored using hierarchical

models, i.e., models in which contextual interactions alter the coefficients that link

individual characteristics to outcomes. See Bryk and Raudenbush (2001) for a full

description of the method. The reason for this appears to be a different conceptualiza-

tion of the meaning of social interactions in economics in comparison to other social

sciences. Hierarchical models appear, in our reading, to be motivated by a view of

social groups as defining ecologies in which decisions are made and matter because dif-

ferent social backgrounds induce different mappings from the individual determinants

of these behaviors and choices, cf. Raudenbush and Sampson (1999). Economics, in

contrast, regards the elements that comprise endogenous and contextual social interactions

as directly affecting the preferences, constraints, and beliefs of agents and so treats them as
17 In this formulation we restrict ourselves to fundamental solutions of the expected average choice level. The

possibility of a nonfundamental solution, i.e., bubbles, is not germane to the discussion.
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additional determinants to individual specific characteristics, xi. That said, there do not

exist formal arguments for favoring one approach versus another at an abstract level. At

the same time, the additivity assumption in both approaches is ad hoc from the perspective

of economic theory, even if the assumption is ubiquitous in empirical practice.

For hierarchical models, there has been no attention to the reflection problem. The

only exception of which we are aware is Blume and Durlauf (2005). Here we modify

the Blume and Durlauf analysis and consider a formulation that closely follows the con-

ceptual logic of hierarchical models in that social interactions are entirely subsumed in

the interactions on parameters. Formally, this means that individual outcomes obey

oig ¼ kg þ cgxi þ ei ð20Þ
with individual- and group-specific components obeying

kg ¼ kþ dyg þ Jmg ð21Þ
and

cg ¼ c þ y0gCþ mgc ð22Þ
respectively. In (22), C is a matrix and c is a vector. We omit any random terms in

(21) and (22) for simplicity, although hierarchical models typically include them. This

formulation assumes that the endogenous effect directly affects the individual level

coefficients and so differs from the Blume and Durlauf example. Imposing rational

expectations, the hierarchical model described by (20)-(22) is equivalent to the linear

model

oig ¼ kþ cxi þ dyg þ Jmg þ y0gCxi þ mgcxi þ ei: ð23Þ
Hence, the difference between the linear model used in economics and the hierarchical

structure is the addition of the terms y0gCxi and mgcxi by the hierarchical model to

equation (6). Thus, the hierarchical model does nothing deeper than add the cross pro-

ducts of variables in (6) to allow for nonlinearity. As such, the approach is far behind

the econometrics literature on semiparametric methods, which allows for much deeper

forms of nonlinearity. On the other hand, the use of cross products of variables is still

common in empirical economics.

Can this model exhibit the reflection problem? The self-consistent solution to (23) is

mg ¼
kþ c�xg þ dyg þ y0gC�xg

1� J � c�xg
: ð24Þ

Recall that the reflection problem necessarily emerged in (6) when yg ¼ �xg. If we
impose this condition in the hierarchical model, (24) becomes

mg ¼
kþ ðc þ dÞyg þ y0gCyg

1� J � cyg
: ð25Þ
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Equation (25) makes clear that the relationship between mg and the other regressors is

nonlinear. Further, the presence of y0gCyg in the numerator and �cyg in the denomi-

nator ensures that linear dependence will not hold, except for hairline cases, so long as

there is sufficient variation in xi and yg.

Hierarchical models thus exhibit different identification properties from linear in

means models because their structure renders the endogenous effect mg a nonlinear

function of the contextual interactions yg (and also a nonlinear function of �xg if this var-
iable is distinct from yg). The reflection problem can thus be overcome without prior

information about the relationship between �xg and yg. However, this does not mean

that users of hierarchical models of social interactions can ignore the possibility of

endogenous social interactions and only focus on contextual effects. The nonlinear

relationship between mg and yg means that the failure to account for endogenous social

interactions in hierarchical models will lead to inconsistent estimates of the contextual

effect parameters. Further, hierarchical models cannot be used to evaluate the interac-

tions of changes in different variables, or the interactions on individual outcomes of

altering group memberships, e.g., by changing school district boundaries.18 These types

of policy interventions will depend on the value of all the social interactions parameters

and the attendant nonlinearity described by equation (25). Hierarchical models thus

contrast with the linear in means example given in Manski (2010) where policy evalu-

ation does not require knowledge of all parameters.

Do these cases imply that the reflection problem is a special one, i.e., that it only arises

for cross-sectional data and linear models which together render instrumental variable

requirements difficult? We believe that this would be an incorrect assessment of the

importance of Manski’s result. While alternative specifications may imply that identifica-

tion holds per se, it may also be the case that mg is highly correlated with combinations of

the other determinants of individual outcomes. Even if identification holds, parameter

estimation may be highly imprecise, for the exact same reasons that the reflection prob-

lem leads to nonidentifiability in some contexts. Therefore, we regard the reflection

problem as a fundamental difficulty in estimating social interactions.

iii. Variance-based approaches
As noted above, a second route to identification of the linear in means model may be

derived from the covariance structure model errors. This approach is discussed in classic

treatments of identification such as Fisher (1966) and relies on strong prior information

on the covariance structure of a given model’s errors. In general, this approach to iden-

tification became unpopular in economics because modern econometrics has empha-

sized the relaxation of assumptions on error structures, as manifested in the work on
18 The argument we make with respect to assessing changes in group memberships is an example of the discussion

found in section 3.i.b concerning the special implications of the linear in means model for the aggregate effects of the

reallocation of individuals across groups.
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heteroskedastic and autocorrelation consistent covariance matrix estimation initiated by

White (1980).19 This emphasis on econometric analysis under weak assumptions on

errors is properly regarded as a major breakthrough since in many socioeconomic con-

texts, assumptions such as homoskedasticity have no theoretical justification. To the

extent that theory does constrain the stochastic processes for model errors, modern

econometrics has focused on incorporating this dependence into the empirical analysis.

Heckman (2001) gives an overview of this perspective for microeconomics, which is of

course the locus of social interactions. It is therefore unsurprising that most work on

empirical social economics has avoided exploiting covariance restrictions as a source

of identification.

That said, one can imagine contexts where strong assumptions are relatively appealing.

One example is randomized experiments in which exchangeability of the individuals can

be invoked and so assumptions of independence and identical errors can be justified by

appeal to deFinetti’s Theorem, which in essence says that the probability measure for

an infinite exchangeable sequence of random variables can be written as a mixture of joint

probability measures for i.i.d. random variables; since one of the components of the mix-

ture is realized in the data, we can treat the data as if it were i.i.d.20 This is the sort of con-

text that motivated a strategy developed in Graham (2008) to uncover social interactions

via covariance restrictions for Project Star, an experiment designed to study the conse-

quences of classroom size. In Project Star students were randomly distributed across classes

of different sizes; teachers were randomly assigned as well.

To see how this approach, which Graham refers to as the method of variance con-

trasts, works, we employ a simplified version of his model, which assumes that individ-

ual outcomes are affected by the realized mean outcomes in classrooms,21

oig ¼ J �og þ ei ¼ Jmg þ ei þ J�eg: ð26Þ
Individual and contextual interactions are thus assumed away, which renders the instru-

mental variable strategies we have described for identification impossible. Graham

further assumes that the individual errors obey

var ðeiji 2 GÞ ¼ s2e ð27Þ
and

for i 6¼ j; cov ðeiejji; j 2 gÞ ¼ 0: ð28Þ
Graham’s insight, which builds on earlier work by Glaeser, Sacerdote, and Scheinkman

(1996) (which will be discussed in the context of discrete choice models) is that the

presence of J affects the variance of oig and may be used for identification. For this
19 See West (2008) for an overview.
20 See Bernardo and Smith (1994, section 4.2) for discussion.
21 Graham allows for unobserved group level effects, which we consider below.



874 Lawrence E. Blume et al.

Author's personal copy
model, one can think of the outcomes as generated by a reduced form in which the

errors fully determine the outcomes, in other words, all information about the model

parameters is embedded in the variance covariance matrices of the various og’s.

Graham shows that for the model (26), under assumptions (27) and (28):

var ðogÞ ¼ Ing �
J

ng
ing

� ��2

s2e ; ð29Þ

where Ing is an ng � ng identity matrix and ing is a ng � ng matrix of 1’s. Equation (29)

implies that if there are two groups with different sizes, one can use the differences in

the intergroup outcome variances to identify J. Following Graham, this result follows

intuitively from the fact that for larger groups the variance in �og is smaller. We should

note that the assumption expressed by (28) is stronger than what can be justified by

exchangeability of the individual errors per se. Durlauf and Tanaka (2008) explicitly

show that Graham’s results follow if one starts with exchangeability of the individual

errors and further assumes that error variances are independent of classroom size.

iv. Unobserved group effects
As suggested in the introduction, one of the major limits to identification of social

interactions is the presence of unobserved group-level heterogeneity. To introduce this

factor, we modify (6) to

oig ¼ kþ cxi þ dyg þ Jmg þ ag þ ei; ð30Þ
where rational expectations is imposed as in (10). The associated reduced form

for (30) is

oig ¼ k

1� J
þ cxi þ J

1� J
c�xg þ d

1� J
yg þ 1

1� J
ag þ ei: ð31Þ

It is evident from (31) that correlation of ag with the regressors in the equation can lead

to identification problems. It is hard to see how one can rule such correlations out. For

example, correlation with xi naturally arises from self-selection and correlation with yg
naturally arises from imprecise or incomplete measurement of group contextual effects.

a. Instrumental variables
One approach to dealing with unobserved group level heterogeneity in (30) or (31) is the

use of instrumental variables. This approach is generally difficult to justify in addressing

unobserved group characteristics for both the linear in means and other models. The rea-

son for the difficulty is that ag is itself undertheorized, in other words, this term captures

aspects of a group that affect outcomes which the model does not explicitly describe.

Beyond this, valid instrumental variables require the property that they have been

excluded from (30) as either individual or contextual determinants of outcomes. It is hard

to see how, in typical socioeconomic contexts, such instruments may be found, since the
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instruments must be known on a priori grounds to be uncorrelated with both the under-

theorized ag and ei. Social interactions models are typically what Brock and Durlauf

(2001c) have termed openended, which means that their theoretical structure does not

naturally identify variables to exclude from equations such as (30). In other words, social

interactions theories are openended because the presence of a given type of social inter-

action does not logically preclude the empirical relevance of other theories; the econo-

metric analog of this is that social economics models do not provide a logical basis

for choosing instruments. This is quite different from rational expectations models, for

example, whose logic often allows one to express linear combinations of variables as fore-

cast errors, which must logically be orthogonal to an agent’s information set; in macro-

economics a key example of this is the Euler equation in a stochastic optimization model.

We suspect that theory openendness for a given social interactions model, com-

bined with an undertheorized ag, have (at least implicitly) rendered instrumental vari-

ables strategies relatively uncommon in social interaction contexts, for both the linear

in means and other models. One exception is Cooley (2008) who makes a careful sub-

stantive argument to justify her use of instruments. Cooley’s objective is to estimate the

effects of peer educational outcomes on individual students in a classroom; for her con-

text teacher quality is an unobserved group effect. Cooley studies reading achievement

in North Carolina and proposes an identification strategy that exploits an education

reform enacted in that state that went into effect in the 2000-2001 academic year.

The reform mandated that students who scored below a certain level on end of year

reading tests are to be held back for the next year. For a rich panel data set on class-

rooms, Cooley proposes as an instrument the percentage of students who are held

accountable (i.e., the percentage of students who scored below the cutoff in the prior

year interacted with a dummy for being a 5th grader in 2001 or later). Cooley argues

that these “in danger of failing” students face incentives to work harder under the edu-

cational reform. Classes with a higher percentage of low-achievers would see a larger

shift in peer achievement after accountability. She thus contrasts comparable (from

the perspective of student composition) classrooms before and after the educational

reform to estimate a peer effect, with 4th grade classrooms acting as a control group.22

An obvious objection to this strategy is that for a given set of classroom student char-

acteristics, unobserved teacher quality may have shifted after the reform, as teachers

adjusted their behavior in response to the reform. Cooley addresses this objection by

appealing to the history of educational reform in North Carolina and argues that a post

2000 shift in teacher behavior is relatively implausible. The 1996 reforms included school

and teacher bonuses for growth in scores and for the percentage of students who met or

exceeded the reading level that later was used to determine whether a grade should be

repeated. Thus it is plausible to claim that adjustments in teacher behavior most probably

date from then. Of course, Cooley does not “prove” that her instrument is valid. Our
22 We thank Jane Cooley for helping with this description.
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view is that that she has made a case that the instrument is a plausible one so that her

findings should update researchers’ beliefs about classroom peer effects. We believe this

careful type of argumentation can be replicated in other contexts.

Some uses of instrumental variables fall under the rubric of quasi-natural experi-

ments. A recent example is Cipollone and Rosolia (2007) which we describe in some

detail as it illustrates the strengths and weaknesses of quasi-experimental data as a source

for evidence on social interactions. Their analysis examines the effects of changes in

male high school graduation rates on female high school graduation rates using a

change in Italy’s compulsory military service laws which exempted male students in

schools located in areas damaged by a 1980 earthquake. Cipollone and Rosolia com-

pare two groups of schools. The first group of schools are located in towns that expe-

rienced relatively little earthquake damage (based on official assessments) and yet were

included in the draft exemption. The second group of schools were located in towns

that were near the towns whose schools comprise the first group; the authors argue that

these towns suffered similar damage so that their failure to receive an exemption was

arbitrary. Cipollone and Rosolia find statistically significant higher graduation rates

for females in the high schools subject to the exemption when compared to females

in the comparable high schools that were not subject to exemption. One limitation

of this type of calculation is that it is difficult to interpret in terms of social mechanisms,

an issue recognized by the authors. Regardless of this, the finding itself may be prob-

lematic for reasons that are delineated in Heckman (1998). One reason involves what

Heckman, Urzua, and Vytlacil (2006) have dubbed “essential heterogeneity”: if the

effect of increased male graduation on a girl’s payoff differential between graduating

and dropping out is heterogeneous, then it is unclear how to interpret the Cipollone

and Rosolia conclusion that a 1% increase in male graduation leads to a 0.7% increase

in female graduation in terms of policy counterfactuals, i.e., increases in male gradua-

tion rates need not have this effect on female graduation rates in schools that differ from

those in the sample or contexts different from the particular quasi-experiment under

study. Further, one can even question whether this statistical finding is evidence of a

social interaction per se. Compulsory military service was previously subject to exemp-

tions for high school graduation. Thus, the general exemption changed the composi-

tion of males in a school in particular ways. In essence the general exception affected

the attendance of males whose unobservable characteristics made their graduation

behavior especially sensitive to the policy change relative to the previous regime.

Suppose that there is assortative matching on these unobservable characteristics in the

formation of romantic relationships. One can reasonably imagine that an associated

increase in graduation for females occurs because of the preservation of romantic rela-

tionships that would have been severed by school (and community) withdrawal for

military service. The message of this possibility is that the translation of what amount

to partial correlations on the behavior of one group with the behaviors of another
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group into causal claims about social interactions that can answer policy relevant ques-

tions requires careful consideration of counterfactuals and the nature of unobservable

individual-specific heterogeneity, which is a theme of Heckman’s (1998) analysis.

b. Panel data
A second standard strategy for dealing with unobserved group interactions involves the

use of panel data to difference the interactions out. Supposing that the variables in (30)

are indexed by t, this amounts to working with

oigt � oigt�1 ¼ cðxit � xit�1Þ þ dðygt � ygt�1Þ
þ Jðmgt � mgt�1Þ þ eit � eit�1:

ð32Þ

Recall that our identification theorem 1 depended on the relationship between �xg, yg
and mg. For (32), theorem 1 immediately can be applied if one considers the require-

ments of the theorem as they apply to �xgt � �xgt�1, ygt � ygt�1 and mgt � mgt�1. So long

as there is temporal variation in �xgt and ygt i.e., the first differences in (32) are not zero,

then the conditions for identification will be the same as in the original linear model

without ag. Note that variation in �xgt and/or ygt will induce variation in mgt over time.

An early example of this strategy is Hoxby (2000) who focuses on variation in the per-

centage of a student’s own ethnic group in a classroom.

For those elements of xit and ygt that do not vary over time, differencing means that

their associated coefficients will not be identified. Defining the time invariant elements

of ygt as y
1
g , the lack of identification of their associated parameters d1 occurs for the

obvious reason that one cannot differentiate the effect of d1y1g from ag. On the other

hand, all elements of xit may be identified if additional assumptions are placed on eit.
As formally discussed in Graham and Hahn (2005), suppose that

EðeitjFxjgt; ygt; agt; i 2 g at time tÞÞ ¼ 0:

In this case, intragroup variation in xit at a single point in time can identify all of the

elements of c. The reason for this is that for group g at a fixed t, k þ dygt þ Jmgt þ
agt acts as a constant term for the members of the group. Brock and Durlauf (2001b,

2006, 2007) use this same argument for cross-section identification of individual inter-

actions coefficients in discrete choice models. As noted by Graham and Hahn, this type

of argument is originally due to Hausman and Taylor (1981).

c. Variance approaches and group-level unobservables
Graham (2008) provides a strategy for identifying the parameter for endogenous inter-

actions in the presence of unobserved group interactions in parallel to the arguments

that identified J in (26). Graham works with the natural generalization of (26):

oit ¼ J �og þ ag þ ei
¼ Jmg þ ag þ ei þ J �eg:
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Critically, Graham assumes that ag is a random effect, specifically requiring that the

conditions

cov ðageiji 2 gÞ ¼ 0 ð33Þ

and

var ðagji 2 gÞ ¼ s2a ð34Þ

hold in addition to equations (27) and (28). Equation (33) states that individual and

group unobservables are uncorrelated and is justified in Graham’s context by the ran-

dom assignment of teachers across classrooms. Equation (34) rules out any dependence

of the variance of unobserved group effect on group size. In a classroom context, this

means that the variance of teacher quality does not depend on the number of students.

In a direct generalization of equation (29), Graham (2008) shows that

var ðogÞ ¼ Ing �
J

ng
ing

� ��1

ðs2aing þ s2e IngÞ Ing �
J

ng
ing

� ��1

; ð35Þ

which means that one can again use differences in the variance of outcomes across

groups of different sizes to identify J.

Taken together, assumptions (27) and (34) are, in our judgment, problematic for an

experiment designed to assess how classroom size affects learning; while the objective

of the experiment was presumably to understand how first moments are affected, there

is no reason to think that second moments would be unaffected if the first moments are

classroom-size dependent. In other words, it is one thing to argue that prior to assign-

ment, students are exchangeable with one another and teachers are exchangeable with

one another. After assignment, one of the student’s characteristics is the size of the

classroom to which he has been assigned. Effects of classroom size on the variance of

shocks is especially plausible if the mechanisms that produce teacher quality and idio-

syncratic student outcomes are nonlinear, which is a major issue in the econometrics

of discrimination.23 That said, Graham’s recognition that the assumption that if unob-

served group effects are random rather than fixed leads to new routes to identification is

a significant methodological advance. And of course, our point is not that Graham’s

empirical claims are incorrect, but rather that a reader needs to assess the plausibility

of the assumptions that permit identification for his context.

v. Self-selection
It is natural for many social contexts to expect individuals to self-select into groups.

This is most obvious for the case of residential neighborhoods; models such as Bénabou
23 See Heckman (1998).
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(1993, 1996), Durlauf (1996a,b) and Hoff and Sen (2005), for example, all link social

interactions to neighborhood choice. In terms of estimation, self-selection generally

means that equation (8) is violated.

Self-selection has typically been addressed using instrumental variables methods.

Evans, Oates, and Schwab (1992) is an early example. The use of instrumental variables

as a solution to self-selection suffers, in our view, from the problem of theory openend-

edness as was discussed in the context of unobserved group effects. However, unlike

the case of unobservable group interactions, self-selection involves a specific behavior

on the part of the agents under study which can provide additional insight into instru-

ment validity. For example, Evans, Oates, and Schwab (1992) focus on estimating the

effect of the percentage of students in a school who are disadvantaged on high school

dropout and teen fertility rates. The measure of school level socioeconomic disadvan-

tage is instrumented with metropolitan area levels of unemployment, college comple-

tion, poverty rates and median income. The instruments are justified on the grounds

that while families may choose schools within a metropolitan area, they are unlikely

to choose metropolitan areas because of schools. This may be correct as far as it goes,

but the relevant question for instrument validity is whether the instruments are uncor-

related with ei. One obvious reason why this is true is that drop out and pregnancy

decisions will be related to labor market opportunities, which by the logic of Evans,

Oates and Schwab’s choice of the instruments would be defined at the metropolitan

and not the school level. Durlauf (2004), on the other hand, suggests reasons why

the instruments may not be valid.

A distinct source of instruments to account for self-selection has been quasi-experiments.

A recent example is Lalive and Cattaneo (2009) who study the effect on schooling decisions

in Mexico by the PROGRESA program. This program rewards school attendance by rural

children with small cash subsidies to their families. Lalive and Cattaneo measure social inter-

actions via the effects by schoolmates whose families are eligible for PROGRESA on their

ineligible classmates. The basic idea is that if PROGRESA directly raised attendance of the

first set of children, peer effects must explain why attendance among the ineligible

increased. This type of exercise is informative, but again suffers from interpretation pro-

blems of the type we have raised in the context of Cipollone and Rosolia (2007). We sim-

ply note here that the Heckman (1997) and associated critiques have equal force when

instrumental variables are employed to account for self-selection as when they are used

to account for group level unobservables.

In our view, the preferred approach to dealing with self-selection is to treat group

choice and behavior within a group as a set of joint outcomes, and conduct empirical

analysis from the perspective of both behaviors. Unlike the instrumental variables

approach, this has interesting implications for identification, at least for the linear

model. Brock and Durlauf (2001b) first recognized this possibility and studied the case

of self-selection between two groups; Brock and Durlauf (2002, 2006) and Ioannides
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and Zabel (2008) extended this analysis to an arbitrary finite number of groups. At an

intuitive level, this is not surprising. Self-selection represents a behavior on the part of

an agent and so should contain information about his preferences, which will depend

on the social interactions that occur in groups over which he is choosing.24 Unlike

the instrumental variable approach, modeling self-selection exploits this information

rather than treats it as a nuisance.

Following Heckman’s original (1979) reasoning, one can think of individuals

choosing between groups g ¼ 1, . . . ,G based on an overall individual-specific quality

measure for each group:

I�ig ¼ g1xi þ g2yg þ g3zig þ vig;

where zig denotes those observable characteristics that influence i’s evaluation of

group g but are not direct determinants of oi and nig denotes an unobservable individ-

ual-specific group quality term. Individual i chooses the group with the highest I�ig. We

assume that prior to group formation, for all i and g, E(eijxi, yg, zig) ¼ 0 and E(nigjxi, yg,
zig) ¼ 0.

From this vantage point, the violation of equation (8) amounts to

Eðeijxi; �x1; y1; zi1; . . . ; �xG; yG; ziG; i 2 gÞ 6¼ 0: ð36Þ
Notice that equation (36) includes the characteristics of all groups. This conditioning

reflects the fact that the choice of group depends on characteristics of the groups

that were not chosen in addition to the characteristics of the group that was chosen. Equa-

tion (36) suggests that the linear in means model, under self-selection, should be written as

oig ¼ cxi þ dyg þ Jmg þ Eðeijxi; �x1; y1; zi1; . . . ; �xG; yG; ziG; i 2 gÞ þ xi; ð37Þ
where by construction E(xijxi, �x1, y1, zi1,. . ., �xG, yG, ziG, i 2 g) ¼ 0. Notice that the con-

ditioning in (36) includes the characteristics of all groups in the choice set. This is natural

since the characteristics of those groups not chosen are informative about the errors.

Equations (36) and (37) illustrate Heckman’s (1979) insight that in the presence of self-

selection on unobservables, the regression residual ei no longer has a conditional mean of

zero, yet (37) can be consistently estimated using ordinary least squares if one adds a term

to the original linear in means model (6) that is proportional to the conditional expectation

on the left hand side of (36), i.e., prior to estimation. Denote this estimate as

kEðeijxi; �x1; y1; zi1; . . . ; �xG; yG; ziG; i 2 gÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

: ð38Þ
24 The idea that full consideration of the informational contents of choices can be exploited to overcome issues of

unobservable heterogeneity and generate identification appears in other contexts. In Heckman and Honoré (1990),

identification of the skill distribution in a population depends on cross market variation in skill premia, which bears a

strong analogy to our use of cross-group variation in selection corrections.
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Heckman’s fundamental insight was that one can construct such a term by explicitly

modeling the choice of group. From this perspective, controlling for self-selection

amounts to estimating

oig ¼ cxi þ dyg þ Jmg þ rkEðeijxi; �x1; y1; zi1; . . . ; �xG; yG; ziG; i 2 gÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

þ xi: ð39Þ
Thus, accounting for self-selection necessitates considering identification for this

regression, as opposed to (6).

The property of interest for the identification of social interactions is that the addi-

tion of the term (39) can help facilitate identification. To see this, consider two possible

reasons why agents choose particular groups. First, agents may choose groups on the

basis of the expected average behaviors that occur. For example a family chooses a

neighborhood based on its expectation of the average test score among students in

the school their child will attend. In the extreme case where this is the only neighbor-

hood factor that matters to families, the conditional expectation associated with the

selection correction will be a function of the agent’s characteristics and the expected

outcomes in each of the neighborhoods, i.e.,

Eðeijxi; �x1; y1; zi1; . . . ; �xG; yG; ziG; i 2 gÞ ¼ ˆðxi;m1; . . . ;mGÞ: ð40Þ

By the same logic that rendered the partial linear model (15) identified, (39) is also

identified as mg cannot, outside of nongeneric cases, be linearly dependent on a con-

stant term and yg.

Second, parents may choose neighborhoods based on the mean incomes of families

or some measure of the distribution of occupations among neighborhood adults. This

can be justified on role model grounds. If neighborhoods are evaluated according to

their contextual variables, then (38) functions as an additional individual-specific

regressor whose group level average does not appear in (37). Hence, following the

argument about identification in linear in means models that was developed earlier,

the presence of a regressor with a nonzero coefficient can allow for identification to

occur. This route to identification has been successfully used in Ioannides and Zabel

(2008) to identify social interactions in housing. See Ioannides (this volume) for more

detail on that study.

One limitation of the work that has been done on identification using selection

corrections is that it has employed parametric corrections. Brock and Durlauf (2002,

2006), for example, work with Lee’s (1983) correction which assumes joint normality

of ei and nig, while Ioannides and Zabel (2008) work with joint extreme value distribu-

tions, following Dubin and McFadden (1984). From the perspective of econometric

theory, selection corrections are now conceptualized as examples of control functions,

i.e., functions which augment models in order to account for endogeneity as well as

self-selection. Navarro’s (2008) survey highlights advances made in the nonparametric
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construction of control functions. This suggests that the argument we have made about

the ability of self-selection to facilitate identification of social interactions can move

beyond parametric assumptions, although this has not yet been done. We believe this

is feasible given the parametric structure, i.e., the partial linearity of the outcome equa-

tion under self-selection.

vi. Social interactions via unobserved variables
Our discussion of the linear in means model has assumed that the variables through

which social interactions operate either are directly observable or represent rational

expectations forecasts of observable (to the analyst) variables. Recent work by Arcidia-

cono, Foster, Goodpaster, and Kinsler (2009) considers this possibility in a panel con-

text, which is applied to classrooms at the University of Maryland, where grades are the

outcome measure. Translating their model into our notation, they analyze

oigt ¼ cxi þ d�xgt þ eui þ f �ugt þ eit; ð41Þ
where ygt ¼ �xgt is assumed. Endogenous social interactions are ruled out a priori. The

key innovation in Arcidiacono et al. is that the individual variable ui and associated

group variables ūgt are both unobservable. Notice that xi and ui are time invariant

whereas ūgt and �xgt are time dependent. The time dependence of the latter terms occurs

because group memberships can change over time.

The identification of social interactions for this problem thus hinges upon over-

coming unobservability of the contextual interactions ūgt. In order to achieve identifi-

cation, Arcidiacono et al. restrict the coefficients in (41) by assuming the existence of a

scalar g such that

e ¼ gc; f ¼ gd:

This assumption follows Altonji, Huang, and Taber (2005). In the spirit of simulta-

neous equations theory this is analogous to a coefficient restriction that facilitates iden-

tification. This assumption fixes the ratios of the coefficients of observed individual

characteristics to equal those of the corresponding peer characteristics. Arcidiacono

et al. describe this (p. 6) as rendering the two dimensions of peer effects versus the

two dimensions of individual effects “equally important”. This is an ill-defined claim.

The Arcidiacono et al. strategy is better thought of as a restriction on coefficients that,

in the classical simultaneous equations sense, may help with identification and its justi-

fication should be assessed from the perspective of whether the restriction can be jus-

tified by economic theory or by some other argument.

Arcidiacano et al. proceed by focusing on a general notion of fixed effects for each indi-

vidual, defining these fixed effects the determinants of outcomes (outside the errors eit) as

ki ¼ cxi þ eui:



883Identification of Social Interactions

Author's personal copy
Letting �kgt ¼ 1
ngt
Si2gkigt, equation (41) can be re-expressed as

oig ¼ ki þ g�kgt þ eit:

From this perspective, Arcidiacono et al. frame the identification problem for social inter-

actions as the problem of consistently estimating g in the presence of a large number of

fixed interactions. Their theorem 1 locates a set of sufficient conditions so that a consistent

and asymptotically normal estimator of g may be found. Identification is implicit in this

proof.We do not repeat their assumptions here but note that the essential substantive eco-

nomic requirements are 1) the composition of an individual’s peer groups change over

time and 2) 8i, j, t, E(eitkj)¼ 0. The first condition is needed since identification requires

individuals to be exposed to different peers to allow for distinguishing the influence of the

fixed effects of others on a given individual. The second condition delimits the nature of

self-selection into classrooms. Although Arcidiacono et al. argue that they allow for self-

selection based on the ability of peers, this second condition appears to limit how selection

can occur. This criticism does not detract from the value of their contribution, but points

to an instance of the general proposition that explicit modeling of selection is essential in

understanding identification conditions.

Cooley (2009) explores an even more extreme form of unobservability in which

both the determinants and outcomes of behaviors are not observed. Motivated by

the issue of classroom peer interactions, she argues that, from the vantage point of the-

ory, the causal sources of peer interactions between students in a classroom involve the

effort levels of other students, which is an endogenous effect and ability, which is a

contextual effect. Neither of these is directly observable. Empirical work on classroom

peer interactions typically uses observable classroom achievement as the outcome mea-

sure and various ad hoc (albeit theoretically plausible) choices of observable student

characteristics for contextual efforts. For Cooley, what is critical is that effort is the

choice variable, not classroom performance per se, which will reflect unobservable

effort and ability as well as residual unobserved heterogeneity. Cooley calculates

the optimal choice of effort by students and uses this equilibrium condition to produce

a reduced form model, which links the observable outcome classroom performance

to the observable individual and contextual interactions. The coefficients in this latter

equation prove to be uninterpretable. For example, an observable contextual effect

whose structural coefficient is positive can have a reduced form coefficient that is neg-

ative. The formulas linking the structural and reduced form parameters are extremely

complicated, so are omitted here.

A third approach to unobservability is developed in Solon, Page, and Duncan (2000)

and further studied in Page and Solon (2003a,b). This analysis assumes that one cannot

observe any of the determinants of individual outcomes; only the outcome data are avail-

able. Unlike work such as Graham (2008), no assumption is made that social interactions

are endogenous rather than contextual. Rather, it is assumed that individuals are influenced
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by family-level, group-level, and idiosyncratic influences. Individuals are distinguished by

family and group (in this case residential neighborhood). A variance decomposition for

individual outcomes is constructed to bound the contribution of group effects to variance

of individual outcomes. The analysis may be understood in terms of a variance components

model (Searle, Casella, and McCulloch, 2006, p. 14):

oig ¼ mf þ vg þ ofg þ ei: ð42Þ

In (42), mf denotes a family effect, ng denotes a group effect, ofg denotes an interactive

effect between family and group, and ei denotes an idiosyncratic effect. A decomposi-

tion of this type always exists in which the components are orthogonal. In terms of

mapping this expression back to a measure of the role of group influences, one diffi-

culty lies with ofg. Does the covariation between family and group represent a group

effect or self-selection? Solon, Page and Duncan address this issue by comparing

intra-family (sibling) and group (in their case residential neighborhood) variances to

bound the variance of ng, finding the variance contribution is small. Oreopoulos

(2003) finds similar results, focusing on a data set that involves adults who, as children,

were randomly assigned to different public housing projects, thereby presumably elim-

inating ofg. He finds a small role for ng and so concludes that neighborhood effects do

not play a major role in explaining the variance of various adult outcomes.

One limitation of this approach is that it reduces the vector of social interactions to

a scalar so that one cannot tell which social factors matter. In fact, it is possible for dif-

ferent social factors to cancel each other out. And to the extent that unobserved group

effects ng do not represent social interactions, as was the case for our example of teacher

quality and classroom outcomes, it is not clear that a large variance contribution from

ng has a social interactions interpretation. These caveats do not render such exercises

uninteresting; rather they illustrate how economically substantive assumptions matter

in producing economically substantive interpretations.
vii. Social multipliers and information from aggregated data
We close this section on the linear in means model by turning to how the relationship

between individual and aggregated data may provide evidence of social interactions when

individual actions are generated by the linear in means model. The relationship between

individual and aggregated data is studied in Glaeser and Scheinkman (2002) and applied

by Glaeser, Sacerdote, and Scheinkman (2003). The essential idea behind their analysis

is that endogenous social interactions can generate social multipliers in the sense that a

change in private incentives for every agent in a populationwill have an equilibrium effect

that is greater than the direct effect of the incentive change on each individual because the

changes in the behavior of others create additional effects on that individual. This differ-

ence is evident in the reduced form (11) since xi and �xg have different coefficients.
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Focusing on a scalar case (extension to vectors is straightforward but algebraically tedious),

Glaeser and Scheinkman (2002) propose comparing the coefficient b in the regression

oig ¼ aþ bxi þ ei

with the coefficient b0 in its group counterpart

�og ¼ a0 þ b0�xg þ �eg; ð43Þ
and define the social multiplier as the coefficient ratio:

S ¼ b0

b
:

In the context of the linear in means model, it is straightforward to compute this ratio.

Our calculations differ from Glaeser and Scheinkman as we focus on the difference in

the regressions as a misspecification problem. To make this calculation, notice that for

the Glaeser and Scheinkman case, the reduced form (11) becomes:

oig ¼ k

1� J
þ cxi þ cJ

1� J
�xg þ ei: ð44Þ

Comparing (44) and (43), it is evident that the population value of b is readily calcu-

lated using the standard omitted variables formula that b ¼ c þ cJ

1�J
b where b is implic-

itly defined by proj(�xg j1, xi) ¼ k þ bxi, i.e., b ¼ cov(xi, �xg)/var(xi). In contrast, it is

evident from taking expected values on both sides of (44) that b0 ¼ c
1�J

which means

the social multiplier is

S ¼ 1

1� J þ Jb
: ð45Þ

Notice that if there is perfect segregation across groups, so that incomes within a group

are identical, then cov(xi, �xg) ¼ var(xi), which implies that S ¼ 1 whereas under ran-

dom assignment, cov(xi, �xg) ¼ 0, which implies S ¼ 1
1�J

. The latter value of S takes a

form that echoes the classic Keynesian income/expenditure multiplier, with the mar-

ginal propensity of consumption replacing J. Moreover, in the Bayesian game

described in appendix 1, which lays out the underlying decision-theoretic framework

of the linear in means model, S ¼ (1 þ f)/(1 þ fb) where f measures the marginal

rate of substitution between conformity and the private value of the choice variable.

Note the surprising fact that, as the pressure to conform increases, the social multiplier

may either decrease or increase, depending upon whether b exceeds or is exceeded by

1. Both are possible since we have not specified how individuals are sampled across

groups. For example, if there is systematic sampling of xi values below �xg in each

group, then b > 1 may occur. The dependence of the social multiplier upon b makes

it difficult to interpret it.
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As articulated in this example, the social multiplier provides a different perspective

on the effects of endogenous social interactions on changes in private incentives. In

terms of identification, it may also be of value. Clearly, the social multiplier calculations

have little to add if complete individual level data are available across the various groups

of interest. On the other hand, suppose that aggregate data are incomplete; i.e., one

knows about outcomes in a subset of classrooms in a school. One can imagine identi-

fication of J via analogs to (45) that compare different levels of aggregation and thus

exploit variation in b to uncover J. Alternatively, one can imagine partial identification

approaches that exploit the fact that different b’s reflect different levels of aggregation
with respect to the same underlying population.
4. SOCIAL NETWORKS AND SPATIAL MODELS
OF SOCIAL INTERACTIONS

In defining social interactions thus far we have presumed that interactions are generated

by group-specific averages. Social network models provide further focus on the micro-

structure of interactions among agents and allow for heterogeneity of interactions

across pairs of agents. Jackson (2008) provides a thorough overview of the new social

networks literature. In this section we address the identification of social interactions

in social networks. In addition, we discuss the use of spatial econometrics models to

study social interactions. The social networks and spatial analysis approaches are math-

ematically very similar, and yet, they have been until recently developed independently

from one another. This similarity is not surprising as spatial econometrics approaches

deal with physical space, whereas social networks address a more abstract social space,

yet still a space with well posed notions of distance and the like.

i. Graphical models of social networks
Before extending the model of social interactions to social networks it is useful to estab-

lish some basic terminology. For this setting, social interactions among individuals are

defined by means of a social structure (or topology, the two terms are used interchange-

ably in the literature and here) that takes the form of a network, whose mathematical

description is a graph with the vertices representing individuals and edges representing

links between them. Network vertices and population members are thus identical con-

cepts. What is of interest is the network structure that links agents. Network structure

among individuals is modeled either as an undirected or a directed graph. Here we shall

focus on the latter case, since it allows us to express a richer set of social relations.

Directed graphs consist of vertices (also known as nodes) and directed edges. A

directed edge is an ordered pair (i, j) of vertices. A directed graph is a pair (V, E) where

V is the set of nodes, with cardinality nV, and E is the set of edges. A subgraph (V 0, E 0)
of (V, E) is a graph where V 0 is a subset of V and E 0 is a subset of E. A subgraph (V 0, E 0)
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is induced by (V, E) if and only if E 0 contains all edges of E which begin and end in V 0.
A social network is a graph (V, E) where V is the set of individuals and the directed edges

in E signify social influence: (i, j) is in E if and only if j influences i.

A social network can be represented by its adjacency matrix A, also known as its

sociomatrix in the mathematical sociology literature. An adjacency matrix is an nV �
nV matrix, with one row and one column for each individual in V. For each pair of

individuals i and j, aij ¼ 1 if there is an edge from i to j, and 0 otherwise. Since the

network is supposed to represent social connections, it is natural to assume that no i

is connected to himself. That is, for all i, aii ¼ 0. A path from i to j is a sequence of

individuals i0,. . ., iK such that i0 ¼ i, iK ¼ j, and for all k ¼ 1, . . . ,K � 1, there is an

edge from ik�1 to ik. Such a path is said to have length K. If there is a path from i to

j of length exceeding 1, then j indirectly influences i. The adjacency matrix A displays

all paths of length 1. The K-fold product AK counts all paths of length K; if the ij’th

element of AK is n, then there are n paths of length K from i to j. A subgraph (W,

F ) of (V, E ) is strongly connected if and only if for any i and j in W there is a path

from i to j consisting solely of edges in F. A subgraph which is strongly connected

and is a subgraph of no larger such graph is a strongly connected component of

(V, E ).25 A graph (V, E ) is strongly connected if and only if some power of its adjacency

matrix is strictly positive. The literature also contains the less restrictive requirement of

weak connectivity. Intuitively, it is the notion of connectivity that emerges when one

can walk links in any direction. By suitably ordering the vertices, the adjacency matrix

of a graph (V, E ) can be written as a block-diagonal matrix where the rows (columns)

of each block correspond to a weakly connected component.26 A graph (V, E ) is com-

plete if for each pair i and j in V there is an edge from i to j. A graph is directed if the

existence of an edge from i to j implies that there is no edge from j back to i.

While social influence can be a one-way relationship, we usually think of some

relationships, for example friendship, as being bidirectional and the social network is

represented by an undirected graph, and the adjacency matrix is symmetric. Edges

are now undirected, and so there is a path from i to j if and only if there is a path from

j to i. A subgraph (V 0, E 0 ) of the undirected graph (V, E ) is connected if and only if

between any two nodes i and j in V 0 there is a path in (V 0, E 0) between them. A com-

ponent of the graph (V, E ) is, as before, a subgraph which is connected and maximal

with respect to inclusion. The distance between any two nodes is the length of the

shortest path between them.

Some particular network topologies are important in the social networks literature.

A star network is an undirected graph in which one individual, the center, is connected
25 Note that a strongly connected component can have links into it from outside the component, and links to the

outside. But no other node is on a path from the component and a path to the component.
26 Weak connectivity is connectivity assuming that all edges can be traversed in any direction.
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to all other individuals while all other individuals are connected only to the center. A

group, also known as a complete network, is one that contains an edge between each two

of its vertices. Its adjacency matrix is all 1s. In a bipartite graph, the vertex set V is the

union of two disjoint sets T and U, and all edges are between members of T and mem-

bers of U, i.e., edges represent matches between vertices in the two sets. We will call a

bipartite graph directed if for all (i, j) 2 E, i 2 T and j 2 U.

Sociologists allege that social relations like friendship exhibit the property of homo-

phily — loosely but accurately described by the phrase “the friend of my friend is my

friend, too.” This property is described by the prevalence of transitive triads. Triads are

connected subgraphs consisting of three nodes. Transitivity is the property that the exis-

tence of an edge from node i to j and an edge from j to k implies the existence of an edge

from i to k. A graph is transitive if it contains no intransitive triads. The linear in means

model is specified by assuming A is symmetric, that edges are bidirectional, and that the

graph is transitive. If this is true, then the graph is the union of completely connected

components. The nodes of the component containing i constitute i’s group.

While the linear in means model is a good starting point for the study of social interac-

tions, social networks allow for a much richer specification of social relations. The model

can be enriched still further by allowing the elements of adjacency matrices to be arbitrary

real numbers. In suchmodels, themagnitude of the number aijmeasures the degree of influ-

ence j has on i, and the sign expresses whether that influence is positive or negative.

Throughout this section we will assume that all elements aij are non-negative except as

noted, and that contextual variables are weighted averages of the individual characteristics.

This generalizes the contextual effects in the linear in means model case in which yg ¼ �xg.
Note that in this section, we defined choices as oi. No additional subscript is

employed to denote a person’s social environment. The reason for this is that the net-

works literature focuses on members of a common population and introduces social

structure for the population as a whole via the matrix A.

ii. Identification in social networks: basic results
Cohen-Cole (2006) appears to be the first analysis of the linear in means model under

richer interactions structures. That is, he posits that an individual reacts to multiple ref-

erence groups, such as a teenage boy might care differently about what other teenage

boys do than about what teenage girls do. He shows that the model with agents’ beliefs

about actions in multiple other groups as well as observables for each group can be fully

identified provided that there are more observed linearly independent group level

effects than there are groups in the sample and that there is some pair of groups for

which agents in one group care about the actions in the other. This type of reasoning

is extended in an analysis by De Giorgi, Pellizari, and Redaelli (2010) of peer effects

in the choice of college education. From the econometric perspective, Bramoullé,

Djebbari, and Fortin (2009), Lee, Liu, and Lin (2010) and Lin (forthcoming) constitute
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the most systematic explorations of social interactions in social and spatial contexts

respectively, but there are several other contributions which we will discuss below.

The current identification literature for networks assumes A is known a priori to the

researcher. This is a critical assumption in the existing literature that restricts empirical work

to contexts in which survey data, for example, can be used to measure network structure.

As far as we know, no econometric methods have been developed to consider social inter-

action inferences in the presence of unknown network structure.We take this up in section

4.vii below.We note that some work has focused on data sets in which a random sample is

drawn from a set of networks.We ignore the distinction between possessing the data on the

whole population versus a random sample as it is not germane to the identification issues on

which we focus.

The network model employed by Bramoullé et al. assumes that each individual i is

influenced by the average behavior of a set of peers P(i ) and that, like Moffitt (2001)

but unlike Manski (1993), individual i is not his own peer. The peer relationship is

not assumed to be symmetric, so the social network is represented by a directed graph.

The social interactions are described by a weighted adjacency matrix:

aij ¼
1

jPðiÞj if j 2 PðiÞ;
0 otherwise:

8<
: ð46Þ

Individual outcomes are then described by the behavioral equation system

oi ¼ kþ cxi þ d
X
j 6¼ i

aijxj þ J
X
j

aijoj þ ei ð47Þ

with the error restriction

EðeijðxiÞi2V ;AÞ ¼ 0: ð48Þ
The reduced form for this system may be described in vector notation as

o ¼ kðI � JAÞ�1iþ ðI � JAÞ�1ðcI þ dAÞxþ ðI � JAÞ�1e; ð49Þ
where I refers to the nV � nV identity matrix and i is a nV � 1 vector of 1’s. (Recall

that nV is the number of individuals in the network.) Bramoullé et al. focus on identi-

fication by studying this reduced form. Recognizing, as did Moffitt (2001), that systems

of this type are examples of linear simultaneous equations models in which one can

think of the outcomes for the members of the overall network as the endogenous vari-

ables and the individual effects as the exogenous variables.27 The important insight of

Bramoullé et al. is that the ideas concerning the averages of behaviors and characteristics

of groups carry over into more general social-network settings. Bramoullé et al. provide
27 If yg were included in the system (47), this vector would also represent a set of exogenous variables.
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a fundamental algebraic result with respect to identification of models like equations

(47) and (48), which does not rely on the constraint (46). The theorem assumes that

J can take values in an arbitrary parameter set J in R.

Theorem 2. Identification of social interactions in linear network models.

For the social interactions model described by equations (47), and (48), assume that Jc þ d 6¼
0 and that for all values of J 2 J , (I � JA)�1 exists.

i. If the matrices I, A, and A2 are linearly independent, then the parameters k, c, d and J are

identified.

ii. If the matrices I, A, and A2 are linearly dependent, if for all i and j,
P

kaik ¼
P

kajk, and

if either A has no row in which all entries are 0 or k ¼ 0, then parameters k, c, d and J are

not identified.

The condition that Jc þ d 6¼ 0 requires, in the network setting, that endogenous and

contextual effects do not cancel out in the reduced form. Theorem 2.i is a purely algebraic

result. This is to say, it does not rely on the specific structure of A, which arises from its

network context. It applies to any linear system of the form (47) for which j Jj � kAk < 1

for all possible parameter values J. An interesting feature of this result is that it does not rely

on exclusion restrictions. This should not be surprising. Although the number of equations

in the system is nV, the size of the population, there are only four parameters to estimate.

There are thus many cross-equation and within-equation linear equality constraints: The

independence condition describes when these constraints satisfy the appropriate rank con-

dition. Theorem 2.ii identifies an important case for which linear independence of I,A and

A2 is necessary as well as sufficient for identification. The requirements on A mean that

each individual averages in some way over those who influence him, and that no one is

isolated. The result can be thought of as a converse to theorem 2.i.

The analysis of group interaction is the leading case in the econometric literature

on networks. It is also appealing from the perspective of existing data sets such as the

National Longitudinal Study of Adolescent Health (Add Health).28 Suppose that the peer

relation is symmetric, j 2 P(i ) if and only if i 2 P( j). Suppose too that the peer relation is

transitive: If j 2 P(i ) and k 2 P( j), then k 2 P(i ). As discussed in section 4.i, the graph is

the union of a finite number G of completely connected components, that is, groups.

Suppose that component g has ng members. We will consider two ways to average over

the group: Exclusive averaging excludes i from P(i). In this case, for i 2 g,

aij ¼
1

ng � 1
if j 6¼ i and j 2 g;

0 otherwise:

8<
:

28 The Add Health data set is the outcome of a longitudinal data collection exercise designed to facilitate study of

health-related behaviors of adolescents in grades 7 through 12. The data set includes information, for example, on the

structure of adolescent friendships via responses to questions on the identities of best friends. As such, directions of

friendships are revealed but not intensity. See http://www.cpc.unc.edu/projects/addhealth for details.

http://www.cpc.unc.edu/projects/addhealth
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Inclusive averaging includes i in P(i). In this case, for i 2 g,

aij ¼
1

ng
for all j 2 g;

0 otherwise:

8<
:

With inclusive averaging, equations (47) and (48) are equivalent to our linear in

means model, except that realized rather than expected outcomes affect individual out-

comes. This difference is inessential since the instrumental variable projections used to

replace the endogenous choices of others coincide with equilibrium formulations of

beliefs.29 Means and realizations, however, represent two distinct theoretical models.

The first is a network version of the incomplete-information game developed in

appendix 1. The second is a complete-information version of the same game. With

exclusive averaging, the subject of Bramoullé et al., an additional distinction is that

the calculation of group-level contextual effects does not include i’s own individual

characteristics. This distinction is inessential in that the identification results for the

two models are nearly the same. The following result is a corollary of the forthcoming

theorem 3. It highlights the one case where the two averaging techniques differ:

Corollary 1. Identification of social interactions in group structures with

different-sized groups. Suppose that individuals act in groups, and that the aij are given

by exclusive averaging. Then the parameters k, c, d and J are identified if there are at least

two groups of different sizes. With inclusive averaging, the parameters are not identified.

The positive result of corollary 1 is similar to Graham’s (2008) variance contrast

identification strategy, but its source is different. Here identification follows the

reduced form regression parameters rather than the second moments of the average

group outcomes.30 Note that in Graham’s case, Jc þ d ¼ 0 since c ¼ d ¼ 0, so his find-

ings allow for identification when individual and contextual effects are absent.

At first glance, this corollary might appear to contradict theorem 1 and indeed call

into question Manski’s nonidentification results on the linear in means model, since

neither involved groups sizes while the corollary links groups sizes to identification.
29 As we will see, the distinction is important for binary choice models.
30 Corollary 1 is a special case of Lee’s (2007) result, without fixed effects. Lee (2007) studied the effects of group size

on identification while also allowing for unobserved group fixed effects. He establishes identification of both the

endogenous and exogenous social interactions provided there are sufficient variations in group sizes, but under

somewhat restricted conditions relating group sizes to the total number of observations, and also provides asymptotic

estimation properties. Davezies, d’Haultfoeuille, and Foughre (2009) show that the identification results hold under

different conditions than Lee’s. For Davezies et al., identification holds so long as 1) the sizes of groups do not depend

on overall sample size, as in Lee (2007), and 2) there exist at least three different group sizes. This avoids Lee’s

requirements that group sizes are linked to population size. Intuitively, this is possible because variations in group

sizes create variations in reduced form coefficients across groups. This variation is evident from an example like that

in Bramoullé, Djebbari, and Fortin (2009, p. 49), where the reduced form coefficients depend on the size of the

group to which an individual belongs.
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In fact, there is no contradiction. Theorem 1 and Manski’s earlier analysis did not treat

social interactions in the linear in means model as a simultaneous equations system that

explicitly relates individual choices to one another within a group. More generally,

previous studies of identification of the linear in means model have taken the effects

of group averages as the objects of interest, not the pairs of cross-individual effects.

In contrast, the linear in means model as appears in the econometrics literature is a large

sample approximation to the solution of a particular Bayes/Nash game, as shown in

appendix 1.31 If one relaxes the approximation, then the coefficients of the linear in

means model as it applies to a given group depend on the group’s size. When groups

sizes differ, the coefficients of their associated linear in means representations differ.

When coefficients from groups of different sizes are combined, this allows one to

uncover the parameters k, c, d and J.

Powers of A describe the network topology. When we examine this in detail, we

find that for very few networks are parameter estimates not identified in the reduced

form. Bramoullé et al. provide an algebraic condition that is necessary and sufficient

for identification in a class of linear social interaction models. We show that identifica-

tion fails only when the network is the union of groups. It is ironic that the importance

of groups is due to their prevalence as a common specification in econometric studies,

for it is only with groups that the identification issue even arises. We state and prove

(in appendix 2) a variant and unification of the Bramoullé et al. results.

Theorem 3. Nonidentification of social interactions in network models

under exclusive and inclusive averaging. Assume Jc þ d 6¼ 0, k 6¼ 0 and that for

all values of J, (I � JA)�1 exists.

i. Under exclusive averaging, the parameters k, c, d and J are not identified in the reduced

form (49) for the structural model (47) and (48) if and only if the social network (V, E)

is the union of weakly connected components wherein each component is a group, and all

groups are the same size.

ii. Under inclusive averaging, the parameters k, c, d and J are not identified in the reduced

form (49) for the structural model (47) and (48) if and only if the social network

(V, E) is the union of groups.

This theorem depends upon the particular weighting schemes used to average across

peers. It follows from the more general theorem 4, which is interesting in its own right

because it applies to any weighting scheme which puts positive weight on all edges

of E.32

Theorem 4. Nonidentification for weighted averaging implies network

transitivity. Let (V, E) be a network with weighted adjacency matrix A as described by

(46). Assume that Jc þ d 6¼ 0 and that for all values of J, (I � JA)�1 exists. If the parameters
31 Compare equations (85) and (86) in appendix 1.
32 Bramoullé et al. discuss results of this type, but provide no general theorem like this.
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k, c, d and J are not identified, then (V, E) is transitive. If the network is undirected, then (V, E)

is the union of groups.

Finally, we note that all of this is based on the fundamental independence criterion

of theorem 2, which applies to any matrix A no matter what its source, so long as it

satisfies an algebraic criterion. From this general point of view, it is clear that noniden-

tification of parameters in the reduced form is rare. We suppose without loss of gener-

ality that the parameter J takes values [0, 1), and denote by S the set of all matrices A

such that (I � JA) is invertible. If the matrices are nV � nV, S is a semi-algebraic set of

full dimension in Rn2v .33

Theorem 5. Generic identifiability of the linear social networks model. The

set of all matrices A 2 S such that the powers I, A and A2 are linearly dependent, is a closed and

lower-dimensional (semi-algebraic) subset of S.

This theorem is a complement to McManus’ (1992) result on the generic identifiability

of nonlinear parametric models. For the social networks context, the key intuition for

generic identifiability is that since A is assumed to be known a priori, this knowledge is

the equivalent of a large number of coefficient restrictions on the coefficients in the

reduced form representation of individual behaviors. These restrictions are rich enough

that, outside of nongeneric cases, they permit identification of k, c, d and J.

iii. Unobserved component-specific fixed effects
The analog to group-level unobservables in the linear in means model in networks is

component-level unobservables. If individual outcomes contain unobservables that

are correlated among individuals belonging to the same component they may be trea-

ted as fixed effects in the stochastic structure of (47), producing

oi ¼ kþ cxi þ d
X
j 6¼ i

aijxj þ J
X
j

aijoj þ ag þ ei ð50Þ

with error structure

Eðeijag; ðxiÞi2g;AÞ ¼ 0; ð51Þ

where ag is a component-specific fixed effect. This can be thought of as a model of

interacting in groups, in which the groups themselves have internal social structure.
33 A semi-algebraic set is a set which can be described as the solutions to a finite number of polynomial inequalities.

The set of nV � nV matrices such that for all J, (I � JA)�1 exists is a semi-algebraic set in Rn2V . Semi-algebraic

functions are functions whose graphs are semi-algebraic sets. Every semi-algebraic set is the union of a finite number

of disjoint open C1 manifolds. The dimension of a semi-algebraic set is the largest of the dimensions of these

manifolds. For more on semi-algebraic geometry see Bochnak, Coste, and Roy (1998).
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Little work has been done on this problem. We know of only the identification

results of Bramoullé, Djebbari, and Fortin (2009). Since their model is linear, compo-

nent-specific fixed effects can be differenced away.34 In principle, this differencing can

be done in many different ways, of which Bramoullé et al. discuss two. “Local differ-

encing” subtracts from each individual’s behavioral equation the average of those

who directly influence him. “Global differencing” subtracts from each individual’s

behavioral equation the average of those in the connected component to which the

individual belongs. A third differencing strategy not yet studied is to subtract from each

individual’s behavioral equation the average of those to whom he is indirectly

connected. Differencing entails loss of information, and so conditions for identification

are stronger. But here too identification is determined by the network topology. In

particular, Bramoullé et al. prove the following theorem:

Theorem 6. Identification of social interactions in linear network models

with component-specific fixed effects. For the social interactions model described by

equations (46), (50) and (51), assume that Jc þ d 6¼ 0. With local differencing, a necessary

and sufficient condition for identification of the parameters k, c, d and J is that the matrices I,

A, A2 and A3 are linearly independent.

Identification with global differencing is marginally simpler. Bramoullé et al. show

that the independence condition of theorem 6 is sufficient but not necessary, and offer

some weaker necessary and (distinct) sufficient conditions.

An unfortunate necessary assumption for their analysis is the conditioning in the

expectation of the error term. We would expect models like (48) to be most interesting

for those situations where network formation is endogenous, but the expectation

assumption rules out any model wherein unobservable individual characteristics affect

both network relations and individual behaviors.
iv. Self-selection in social network models
Investigating self-selection in social network models requires modelling the co-

evolution of networks and behavior. Although the growth of networks has been stud-

ied empirically, and evidently behavior on networks is a well-established subject, the

joint evolution of both has rarely been touched upon.35 In particular, the econometric

issues posed by endogenous network formation are briefly discussed by Jackson (2008,

p. 437).36
34 Bramoullé, Djebbari, and Fortin (2009) refer to these fixed-effects as “network-specific”. “Component-specific” is a

more precise description.
35 These issues have come up in the study of online commmunities. See Crandall, Cosley, Huttenlocher, Kleinberg,

and Suri (2008).
36 See Bala and Goyal (2000) and Jackson and Wolinsky (1996) for notable contributions, and Jackson (2008, ch. 6) for

an extensive treatment of several other works.
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Weinberg (2008) proposes a model which is interesting for its treatment of a hier-

archical and partially endogenous social structure. People belong to a group, whose

aggregate exogenous characteristics and endogenous choices affect individual behavior,

which is derived from a preference structure similar to that of appendix 1. But in con-

trast to modeling of group choice as discussed above in section 3.v and further pursued

in section 5, Weinberg bypasses the treatment of groups as discrete objects and assumes

instead that each group member can form a desired set of contextual effects by choos-

ing to actively interact with (in his language, associate with) a subset of the group. In

other words, he presumes that social structure arises from the direct choices of desirable

contextual (and endogenous social) interactions by each individual rather than from the

choice of group memberships from which social interactions are experienced. The

objective of this modeling assumption is to allow for very general subgroups to form

within predefined groups. For example, one can imagine distinct friendship networks

forming within a classroom. This kind of model makes possible a rich set of identification

strategies even though it is basically a linear in means model because the possibility of

endogenous associations introduces nonlinear relationships into the behavioral equations.

Weinberg identifies patterns of behavior that are not present when association is exoge-

nous. For instance, Weinberg’s model exhibits effects of group size not present in the lin-

ear in means model because larger groups offer more opportunities for reinforcement

through associationwith likeminded individuals. The possibility of association introduces

nonlinearities into the magnification effects of social interaction. For instance, Wein-

berg’s model is consistent with the finding (Angrist and Lang, 2004) that relocating

individuals at risk for certain behaviors or outcomes to less risky groups may have little

impact because the at-risk individuals may associate differentially with those who engage

in risky behavior.

For all of its virtues, Weinberg (2008) does not fit naturally into the frameworks

that have emerged in the social networks literature. Subgroup selection is modeled

crudely when compared to the body of social networks structures that have been stud-

ied. The modeling strategy carefully avoids the difficult issues of network topology and

its effects on the diffusion of social action. Nonetheless, the development of panel data

sets such as Add Health and those available from large online communities make spatial

self-selection a topic of increasing importance.

v. Spatial econometrics specifications of social interactions
A close relationship exists between social interactions and spatial econometrics models.

Equation (47) implies the classic Cliff-Ord spatial autoregressive (SAR) model with one

spatial lag, as the special case of d ¼ 0 where the dimension of endogenous outcomes is

equal to the number of spatial units. These can be states, counties, parcels of land, etc.

When instead of spatial units, the model refers to individuals, one has a social interactions

model. The social interactions literature has recently sought to exploit the relationship. See
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Lee (2007), who explored this link formally, and Lee, Liu, and Lin (2010).37 In addition,

the spatial econometrics literature has made important advances in terms of allowing for

spatial autocorrelation in error structures: see Kapoor, Kelejian, and Prucha (2007) and

Kelejian and Prucha (2010) for recent examples of advances in the study of spatial environ-

ments under weak error assumptions and Anselin (2010) for a review of the area. Spatial

econometrics models have a long tradition in geography where the weights attached to dif-

ferent observations are motivated in terms of various distance concepts. For example, if the

units of observations are counties, one may wish to account not only for adjacency but also

for distance between their main population centers. Adding contextual effects, as in Lee

(2007), brings the model closer to standard social interactions models.

An interesting predecessor to the new spatial econometric approaches to social

interactions is Topa (2001). Topa’s focus is on the exchange of information about labor

market opportunities. He draws upon spatial epidemiological models in his study of job

search. Unemployed individuals learn about job opportunities from, and employed

individuals pass on job opportunities to, their immediate neighbors. Employed indivi-

duals become unemployed at an exogenously given rate, while unemployed individuals

become employed at a rate proportional to the number of their employed neighbors.

In its simplest form, this is a contact process, a network version of the basic SIR (sus-

ceptibles, infectives, and removables) model of disease spread.38 While the model Topa

estimates is somewhat different, it shares two important features: correlations across sites

are positive, and they diminish geometrically with distance. Vertices in the network are

census tracts in Chicago, and the dependent variable is the tract unemployment rate,

which is modeled to move in a manner that is a metaphor for the aggregation of the con-

tact process over individuals in each tract. The model is a first-order Markov chain. A

state of the chain is an unemployment rate for each census tract. The transition probabil-

ity is described by specifying a probability distribution for each tract i, conditioned on

the current unemployment of tract i and its exogenous characteristics (education levels,

ethnic composition and the like), and the current unemployment rate of its neighbors.

Topa does not have time series data, and so his estimation strategy is to fit the

invariant distribution. Since the likelihood function is intractable, he estimates the

model by indirect inference with an SAR auxiliary model. In short, he estimates

the auxiliary model with the realized data. He then simulates the structural model

for different parameter values, and estimates the auxiliary model with these simulated

data sets. The indirect inference estimate is the set of parameter values that minimize

a distance between the simulated-data and real-data parameter estimates of the auxiliary

model. Point identification in the structural model is likely but difficult to establish
37 Boucher, Bramoullé, Djebbari, and Fortin (2010) estimate the full Lee (2007) model with group-level unobservables

using data on student achievement from Quebec secondary schools and find evidence of endogenous peer effects

while also controlling for contextual effects and group unobservables in the form of fixed effects.
38 See Daley and Gani (1999) for a good exposition of the SIR model.
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since the likelihood function is not directly accessible. Observed spatial correlation may

be due to endogenous spillovers, social interactions, or to spatial correlation in the

neighborhood characteristics. Topa asserts that the nonlinear nature of the model

makes identification likely. We have already shown cases where nonlinearity facilitates

identification in our discussion of the nonlinear in means and hierarchical models, and

will see other cases below, so the assertion seems plausible. If the model were linear,

arguments like those of Bramoullé, Djebbari, and Fortin (2009) would apply. Assuming

that the structural model is identified, the indirect inference estimator identifies the

parameters if the minimum distance estimate is unique and if the map from structural

parameters to parameters for the auxiliary model is one to one, and is locally onto

the range of auxiliary parameter values in a neighborhood of the image of the true

structural parameter value. The latter condition amounts to a rank requirement which

Topa tests. Conley and Topa (2007) extend Topa (2001) by allowing for the use of

individual-level information in the analysis of a variant of Topa’s structural model,

using a combination of calibration and estimation rather than indirect inference with

an auxiliary equation. Together, Topa (2001) and Conley and Topa (2007) raise and

begin to address the very real problem of how to assess identification when a struc-

tural model is not immediately accessible, an area which needs much work.

Lee, Liu, and Lin (2010) is a significant advance in the econometrics of social net-

works and spatial models. It generalizes Lee (2007) by allowing for group unobserva-

bles and correlated disturbances of connected individuals. Spatial autocorrelations in

the error structure of their model are accounted for by assuming that the vector of

shocks for a given component l (comprised of nl members), el, consists of the sum of

group-specific fixed effects and stochastic components that satisfy

el ¼ rA�
l el þ vl;

where A� is an exogenous and nonstochastic nl � nl nonnegative error-interactions

matrix that need not coincide with A.39 The parameter r is the spatial autocorrelation

coefficient, and nl is a nl-vector of i.i.d. individual-specific shocks. This error specifica-
tion may be thought of as a generalization of a number of previous studies. Relative to

Lee (2007), in which an individual in a group interacts with all other group members

with equal weights (and identification is ensured by different group sizes), Lee, Liu, and

Lin (2010) allows different individuals to have their own social groups, defined by the

respective social interactions matrices Al.

This model also extends the standard SAR model by allowing for contextual effects

and group unobservables. These authors characterize the identification conditions of

such an augmented SAR model based on features of the network structure, the role

of exogenous variables, and the presence of correlated disturbances. Their results are
39 In their analysis, nondiagonal entries are assumed to be symmetric and positive, but diagonal entries are 0.
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broadly similar to those of Bramoullé et al. Lee, Liu and Lin also include asymptotic and

estimation issues. In particular, they propose a method of eliminating fixed effects that

may be used with a general adjacency matrix for which simple averaging might not

work. They suggest a method which eliminates the fixed effects and allows the estima-

tion of the remaining parameters of interest via a quasi maximum likelihood method

that explores the row-normalization property of the social interactions matrices. Lin

(forthcoming) estimates a version of the Lee et al. model using Add Health data with

student academic achievement as the endogenous variable and finds strong evidence

for both endogenous and contextual effects, even after controlling for school-grade

fixed effects, and significant spatial autocorrelation in the disturbances. The estimation

results differ greatly with or without school-grade fixed effects, which suggests that fail-

ure to correct for correlated unobservables may produce severe bias. Such differences

may also be due to selection bias as well, in that individuals choose their peers. System-

atic econometric methods of accounting for self-selection bias in social network forma-

tion are not yet available.

vi. From econometrics to applications
We end this section with two illustrations of how the types of models we have dis-

cussed have been applied in empirical work. Calvó-Armengol, Patacchini, and Zenou

(2009) is a good illustration of how network methods have been employed. Using the

Add Health data set, these authors estimate individual school performance as a function

of the topology of their friendship networks, while controlling for individual character-

istics. Individuals’ friends always lie in the same school as themselves. They estimate a

restricted variant of equation (47) in which J ¼ 0. This model is generalized, however,

by allowing the unobserved individual-level heterogeneity to also be related to the

structure of the component level interactions. For each component l, the vector of

errors el for members of component l obeys

el ¼ %Aiþ rAel þ vl; ð52Þ

where A is the same adjacency matrix that links observable characteristics across indi-

viduals, % measures the mean effect of the number of direct neighbors for each individ-

ual (“best friends” according to the Add Health questions), which is given by Ai, r
denotes a spatial autocorrelation coefficient in the e’s, and nl is again an nl-vector of

i.i.d. individual-specific shocks.40 Since the error structure in (47), el, represents indi-
vidual outcomes that are not explained by individual characteristics x and contextual

effects Ax, these authors reason that it proxies for peer interactions. Their estimation

of the stochastic structure subsumes social interactions into the estimation of (%, r) in
40 i is an nl � 1 vector of 1’s. For the Add Health data set, A is an adjacency matrix where a 1 means that at least i or j

has designated the other as a best friend, so Ai is the number of friends of each member of the component.
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(52), the former because it controls for the number of best friends and the latter because

it reflects how each individual’s unobservable shock is affected by those of his friends.

These authors interpret (%, r) as expressing peer effects, which is not a standard use of

terminology. From the perspective of the distinctions we have drawn between types of

social interaction effects, % and r parameterize the strengths of different contextual

effects since neither refers to direct interdependences of choices per se.

Bayer, Ross, and Topa (2008) is a good example of how spatial reasoning can be

used to identify social interactions. This paper develops a novel strategy to identify

and estimate local referral interactions in the labor market. In order to identify labor

market referrals from other spatially correlated interactions, the authors estimate the

propensity to work together (in the same city block) for pairs of workers who reside

in a given city block, controlling for the baseline propensity to work together for resi-

dents in nearby blocks (which the authors call a reference group of blocks).

The crucial identifying assumption here is that workers can choose residential loca-

tions down to a group of blocks, but do not purposefully choose among the individual

blocks in the group because of block-specific characteristics. Therefore, conditional on

sorting at the group of blocks level, the assignment of individuals to specific blocks is

independent of group-specific characteristics. The authors use this conditional inde-

pendence to identify local interactions with respect to labor market referrals. Specifi-

cally, let i and j denote individuals who reside in the same Census block group but

do not belong to the same household. The outcome of interest is the binary variable

oij which indicates whether or not i and j work in the same Census block.41 Further,

dbij is a dummy variable that equals 1 if i and j reside in the same Census block, xij
denotes a vector of socio-demographic characteristics for the pair i, j, and �g denotes
a reference group fixed effect which serves as the baseline probability of an employ-

ment match for individuals living in the same block group. The proposition that

block-level interactions occurs in labor market referrals is defined via the regression

oij ¼ bxij þ ða0 þ a1xijÞdbij þ �g þ eij: ð53Þ
The Bayer et al. test for the presence of social interactions due to proximity reduces to

testing for the statistical significance of a0 and a1 in (53). The observable pair covariates

term bxij controls for individual-specific reasons why two individuals work on the same

block and �g controls for any unobserved heterogeneity that occurs at the block group

level and affects employment location. For example, �g may be argued to control for

features of the urban transportation network that might induce clustering in both resi-

dence and work location. The empirical strategy of Bayer et al. addresses several
41 Census blocks are measured for the Boston area using 1990 US Census data. As Bayer et al. remark, Census blocks

approximate physical city blocks. This definition creates some measurement questions since it means that two

individuals who live opposite one another on given street are defined as living on different blocks.
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additional potential pitfalls, including possible sorting below the block level and the

possibility of reverse causation due to co-workers giving referrals on desirable residen-

tial areas. They find large block-level social interactions effects on employment loca-

tion, especially among individuals who are socioeconomically similar.

These examples illustrate the need for a general method of testing whether a particu-

lar specification is compatible with the data in the general sense that the residuals do not

contain evidence of omitted network structure. A study by de Graaff, Florax, Nijkamp,

and Reggiani (2002) suggests a general specification test which could be applied to test

whether the residuals contain “omitted structure” that could improve the predictive

ability of estimated models. Their approach is rather abstract and is a test for the indepen-

dence of the residuals of a particular specification, whereas what one ideally wants is a test

for exchangeability of the residuals of a specification. It is still potentially very useful as a

first step towards testing for exchangeability of the residuals. This is so because if the de

Graaff et al. test of the null of independence is passed by the residuals, then this evidence

is consistent with exchangeability of the residuals. Nevertheless, despite this caveat, the

de Graaff et al. test is a potentially useful specification-testing tool in the area of social

econometrics. Furthermore, we believe that, in general, the econometric methodology

from spatial econometrics remains under exploited in social interactions econometrics.

See Anselin (2010) for a very recent review of the subject.

vii. Social networks with unknown network structure42

All the results in this section so far have taken the social network matrix A as known. This

severely restricts the domain of applicability of existing identification results on social net-

works. We finish this section by considering how identification may proceed when this

matrix is unknown. In order to do this, we believe it is necessary to consider the full

implications of the interpretation of linear social interactions models as simultaneous equa-

tions systems. While this interpretation is given in studies like Bramoullé et al., the full

implications of this equivalence have not been explored. This is evident if one observes

that the matrix form of the general social networks model may be written as

ðI � JAÞo ¼ ðcI þ dAÞxþ e ð54Þ
where for expositional purposes, the constant term is ignored. From this vantage point,

it is evident that social networks models are special cases of the general linear simulta-

neous equations system of the form

Go ¼ Bxþ e: ð55Þ
Systems of this type, of course, are the focus of the classical identification in econometrics,

epitomized in Fisher (1966) and comprehensively summarized inHsiao (1983).One can go
42 This section was inspired by comments by Gary Becker and especially James Heckman.
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further and observe that the assumption that the same network weights apply to both con-

textual and endogenous social interactions is not well motivated by theory, and regard

equation (55) as the general specification of a linear social networks model where the nor-

malization Gii¼ 1 for all i is imposed. From this vantage point it is evident that the distinc-

tion between J and A is of interest only whenA is known a priori, as is the case both for the

linear in means model and the more general social networks framework.

Following the classical literature, one can then think of the presence or absence

of identification in terms of whether particular sets of restrictions on (55) produce iden-

tification. All previous results in this section are examples of this perspective but rely on

the very strong assumption of a particular way of imposing these restrictions, i.e., G ¼ I

� JA and B ¼ cI þ dA for known A. Note that the results we have described do not

employ information on the variance covariance matrix of the reduced form error struc-

ture, which is one source of identifying information and the basis for Graham’s (2008)

results. The simultaneous equations perspective makes clear that the existing results on

identification in linear social networks models can be extended to much richer frame-

works. We consider two classes of models in which we interpret all agents i ¼ 1,. . .,
nV as arrayed on a circle. We do this so that agents 1 and nV are immediate neighbors

of one another, thereby allowing us to work with symmetric interaction structures.

First, assume that each agent only reacts to the average behaviors and characteristics

of his two nearest neighbors, but is unaffected by anyone else. This is a linear variation

of the model studied in Blume (1993). In terms of the matrices G and B, one way to

model this is to assume that, preserving our earlier normalization, Gii ¼ 1 and Gii�1 ¼
Giiþ1 ¼ g1 for all i, Gij ¼ 0 otherwise; Bii ¼ b0, Bii�1 ¼ Biiþ1 ¼ b1 for all i, and Bij ¼ 0

otherwise, where here (and for the remainder of this discussion), all indices are mod nV.

The model is identified under theorem 5 since the nearest neighbor model may be inter-

preted via the original social networks model via restrictions on A. For our purposes,

what is of interest is that identification will still hold if one relaxes the symmetry assump-

tions so that Gii�1 ¼ gi�1, Giiþ1 ¼ gi1, Bii ¼ bi0, Bii�1 ¼ bi�1 and Biiþ1 ¼ bi1. If these

coefficients are nonzero, then the matrices G and B fulfill the classical rank conditions

for identification, cf. Hsiao (1983, theorem 3.3.1) and one does not need to invoke the-

orem 4 at all. Notice that it is not necessary for the interactions parameters to be the same

across agents in different positions in the network. Relative to Bramoullé et al., what

this example indicates is that prior knowledge of A can take the form of the classical

exclusion restrictions of simultaneous equations theory. From the vantage point of the

classical theory, there is no need to impose equal coefficients across interactions as those

authors do. Imposition of assumptions such as equal coefficients may be needed to

account for aspects of the data, e.g., an absence of repeated observations of individuals.

But if so, then the specification of the available data moments should be explicitly

integrated into the identification analysis, something which has yet to be done. Further,

data sets such as Add Health, which produce answers to binary questions concerning
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friends, are best interpreted as providing 0 values for a general A matrix, but nothing

more in terms of substantive information.

This example may be extended as follows. Suppose that one is not sure whether or

not the social network structure involves connections between agents that are displaced

by 2 on the circle, i.e., one wishes to relax the assumption that interactions between

agents who are not nearest neighbors are 0. In other words, we modify the example

so that for all i, Gii ¼ 1, Gii�1 ¼ Giiþ1 ¼ g1, Gii�2 ¼ gi�2, Giiþ2 ¼ gi2, Gij ¼ 0 otherwise,

Bii ¼ bi0, Bii�1 ¼ bi�1, Biiþ1 ¼ bi1, Bii�2 ¼ bi�2, Biiþ2 ¼ bi2, and Bij ¼ 0 otherwise. If the

nearest neighbor coefficients are nonzero, then by Hsiao’s theorem 3.3.1 the coeffi-

cients in this model are also identified regardless of the values of the coefficients that

link non-nearest neighbors. This is an example in which aspects of the network struc-

ture are testable, so that relative to Bramoullé et al. one does need to exactly know A in

advance in order to estimate social structure. The intuition is straightforward, the pres-

ence of overlapping network structures between nearest neighbors renders the system

overidentified: so that the presence of some other forms of social network structure

can be evaluated relative to it. This form of argument seems important as it suggests

ways of uncovering social network structure when individual data are available, and

again has yet to be explored. Of course, not all social network structures are identified

for the same reason that without restrictions, the general linear simultaneous equations

model is unidentified. What our argument here suggests is that there is much to do in

terms of uncovering classes of identified social networks models that are more general

than those that have so far been studied.

For a second example, we consider a variation of the model studied by Bramoullé

et al., which involves geometric weighting of all individuals according to their distance;

as before we drop the constant term for expositional purposes. Specifically, we consider

a social networks model

oi ¼ cxi þ d
X
j 6¼ i

aijðgÞxj þ J
X
j 6¼ i

aijðgÞoj þ ei:

The idea is that the weights assigned to the behaviors of others are functions of an

underlying parameter g. In vector form, the model is

o ¼ cxþ dAðgÞxþ JAðgÞoþ e; ð56Þ
where

AðgÞ ¼
0 g g2 � � � gk gk gk�1 � � � g2 g
g 0 g � � � gk gk gk�1 � � � g2

..

.

g g2 � � � g 0

0
BBB@

1
CCCA: ð57Þ
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Following Bramoullé et al., x is a scalar characteristic. The parameter space for this

model is P ¼ {(c, d, J, g) 2 R2 � Rþ � [0, 1)}. The reduced form for this model is

o ¼ ðI � JAðgÞÞ�1ðcI þ dAðgÞÞxþ ðI � JAðgÞÞ�1e:

Denote by F : P ! Rn2V the map

Fðc; d; J; gÞ ¼ ðI � JAðgÞÞ�1ðcI þ dAðgÞÞ: ð58Þ
The function F characterizes the mapping of structural model parameters (c, d, J, g) to
reduced form parameters. We will establish what Fisher (1959) calls complete identifia-

bility of the structural parameters from the regression coefficients for the reduced form.

By this he means that each reduced form parameter vector is derived from only a finite

number of structural parameter vectors, i.e., that the map from structural models to

reduced form models is finite-to-one.

The behavioral model described by (56) is nonlinear in the parameters because d, g
and J interact multiplicatively. This is nonetheless a natural model, as it is the simplest

way to discount individual effects by distance. The following complete identification

result holds for this model:

Theorem 7. Identification of the linear social networks model with weights

exponentially declining in distance. Suppose that the number of individuals nV is at least

4. Then for all (c, d, J, g) 2 P,
i. if I� JA(g) is nonsingular, cþ d 6¼ 0 and g 6¼ 0, then the cardinality of F�1(F(c, d, J, g) ) is

no more than 2(nV � 1).

ii. The events J¼ d¼ 0 and g¼ 0 are observationally equivalent. In this case, F(c, d, J, g)¼ cI.

Part i. of theorem 7 says the following: Each structural parameter vector is observation-

ally equivalent to at most 2nV � 3 other structural parameter vectors in the sense that

they all generate the same reduced form. As such, while point identification may not be

achieved, any true structural parameter vector fails to be identified relative to at most

2nV � 3 alternatives. Notice that complete identification is stronger than local identi-

fication. Local identification implies that for the true structural parameters, there exists

an open neighborhood of these parameters that does not contain any observationally

equivalent structural parameters. The set of observationally equivalent structural para-

meters could nonetheless be countable. Complete identification requires that the set

be finite, which implies local identification. Part ii. notes that if there are no social

interactions, this imposes sufficiently strong restrictions on the reduced form parameters

to identify both c and also requires that the matrix of reduced form parameters is pro-

portional to an identity matrix. We believe that refinements of theorem 7.i are possible

and leave this to future work.

These examples illustrate how the results of sections 3 and 4 are far from exhaustive

in understanding the identification of linear social interactions models.
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5. DISCRETE CHOICE MODELS OF SOCIAL INTERACTIONS

In this section, we consider identification for discrete choice models. Identification

conditions for discrete choice models will prove to be conceptually quite different than

the conditions that apply to linear models. Some reasons are trivial. For example, dis-

crete choice models, because they involve probabilities, are inherently nonlinear and as

we have discussed, nonlinear models have very different identification conditions than

linear ones. Other differences will prove to be more subtle.

i. Binary choice: basic structure
We first focus on binary choice models of social interactions. These have been the pri-

mary focus of theoretical work. Early theoretical studies include Blume (1993), Brock

(1993), Durlauf (1993) and Glaeser, Sacerdote, and Scheinkman (1996). Recent contri-

butions which generalize these earlier analyses in terms of the timing and network

structure of interactions as well as in terms of belief formation include Bisin, Horst,

and Özgür (2006), Horst and Scheinkman (2006) and Ioannides (2006).

Durlauf and Ioannides (2010) provide an overview of some of the interesting

theoretical properties of these models. We provide a brief summary in appendix 3.

Unlike the linear in means model, discrete choice models of social interactions can

exhibit multiple equilibria. Multiple equilibria are a well-known challenge to identifi-

cation in contexts such as industrial organization but will turn out to facilitate identifi-

cation of social interactions.43 A second important property of discrete choice models

with social interactions is that they may exhibit bifurcations around certain parameter

values, which essentially means that there will exist threshold values for model para-

meters such that if the parameters take values below the threshold, the environment

under study will exhibit one set of qualitative properties whereas if the parameters take

on values greater than the threshold, the environment will exhibit qualitatively differ-

ent properties. Since these properties are observable, identification can depend on the

values of the model parameters. Appendix 3 illustrates these properties under the case

of logistic errors, using a model due to Brock and Durlauf (2001a).

Identification for binary choice models has been studied in detail by Brock and

Durlauf (2001a,b, 2007); other contributions include Soetevent and Kooreman

(2007). We follow Brock and Durlauf (2001a,b) for the development of an initial struc-

ture and indicate how subsequent analyses have relaxed assumptions relating to their

formulation. Choices are coded so that they belong to the set {�1, 1}. If the context

is teenage pregnancy, then þ1 can denote had a child while a teenager while �1 can
43 See Berry and Tamer (2006) for an overview, and Beresteanu, Molchanov, and Molinari (2008) and Galichon and

Henry (2008) for recent advances in partial identification.
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denote did not have a child while a teenager. To interpret these choices as the outcomes of

a decision problem, we define individual-specific payoff functions Vi(oi).

An econometrically implementable choice structure is implemented by assuming

the difference between the payoffs for the two choices is additive in the different factors

that have been defined for the linear model, i.e.,44

Við1Þ � Við�1Þ ¼ kþ cxi þ dyg þ Jme
ig � ei: ð59Þ

Note that unlike the linear in means model, it is not necessary to require J 2 [0, 1)

because here it has a different interpretation, as a utility parameter. We will almost

always discuss the model as if J > 0 as this is the standard case of interest in the litera-

ture, but theory imposes no natural upper bound on J. Analogous to our initial analysis

of the linear in means model, we make two error assumptions. First, the expected value

of the unobservable ei term is independent of observable features of the individual and

any features of his group:

FðeijðxjÞj2g; yg; i 2 gÞ ¼ FeðeiÞ: ð60Þ

Second, any pair i and j of the errors are conditionally independent within and across

groups:

Fðei; ejjðxkÞk2g; yg; i 2 g; ðxlÞl2h; yh; j 2 hÞ ¼ FeðeiÞ�FeðejÞ
unless i ¼ j and g ¼ h:

ð61Þ

These conditions are the analogs of the error restrictions (8) and (9) that were initially

imposed on the linear in means model. These conditions are substantially stronger than

those that appear in the linear in means model as they impose conditional indepen-

dence rather than set certain conditional expectations equal to 0. They are also stronger

than needed for identification proofs. It is well understood in the discrete choice liter-

ature that median restrictions can play a role analogous to expected value restrictions in

linear models.45 We make them here for ease of exposition and to link directly to the-

oretical results as developed in Brock and Durlauf (2001a,b, 2007).

The decision problem for this binary choice context is simple: individual i chooses

þ1 if and only if Vi(1) � Vi(�1) � 0. Hence

mðoi ¼ 1jxi; yg; i 2 gÞ ¼ mðVið1Þ � Við�1Þ � 0Þ
¼ mðei � kþ cxi þ dyg þ Jme

igÞ ¼ Feðkþ cxi þ dyg þ Jme
igÞ:
44 The payoff differential is written in terms of �ei for algebraic convenience. See the derivation of choice probabilities

in appendix 3.
45 See Horowitz (2009) for an extended treatment.
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As before, the model is closed by imposing an equilibrium condition on beliefs. Each

person is assumed to know yg, Fe, and Fxjg, the empirical within-group distribution of

xi. When the population size is large, equilibrium requires that the expected value of

the average choice level in the population, given this information, is defined by

mg ¼ 2

ð
Feðkþ cxþ dyg þ JmgÞdFxjg � 1: ð62Þ

There typically does not exist, a closed form solution for mg.

McFadden (1974) observed that the logit, probit, and similar discrete-choice models

have two interpretations. The first interpretation is that of individual random utility.

A decisionmaker draws a utility function at random to evaluate a choice situation.

The distribution of choices then reflects the distribution of utility, which is the object

of econometric investigation. The second interpretation is that of a population of deci-

sionmakers. Each individual in the population has a deterministic utility function. The

distribution of choices in the population reflects the population distribution of prefer-

ences. Brock and Durlauf (2001a) (and theoretical models such as Blume (1993) )

extend this idea to games. One interpretation of this game theoretic approach is that

the econometrician confronts a population of random-utility maximizers whose deci-

sions are coupled. These models extend the notion of Nash equilibrium to random-

utility choice. The other interpretation views an individual’s shock as known to the

individual but not to others in the population (or to the economtrician). In this inter-

pretation, the Brock-Durlauf model is a Bayes-Nash equilibrium of a game with inde-

pendent types, where the type of individual i is the pair (xi, ei). Information is such that

the first component of each player i’s type is common knowledge, while the second is

known only to player i.
ii. Identification
Identification of the parameters in the binary choice model holds for very different

conditions than were seen in the linear in means case. These differences derive from

the nonlinear nature of the binary choice and do not require that the functional form

Fe is known a priori. The following theorem is proved in Brock and Durlauf (2007).

We emphasize that the theorem’s conditions are sufficient, not necessary, and were

chosen to render the sources for identification transparent.

Theorem 8. Identification of the binary choice model with social interactions.

Suppose for the binary choice model social interactions described by equations (59) through (62),

i. conditional on (xi, yg), the random payoff terms ei are distributed according to Fe, and

Fe(0) ¼ 0.5;

ii. Fe is absolutely continuous with associated density dFe. dFe is positive almost everywhere

on its support, the interval (L, U), which may be (�1, 1);
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iii. for at least one group g, conditional on yg, each element of the vector xi varies continuously

over all R and supp(xi) is not contained in a proper linear subspace of RR;

iv. yg does not include a constant; each element of yg varies continuously over all R; at least one

element of d is nonzero; and supp(yg) is not contained in a proper linear subspace of RS.

Then k, c, d, J and Fe are identified up to scale.

The intuition for why identification holds is as follows. Within a given group, dyg þ
Jmg is constant for all agents. Assumptions i)–iii) are sufficient to ensure that within that

group, the parameter vector c and density function Fe are identified up to scale. Iden-

tification of these objects up to scale was originally established by Manski (1988). The

assumptions stated here allow for a proof structure that mimics Horowitz (2009).

Assumption iv) ensures that k, d and J are identified up to scale. Identification of k is

trivial if the other parameters are identified. The reason why d and J are identified is

that the unbounded support on the yg element with a nonzero coefficient ensures that

mg and yg cannot be linearly dependent. This follows simply from the fact that mg is

bounded between �1 and 1. This bound is not driven by any functional form assump-

tion but follows from the fact that the expected choice values are functions of the

choice probabilities that are bounded between 0 and 1. Hence, the argument for iden-

tification is analogous to one of the basic reasons why bounds can be established on

probabilities in the partial identification literature. (See Manski (2003) for a synthesis.)

Note as well that this is not an identification at infinity argument.

This theorem extends Brock and Durlauf (2001a,b) who proved identification when

Fe is a negative exponential distribution of the type used in appendix 3 and Brock and

Durlauf (2006) who proved identification for general Fe when Fe is known a priori.

Clearly, the conditions of this theorem can be relaxed. For example, if condition iii)

holds for all groups, then one can allow for multiple Feg’s, i.e., different group-specific

distributions. Similarly, one does not need unbounded supports for all regressors, rather

what one needs is a large enough support for a nonlinear relationship between mg and

yg to ensure identification.

iii. Observability of actions
The identification results in Brock and Durlauf (2007) are sensitive to the assumption

that individuals react to expected rather than realized behaviors of others. This fol-

lows from the assumption that an individual’s random shock is observed only by

himself. Soetevent and Kooreman (2007) build a game theoretic model with a differ-

ent assumption. They assume that each individual knows the other individuals’

shocks, that shocks are invisible only to the econometrician. Thus in equilibrium,

each individual’s expectation of the average choice of others will be the realized

average choice of others. Soetevent and Kooreman have replaced the incomplete

information and Bayes-Nash equilibrium of Brock and Durlauf (2001a) with com-

plete information and Nash equilibrium. They justify their informational assumption
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by presuming to study interactions in relatively small groups of given sizes in which

choices of other individuals are assumed to be fully observed, and therefore an indi-

vidual’s payoff depends on the actual choice of others in his group, as opposed to

expected choices as in Brock and Durlauf. This difference in information structure

and the resulting equilibrium concept makes for an interesting contrast between

the identification conditions in the two models. The equilibrium payoff difference

equation (59) now becomes

Við1Þ � Við�1Þ ¼ kþ cxi þ dyg þ J

ng � 1

X
j 6¼ i

ojg � ei: ð63Þ

Like Brock and Durlauf, Soetevent and Kooreman focus on pure Nash equilibria with

binary outcomes and estimate the model in effect as a system of simultaneous equations

by means of simulation methods. Each individual choice is determined by the rule

oig ¼
1 if kþ cxi þ dyg þ 1

ng � 1

X
j 6¼i
oig > ei;

�1 if kþ cxi þ dyg þ J

ng � 1

X
j 6¼i
ojg � ei:

8>>><
>>>:

Unlike the Brock and Durlauf model, for given values of parameters (k, c, d, J ) and data

(xi, yg), the decision rules for the individual agents may not produce unique strategy

profiles.46 This creates a very different multiple equilibrium problem than occurs in

Brock and Durlauf, since in the latter, each agent has a unique strategy profile given the

expected average choice mg. Consequently, the normal approach of forming the likeli-

hood function would not be appropriate in their case even when the ei’s are independent.
Soetevent and Kooreman employ simulation-based estimation methods to compute

the likelihood that any choice pattern would be observed. Their approach accounts for

the potential multiplicity of noncooperative equilibria. For parameter values that gen-

erate multiple equilibria they assume that the equilibria are equally likely, which in turn

guarantees statistical coherency of the model.47 Simulation of the model over different

regions of the parameter space allows for calculation of the number of equilibria for
46 Soetevent and Kooreman (2007, pp. 602–3). This finding verifies the claim by Krauth (2006b) that with small (finite-

size) social groups, the Brock and Durlauf model can exhibit multiplicity of strategy profiles whenever observed

group behavior exerts any influence. The range of equilibrium group behavior depends on the size of the social

group as well as its strength of influence.
47 The assumption that all equilibria are equally likely is questionable. Blume and Durlauf (2003) show that in dynamic

analogs of the Brock and Durlauf model, the percentage of time spent in the vicinity of the highest average utility

equilibrium exceeds that of other equilibria; similarly Brock and Durlauf (2001b), for a version of the discrete choice

model of social interactions in which the conditional probabilities of each choice depend on the realized choices of

others, show that the equilibrium choice configuration will assign almost all probability to the social optimum as the

population becomes large. While these analyses employ different microfoundations from Soetevent and Kooreman,

they suggest that not all equilibria are equally likely. We thank James Heckman for discussion on this general issue.
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draws of the ei’s which are assumed to be i.i.d. normal. The procedure skirts the issue

of exact identification of the model (no proof of identification is given) but provides a

practical approach for implementation of their theoretical model. Also, in their actual

estimation, Kooreman and Soetevent exclude contextual effects by setting d ¼ 0.

The multiplicity of equilibria in Soetevent and Kooreman is very similar to types of

multiplicity that have been studied in the industrial organization literature. Tamer

(2003) launched a now thriving literature on multiple equilibria and partial identifica-

tion by means of bounds for industrial organization contexts. This body of work, sur-

prisingly, has had little contact with the social interactions literature. Clearly, both

literatures would benefit from integration.

iv. Unobserved group effects
Unobserved group effects may be introduced in a fashion directly analogous to the

linear in means model. Specifically, payoff differentials are described by

Við1Þ � Við�1Þ ¼ kþ cxi þ dyg þ Jmg þ ag � ei:

Here ag is a fixed effect and equilibrium is required. Recall that individual agents are

assumed to observe ag while the analyst does not.

Without any restrictions on this fixed effect, it is evident that identification breaks

down. Note that the presence of a fixed effect does not affect identification (up to scale)

of c and Fe. This holds because ag is constant within a group and so is subsumed in the

constant term. To see why the other parameters are not identified, observe that parame-

ter values k, d and J are observationally equivalent to �k, �d and �J , that is, for all yg 2 supp y,

kþ dyg þ Jmg þ ag ¼ �kþ �dyg þ �Jmg þ �ag

if one chooses �a ¼ a þ Jmg and �J ¼ 0. Thus J and d are not identified. (See Brock and

Durlauf (2007) for an elaboration.) We can therefore state:

Theorem 9. Nonidentification with unobserved group effects. In the presence

of unobserved group interactions whose properties are unrestricted, the parameters of the binary

choice model with social interactions are not identified up to scale.

In response to unobserved group effects, instrumental variables and differencing stra-

tegies are available just as occurs for linear models. Our remarks on instrumental variables

for the linear in means model apply for the binary choice context as well and so are not

repeated. Instead, we focus on two strategies, one which parallels the linear in means

model and one which is new and only applies in the binary choice context.

a. Panel data
We first consider how panel data can be used to eliminate unobserved group effects for

the binary choice model. Panel data, of course, allows one to consider differencing

methods. The notion of differencing in panels for binary choice data is more subtle
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than was the case for the linear in means model since it involves considering differences

in probabilities across time. Chamberlain (1984) provides the generalization of differen-

cing to discrete choice contexts. Identification of social interactions with differencing is

studied in Brock and Durlauf (2007) who consider

Vitð1Þ � Vitð�1Þ ¼ kþ cxit þ dyg þ eygt þ Jmgt þ ag � eit: ð64Þ
The vector ygt is introduced in order to distinguish between those contextual effects

that are time varying and those that are not. Applying Chamberlain’s ideas on quasi-

differencing of discrete data to models with social interactions, Brock and Durlauf

verify a corollary to theorem 8.

Corollary 2. Identification of a subset of parameters with panel of the binary

choice models of social interactions with fixed effects. For the binary choice model with

social interactions described by equations (59)–(62), assume that within period-choices are described

by equation (64) and that the model equilibrium conditions hold period by period. If the assumptions

of theorem 8 hold for all t, then c, e and J are identified up to scale whereas k and d are not identified.
b. Partial identification
For binary choice models, Brock and Durlauf (2007) have proposed partial identifica-

tion approaches to social interactions which involve weak assumptions on unobserva-

bles. We consider two examples. The partial identification arguments we develop are

qualitatively different from those that typically appear in the econometrics literature.

The reason is that we do not establish probability bounds. Rather, we show how certain

empirical observations represent evidence of social interactions, even though parameter

magnitudes cannot be bounded. The approach we describe is theory-dependent in

the sense that it involves asking how the introduction of unobserved heterogeneity into

various models affects their properties. Put differently, we are concerned with uncover-

ing “footprints” of social interactions in heterogeneity-filled environments using various

theoretical models as the basis for the analysis.

Our first example of a weak assumption is first order stochastic monotonicity of group

level unobservables. We assume that yg is measured so that d � 0. We denote the condi-

tional distribution of the unobservable given yg as Fagjyg . Letting 	 denote first order sto-

chastic dominance, and using > when comparing vectors to mean that each element of

one vector is greater than the corresponding element of the other, we assume

if yg > yg0 ; then Fagjyg 	 Fag0 jyg0 : ð65Þ

This assumption is sufficient to produce partial identification of social interactions.

Theorem 10. Pattern reversals and partial identification of endogenous

social interactions. For the binary choice model with social interactions described by equations

(59)–(62) suppose that the distribution of fixed effects exhibits first order stochastic dominance
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with respect to the contextual effects as characterized by equation (65). If assumptions i)–iv) in

theorem 8 hold and

yg > yg0 and EðmgjygÞ < Eðmg0 jyg0 Þ; ð66Þ

then it must be the case that J > 0 and J is large enough to produce multiple equilibria.

The term “pattern reversals” refers to the case where the observed characteristics of

two groups suggest one ordering in their expected average outcomes, while the oppo-

site ordering in fact holds.48 This reversal of outcomes with respect to fundamentals can

occur for three reasons. One possibility is that the observed outcome ordering is due

to sampling error. This is irrelevant to identification because of the analogy principle.

The second reason is that the unobserved group effects reverse the ordering that is

implied by dyg. This is ruled out, in an expectations sense, by the stochastic dominance

assumption. The only remaining reason for the pattern reversal is that there are multi-

ple equilibria associated with mg such that the low yg group has coordinated on the

high-expected average outcome equilibrium whereas the high yg group has not. This

is why the theorem requires multiple equilibria. To be clear, endogenous social inter-

actions may be present when no pattern reversal occurs. All that can be said is that a

pattern reversal in the presence of stochastic dominance in the sense of (66) is evidence

of social interactions.

Our second example involves restricting the conditional density of the unobserved

group interactions given observed group characteristics, that is, dFagjyg , via unimodality,

for all yg; dFagjyg is unimodal: ð67Þ

This assumption is sufficient to verify

Theorem 11. Partial identification of endogenous social interactions when

the density of unobservables is unimodal. For the binary choice model with social inter-

actions described by equations (59)–(62), suppose that fixed effects are added as characterized by

equation (67). If assumptions i)–iv) in theorem 8 hold, then

i. if J ¼ 0, then dFmgjyg is unimodal;
ii. if J > 0 is large enough to produce multiple equilibria for the binary choice model with

social interactions, then dFmgjyg is multimodal.
This result also is based on multiple equilibria. In this case, the multiple equilibria pro-

duce the multimodality described in the theorem. Two observations should be made

about this result. First, no analogous result exists for the unconditional density of expected

outcomes, dFmg
. The reason is that integrating dFmgjyg over yg to produce dFmg

would not

necessarily preserve multimodality if it is present in the conditional density and, in
48 Of course, expected group values are not directly observed. Our identification analysis replaces sample means with

population means, following the analogy principle.



912 Lawrence E. Blume et al.

Author's personal copy
contrast, may spuriously produce it when it is absent from the conditional density. This

follows from the nonlinear relationship between mg and yg. Second, multimodality is suf-

ficient but not necessary for multiple equilibria in dFmgjyg as mixture densities are not nec-

essarily multimodal.49

One message of these two examples is that unlike other contexts, multiple equilibria

can facilitate the identification of social interactions. The reason for this is that endog-

enous social interactions are the only mechanism by which multiplicity can be gener-

ated in these environments.

These theorems illustrate a general feature concerning multiple equilibria and social

interactions, namely that multiple equilibria do not represent an impediment to the

identification of social interactions but rather may be of use to an analyst. This possibil-

ity was first recognized for the binary choice case in Brock and Durlauf (2001b). The

theorems we have presented by no means exhaust the potential use of multiple equili-

bria to uncover social interactions. de Paula and Tang (2010), for example, argue that

multiple equilibria, because they imply that observed choice probabilities are mixtures

of equilibrium-specific choice probabilities, may be used to uncover the sign of endog-

enous interactions J. We discuss their work below.

v. Self-selection
Self-selection for discrete choice models has generally been handled using instrumental

variables methods. The concerns we articulate about this strategy for the linear in

means model apply to the discrete choice context as well. In parallel to the case of

group level unobservables, Brock and Durlauf (2007) provide a number of partial iden-

tification results that hold under relatively modest assumptions.

To do this, Brock and Durlauf (2007) treat the membership question as the out-

come of a matching problem and place some restrictions on the equilibria that emerge

from the matching. Matching is assumed to occur with respect to an individual index

Ai and a group index Tg, defined as

Ai ¼ cxi � ei ð68Þ
Tg ¼ dyg: ð69Þ

In the context of peer effects in classrooms, Ai may be thought of as student ability and

Tg as teacher quality. For simplicity, the individual characteristics xi are assumed to be

measured so that c � 0.

Individuals and groups are matched in the sense that higher group quality is associated

with higher individual quality. With respect to the equilibrium matching process, Brock

and Durlauf assume
49 See Lindsay (1995, p. 4–5) for a nice example of a unimodel two-part mixture.
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For any pair of groups g and g0;Tg > T 0
g ) FAjTg

	 FAjTg0 : ð70Þ

This assumption is weaker than one which imposes strict assortative matching between

better groups and higher ability individuals; the latter is predicted by models such as

Becker (1973). The assumption is qualitatively consistent with a range of payoff func-

tions that relate groups and individuals, see Sattinger (1993) for a survey of equilibrium

matching problems. Note that (70) places an implicit restriction on Fejygi2g. This

assumption on matching leads to theorem 12.

Theorem 12. Partial identification of endogenous social interactions under

assortative matching. For the binary choice model of social interactions (59)–(62), assume

assortative matching as described by (70). Then E(mgjTg) > E(mg0jTg0).

This theorem is useful as it indicates how the presence of endogenous social inter-

actions may be inferred if Tg > Tg0 yet E(mgjTg) < E(mg0jTg0). This can only occur,

under the specification we have assumed, if group g has coordinated on an equilibrium

expected average choice level other than the largest of the possible equilibria associated

with it, while group g0 has coordinated on an equilibrium other than the lowest possi-

ble expected average choice level among those it could have attained. The existence of

multiple equilibria immediately implies J > 0.

The use of assortative matching to facilitate identification may be extended to panel

data. To do this, modify (68) and (69) so that Ait ¼ k þ cxit þ eit and Tgt ¼ dyg þ eygt
and that (70) holds period by period. Brock and Durlauf show:

Corollary 3. Equality of average outcomes with equal observable contex-

tual effects. Assume that the binary choice model of social interactions (59)–(62) holds for

all t with equilibrium at each date and assortative matching as described by (70). If J ¼ 0 or

J > 0 but is sufficiently small that mgt is unique, then ygt ¼ ygt0 implies mgt ¼ mgt 0.
vi. Beyond the binary choice model
a. Multinomial choice
Little econometric work has been done on multinomial choice models with social

interactions; as far as we know, the only contributions are Brock and Durlauf (2002,

2006) and Bayer and Timmins (2007). Nevertheless these models seem important in

many contexts. We develop the analog to the binary choice model and establish iden-

tification. Multinomial choice models with social interactions can exhibit multiple

equilibria and bifurcations in parallel to those found in binary choice models. Appendix

3 provides a brief discussion.

To formulate the model, we consider an environment in which each member of a

common group makes a choice l from a common choice set with L discrete possibili-

ties, i.e., Oig ¼ {0,. . ., L�1}. The same choices are assumed to be available regardless

of group. The common choice set assumption is without loss of generality, since if
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agents face different choice sets, one can always assume their union is the common set

and then specify that certain choices have payoff of �1 for certain agents. Individual

utility is defined as

VigðlÞ ¼ kl þ cxi þ dlyg þ Jpeigl þ b�1eil: ð71Þ
Here peigl denotes agent i’s expected value for the fraction of group g that chooses l. This

generalizes the preference structure of the binary choice model to account for any

number of choices. As before, b indexes the degree of heterogeneity in the random

payoff term eil. We assume that these unobserved utility terms are independent and

identically distributed with a common distribution function Fe. In parallel to the binary

choice case

FðeiljðxmÞm2g; yg; i 2 gÞ ¼ FeðeilÞ;
and

for all i; j; g; h; k; l such that not all of i ¼ j; g ¼ h; k ¼ l hold

FðeikejljðxmÞm2g; i 2 g; yg; ðxnÞn2h; yh; j 2 hÞ ¼ FeðeikÞ�FeðejlÞ:
For this model, the probability that agent i makes a particular choice l is the probability

that l produces the maximum payoff among all choices according to (71). This amounts

to the joint probability defined by

m

ei0 � eil � bðkl þ clxi þ dlyg þ Jlp
e
igl

� k0 � c0xi � d0yg � J0p
e
ig0Þ

..

.

eiL�1 � eil � bðkl þ clxi þ dlyg þ Jlp
e
igl

� kL�1 � cL�1xi � dL�1yg � JL�1p
e
igL�1Þ

0
BBBBB@

1
CCCCCA:

Following an order-statistics argument50 the probability of choosing l conditional on a

particular realization of eil isY
j 6¼ l

Fe

�
bðkl þ clxi þ dlyg þ Jlp

e
iglÞ � bðkj þ cjxi þ djyg þ Jjp

e
igjÞ þ eil

�
;

which immediately implies that the unconditional probability of the choice l is

pigl ¼
ðY

j 6¼ l

Fe

�
bðkl þ clxi þ dlyg þ Jlp

e
iglÞ � bðkj þ cjxi þ djyg þ Jjp

e
igjÞ þ eÞdFe: ð72Þ
50 Anderson, de Palma, and Thisse (1992, p. 36) provides a clean exposition.
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In equilibrium, the aggregate choice probabilities of this general multinomial choice

model are the solutions to

pgl ¼
ð ðY

j 6¼ l

Fe

�
bðkl þ clxi þ dlyg þ Jlp

e
iglÞ � bðkj þ cjxi þ djyg þ Jjp

e
igjÞ þ e

�
dFedFxjg:

ð73Þ

Brock and Durlauf (2006) prove a general identification theorem for the multinomial

choice model.

Theorem 13. Parametric identification for the multinomial choice model.

Let the true data generating process be given by (71)–(73) and assume that Fe is known. Under

the normalization k0 ¼ 0, c0 ¼ 0, d0 ¼ 0, and J0 ¼ 0, if

i. the mapping defined by equation (73) is globally one-to-one,

ii. the joint support of xi, yg is not contained in a proper linear subspace of RRþS,

iii. the support of yg is not contained in a proper linear subspace of RS,

iv. no linear combination of elements of xi and yg is constant,

v. for each individual i, conditional on yg, xi is not contained in a proper linear subspace of R
R,

vi. none of the elements of yg has bounded support,

vii. for all l, pgl is not independent of g,

then the vector of model parameters (k1, c1, d1, J1,. . ., kL�1, cL�1, dL�1, JL�1) is identified

up to scale.

We emphasize that these conditions are sufficient, not necessary. The careful reader

will observe that these conditions have not been reconciled with the conditions for the

binary choice model. We do not do this in order to avoid uninteresting modifications

of the proofs of the original theorem.

Relative to the binary choice identification theorem, conclusion of the theorem is

weaker as it requires that the error distribution is known a priori. As far as we are aware,

there does not exist any multinomial generalizations of Manski (1988) so that the error

distribution may be identified (up to scale) via intragroup variation in individual charac-

teristics and associated behaviors.

Bayer and Timmins (2007) study a variation of the multinomial choice problem, which

focuses on choices across locations. They thus consider a population that forms a single

group. We omit the group index in describing their model. In terms of the error structure,

they set b¼ 1 in (71) and assume that the error terms are double exponentially distributed,

mðeil � zÞ ¼ exp ð� exp ð�bzþ gÞÞ: ð74Þ

In terms of preferences, they follow the industrial organization literature in allowing for

coefficient heterogeneity; their implementation of this heterogeneity is the opposite

of the formulation one finds for hierarchical models in that the heterogeneity is
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determined by individual characteristics. In addition, they allow for unobserved

choice-specific fixed effects. This produces choice-specific payoffs

ViðlÞ ¼ dilzl þ Jilpil þ xl þ eil;

where

dil ¼ d þDlxi; Jil ¼ J þ Jlxi;

and xl is an unobserved location-specific effect. Bayer and Timmins use the functional

form assumption (74) to construct instruments for estimation of this model. Their

approach is a variant of models that all fall under the approach pioneered by Berry,

Levinson, and Pakes (1995). An interesting aspect of Bayer and Timmins’ work is that

they focus on identification power that derives from changes in substitution patterns in

multinomial choice models.
b. Duration models
A number of studies have sought evidence in dynamic contexts based on duration and

optimal stopping problems. Brock and Durlauf (2001b) first discussed this approach to

modeling social interactions, albeit briefly. Sirakaya (2006) studies recidivism under the

assumption the individual hazard function for an individual probationer depends on

individual and neighborhood characteristics as well as social interactions among proba-

tioners. She allows for two types of social interactions: the mean hazard rate for proba-

tioner’s in i’s neighborhood, mg, and mean time to recidivate in the population, rg.

These are estimated over the entire sample, and so are not time varying. The hazard

rate she employs takes the functional form

migðt; xi; yg;mg; rgÞ ¼ e0ðtÞ exp ðkþ cxi þ dyg þ J1mg þ J2rgÞ; ð75Þ
where e0(t) denotes the baseline hazard function. (Since the model is expressed in con-

tinuous time, t is treated as an argument rather than a subscript.) Sirakaya addresses

unobserved group effects by considering frailty model variations of (75) which helps

address issues of unobserved group effects. Probationers are assigned to neighborhoods,

which eliminates issues of self-selection. Sirakaya finds strong evidence that endoge-

nous social interactions effects matter.

A particularly sophisticated analysis is due to de Paula (2009) who uses the same data

explored by Costa and Kahn (2007), mentioned in the introduction as an outstanding

example of the use of history to uncover social interactions, to estimate hazard models

of desertions among Union soldiers in the Civil War. de Paula develops a formal model

of exit decisions in which the payoff of desertion exhibits dependence on the desertions

choices of others. In his model, the expected payoff to desertion at time t is decreasing
in the fraction of the population of prisoners that have previously deserted, in the sense
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that the utility of desertion at a given point in time is increasing in the number of con-

temporaneous deserters, which depends on the size of contemporaneous prisoner pop-

ulation. de Paula formalizes this idea using a continuous time coordination model.

Identification is formally proved for the model and evidence is adduced that bunching

in desertions occurred in a way that is consistent with social interactions. This work is

extended to an elegant discussion of semiparametric identification of interdependences

in duration models in Honoré and de Paula (2010).

c. Uncovering social interactions via their effects on laws of large numbers
and central limit theorems
When social interactions generate dependence across agent behaviors in a group, their

presence will have implications for the convergence rates of sample means and so will

affect laws of large numbers and central limit theorems associated with data sampled

from the group. A number of authors have proposed ways to exploit these effects in

order to generate social interactions. A neglected theoretical predecessor to this social

interactions work is Jovanovic (1987) who studies how interdependences could lead

idiosyncratic shocks to produce aggregate uncertainty.

One approach of this type is due to Glaeser, Sacerdote and Scheinkman (1996).

Their objective is to examine whether endogenous social interactions contribute to

cross-city variation in crime rates. One can interpret cities as groups and code the

crime/no crime choice as oi ¼ 0 and oi ¼ 1 respectively, in order to preserve our

binary choice notation. If one thinks of persons across all cities as having a common

probability p to commit a crime, then the crime rate for the population of city g will

have an associated variance of p(1 � p)/ng. On the other hand, the presence of social

interactions may increase this variance by introducing dependence across choices. To

formalize this intuition, Glaeser et al. consider a model in which individuals are placed

on a line and indexed outwards from the origin, {0, 
1, 
2}, so that a city of size ng ¼
2n þ 1 will have individuals ranging from �n to n. They propose a stochastic process

for choices in which individuals in a city come in three types: type 0 individuals are

always law abiding, type 1’s are always criminals, and the remaining type 2’s mimic

their predecessor in the order. The assignment of types to locations on the line is

i.i.d. They show that this model produces greater cross city variance in crime rates

than the model without social interactions. Specifically, the variance in the crime rate

is p(1 � p)(2 � p)/png, where p is the probability that an individual with fixed behavior

is a criminal, (1 � p) is the probability that a fixed individual never commits a crime,

and p is the probability that an individual is a fixed type. Without social interactions,

p ¼ 1; that is, everyone is either type 1 or type 2. The presence of a group in the pop-

ulation that can be influenced raises the variance. They propose independently estimat-

ing p, and testing for social interactions by comparing the variance of cross-city crime

rates with p(1 � p)/ng, that would result from no social interaction.
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In order to operationalize this approach it is necessary to control for cross-city dif-

ferences in crime rates that are due to differences in fundamentals. That is, the cross-

city test requires that under the null of no social interactions, individuals within and

across cities have equal probabilities of committing crimes. Glaeser et al. address this

both by accounting for observable crime determinants such as demography and by

either employing functional forms to allow the fraction of the independents in a pop-

ulation to be estimated in the presence of unobservable fundamental crime determi-

nants or by bounding the importance of the fundamentals “by assuming that the

unobservable heterogeneity has twice the predictive power of a one-year lag of the

city’s own crime rate” (Glaeser, Sacerdote, and Scheinkman, 1996, p. 518).

One limit of the Glaeser et al. approach is that evaluation of the role of social inter-

actions requires assumptions that rule out various types of cross-section dependence

across agents, in order to construct test statistics with standard distributions. This is a stan-

dard problem in cross-section data analysis, since these dependences presumably occur in

some sort of social space (Akerlof, 1997) and there is no natural metric for measuring dis-

tance between individual observations with respect to which one can argue that distance

is attenuated, as can be done in time series and spatial contexts and helps motivate HAC

estimators (West, 2008). In fact, Glaeser et al.’s reliance on aggregate data rules out the

use of such corrections even if the social space were observable.

de Paula and Tang (2010) provide a set for tests of social interactions that may be

interpreted as extensions of the Glaeser, Sacerdote and Scheinkman approach to look-

ing at the properties of sample moments. de Paula and Tang consider binary choices in

which the payoffs in (63) are modified to

Við1Þ � Við�1Þ ¼ kþ cxi þ JðxiÞ
X
j 6¼ i

ojg � ei:

There are several qualitative differences with (63). First, the endogenous social interac-

tions parameter is allowed to depend on xi. The authors are interested in the case

where the parameter is negative as well as positive. Second, the endogenous effect

depends on the number of agents making the choice, not the average. Third, while

the idiosyncratic shocks are still assumed to be conditionally independent, their distri-

bution functions are modeled as Fejx, so that each distribution function may depend on

the individual’s characteristics. The information set for agents is assumed to be the same

as in Brock and Durlauf (2001a) and elsewhere, and so leads to a Bayes-Nash equilib-

rium of the type we have studied.

de Paula and Tang argue that even with individual level data, this model is not identi-

fied. They therefore propose to study cases where groups are composed of individuals with

identical xi values. This leads them to argue that multiple equilibria in groups with a given

xi ¼ �x can identify the sign of J(�x). When J(�x) is positive, this is easy to see, since different

groups will have different expected average choice levels and so in the Glaeser et al. sense



919Identification of Social Interactions

Author's personal copy
produces excess intergroup variance in sample means. While this was originally recognized

in Brock and Durlauf (2001b), de Paula and Tang develop the argument.

Further, de Paula and Tang argue that multiple equilibria can hold when J(�x) is neg-
ative. Their identification argument differs from our previous arguments on how mul-

tiple equilibria facilitate identification. de Paula and Tang shift their analysis from

average choice to individual choices within a group. They show how negative J(�x)
can mean that there is a negative correlation among intragroup choices. The key to

their analysis is that even though aggregate quantities such as the expected average

group choice may be constant, there are multiple equilibria with respect to which

agents choose 1 as opposed to �1. This represents a new view of the informational

content of multiple equilibria. This approach does require individual level data, unlike

Glaeser et al. We conjecture that if one focuses on average group behavior, a negative

J(�x) would lead to lower variance in the sample averages of group behavior than would

occur when social interactions are absent, so that the aggregate approach of Glaeser

et al., may be applied to test for social interactions for this case as well.

Another approach to the identification of social interactions via qualitative features of

sample moments was suggested in the context of financial applications in an early paper

by Brock (1993) and uses bifurcations around certain parameter values of a type where

the Law of Large Numbers and the Central Limit Theorem break down as in, for example,

the statistical mechanics models of Amaro deMatos and Perez (1991) and Ellis (1985). The

basic idea of this second approach is to explore how strong dependence between choices

can lead to qualitative changes in the properties of the joint stochastic process for a set of

choices. These types of breakdowns occur in variations of the binary choice model, and

they have some surprising consequences. In the linear in means model, it is natural to

use the sample mean as an instrument for individuals expectations. Since equilibrium

requires that individuals’ beliefs are the correct first moment of the population distribution

of choices, this amounts to using the sample mean as an instrument for the population

mean.While this approach is well-justified in the linear in means model, it creates an equi-

librium selection bias in binary choice models. If bJ> 1, the model has multiple equilibria.

Brock and Durlauf (2001b, pp. 3364–7) show that there is a function H : R ! R which

can be thought of as a potential function. It has the property that if m is a local maximum

ofH(bJm), thenm is an equilibrium expectation. Nonetheless, as the population size grows,

limn!1mg 2 argmax H(bJm). Generically, this set is a singleton, and so the procedure of

replacing the population mean with the sample mean in effect selects one equilibrium,

the equilibrium which globally maximizes m ↦ H(bJm). The selection of equilibrium by

an estimator should appear to be quite troubling. The argument has been made that differ-

ent dynamical processes of choice revision by individuals (such as best-response and

learning dynamics) select the potential-maximizing equilibrium.51 For the economist
51 See, for instance, Blume and Durlauf (2003) and Monderer and Shapley (1996).
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who is aware of these results, the use of the sample mean as an instrument for beliefs in

binary choice models may be a virtue rather than a vice. One implication of this selection

effect is that estimates using the sample mean will behave discontinuously in the parameters

of the model. The correspondence frommodel parameters to global maxima ofH is upper

hemi-continuous but not continuous — small changes in parameters can produce big

changes in the location of the global maximum (although not in the maximal value of H).

Brock and Durlauf (2006, section 2.3) extend this type of argument to the multino-

mial case to show how a tiny change in the distribution Fhjg of the characteristics of group
g can cause a large change in the limiting value of the fraction of group g choosing choice l

among possible choices 0,. . . ,L� 1, provided bJ is greater than some critical value. This

approach suggests that for general social interactions structures a potential route to iden-

tification would be to estimate the sum of absolute values of correlations amongmembers

of a group, denote this St and look for dates t
� where St changes abruptly. While it is pos-

sible that the stochastic structure of the generating processes of unobservables and selec-

tion effects that have not been accounted for by estimating a model of selection into

groups, e.g., equation (39) could display similar abrupt changes.

We believe that exploitation of potential bifurcations due to endogenous switching

from weak dependent data generating processes to strong dependent data generating

processes is a potentially important area for future research on the detection of foot-

prints of endogenous social interactions in various data sets. At the very minimum this

kind of approach to identification issues should help the scientist to get a better under-

standing of mechanisms of abrupt change, whatever the ultimate cause of such abrupt

change may be.52

A different approach to this type of analysis is to explicitly study the implications

of dynamic analogs to the discrete choice models we have described. Blume and Dur-

lauf (2003) do this by explicitly considering evolutionary game analogs of the Brock-

Durlauf model. They show how the fraction of average time spent around the higher

average utility state of the model approaches 1 as noise in the individual choices

shrinks to zero, while first mean passage times at the extremal equilibria become

unbounded. These sorts of properties represent the dynamic analogs to the use of

cross-section properties to infer social interactions. Hence, we also see a need for

further study of dynamic social interactions models as these dynamics can produce

distinct footprints of social interactions.

d. Beyond Bayes-Nash equilibrium
Very recent work on discrete choice models of social interactions has focused on relax-

ing equilbrium belief restrictions. One approach is due to Li and Lee (2009) who
52 See Brock (2006) as well as other articles in Repetto (2006) in the context of trying to explain possible causes of

abrupt movements in environmental policy as well as other abrupt movements in policy.
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employ an interesting data set on the 1996 Clinton versus Dole Presidential election. In

this data set individuals were asked about their own intended vote and whether they

thought their reference group members (where the reference group was well defined

in the data set) would vote for Clinton, Dole, a third party candidate, or not vote at

all; these data are trimmed to produce a binary choice between the two major party

candidates. Using these data on the beliefs of each respondent about the voting choices

of his reference group, Li and Lee compute a subjective expectation, which they

denote by pig, for each individual i, to play the role of me
ig in equation (62) above,

and use it to test the null hypothesis of equilibrium beliefs by the goodness of fit in

the binary choice model with independent types and equilibrium beliefs, as opposed

to the subjective expectations they construct. Using maximum likelihood estimation

methods, Li and Lee produce two interesting results in this part of their paper. First,

they show that estimation effectiveness (measured by the size of the likelihood and

in-sample and out-of-sample prediction results) of the binary discrete choice model

with social interactions is improved when the subjective expectation data are used in

place of the equilibrium beliefs version of the model. Second, they reject the null

hypothesis of rational expectations. Incorporation of group level unobservables does

not qualitatively affect these findings.

Notice, however, that their findings are still consistent with Bayes-Nash equilibria,

because conditional on their own type, people could have different beliefs about the

types of others. In Bayes-Nash terms, this rejects the hypothesis that types are indepen-

dent. From this perspective, one could argue that Li and Lee have rejected the com-

plete (but imperfect) information version of their game in favor of the incomplete

information version.

Beyond the testing of the rational expectations hypothesis, Li and Lee make a sec-

ond methodological contribution by introducing heterogeneity in the social interac-

tions parameter across agents and allowing the data to measure this heterogeneity by

estimating a random coefficients version of the model using simulation estimator tech-

niques. They also estimate a threshold version of the model in order to allow for non-

probabilistic voters, i.e., “die hard” Clinton and Dole supporters who vote for their

preferred candidate with probability one. They find little evidence of parameter het-

erogeneity and virtually none for nonprobabilistic voters.53

A very general analysis to understand the empirical implications of social interac-

tions when rationality assumptions are relaxed is due to Aradillas-Lopez (2009). This
53 Li and Lee conduct in-sample and out-of-sample prediction analyses and find that out of sample prediction is

improved when endogenous social interactions are included. Thus, regardless of whether the estimate of the social

interactions parameter is simply picking up selection effects or group level unobservables, it can still facilitate

prediction. However if one wants to make policy statements where it matters whether the endogenous social

interactions parameter is estimated consistently or not, then predictive improvement is an insufficient basis for using

the model. This is related to Manski’s (2010) argument on the usefulness of reduced forms versus structural models of

social interactions which is discussed in section 3.



922 Lawrence E. Blume et al.

Author's personal copy
approach is based on Aradillas-Lopez (2008) and Aradillas-Lopez and Tamer (2008)

which develop methods for estimating games in which players are sophisticated but

not rational in the standard sense.54 Aradillas-Lopez and Tamer do this by assuming

that individual beliefs are rationalizable in terms of iterated-dominance; this allows

them to consider identification for different levels of iteration. In contrast, Aradillas-

Lopez (2009) focuses on a different notion of rationalizability for his social interactions

context, which we now describe.

Aradillas-Lopez (2009) considers a multinomial choice social interactions environ-

ment. Individual payoffs are not parametrically specified, as occurred in section 5.vi.a.

Rather, the only assumption imposed on these payoffs is that they exhibit supermodu-

larity with respect to the choices of others. The supermodularity-type condition in

Aradillas-Lopez (2009) takes the form of an increasing differences assumption of payoffs

with respect to an aggregate variable that summarizes the strategic interactions effect.

As noted in section 2, supermodularity is a type of endogenous social interaction effect;

note that as a property of payoffs, it does not correspond to a parameter analogous to J

in our parametric models but rather is defined by a qualitative feature of individual pay-

offs. Aradillas-Lopez’ supermodularity conditions produce a model of ordered choice

with social interactions, a class of models that had not been previously studied.

Aradillas-Lopez develops sharp probability bounds for choice probabilities under

the assumption of rationalizability. Instead of using an iterated-dominance definition

for rationalizability, a set of choices in a population is considered to be rationalizable if it

represents a set of individual best responses to an associated profile of individual beliefs each

of which includes the joint outcome in its support. At the individual level, this requires that

each agent assigns a strictly positive probability to the realized choices made by his oppo-

nents. These nonparametric probability bounds allow for separate inference properties of

individual payoff functions, specifically on whether they depend on the choices of others.

When multiple equilibria exist, these bounds can also be used to characterize the selection

mechanism used by agents to coordinate on a given set of equilibrium choices. Aradillas-

Lopez succeeds in finding empirical restrictions implied by social interactions in an envi-

ronment with nonparametric payoff functions. His ability to do so under such weak

restrictions on beliefs strikes us as remarkable, and additionally represents a demonstration

of the power of the supermodularity concept in econometric work.
6. EXPERIMENTAL APPROACHES

This section considers different approaches to the identification of social interactions

that involve various forms of experiments, ranging from the laboratory experiments

in which the analyst is free to specify much of the socioeconomic environment to
54 We thank Andres Aradillas-Lopez for much help in writing this discussion.
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quasi-experiments in which a change in some environment produces experimental-

type conditions to social experiments in which a policy change is implemented in order

to generate evidence of social interactions effects.
i. Laboratory experiments
Given the difficulties involved in identification of social interactions from nonexperi-

mental data, laboratory experiments would seem to offer a promising alternative for

studying social interactions. It should be possible, for instance, to create experimental

designs such that �xg does not lie in the span of the elements of yg, thus achieving differen-

tiation of contextual from endogenous effects in the linear in means model. Unobserved

group characteristics are essentially a measurement problem. By controlling what group

members know about each other, and by defining the environment of the interaction,

unobserved group characteristics can be eliminated. Finally, group membership can be

explicitly controlled, which addresses the self-selection issues.

The experimental literature on social interactions is voluminous. The investigation

of social preferences, including such concepts as altruism, fairness, inequity aversion,

reciprocity, and trust, is central to experimental economics, and regarded as a signifi-

cant achievement by its practitioners. Nonetheless, experimental economists have

eschewed serious econometric investigation of these data. Rather than bringing the

formal tools of statistical inference to experimental data, verbal models and arguments

and descriptive statistics are deployed to make arguments from experimental data.

We will argue that despite the increased opportunities for control offered by the

experimental laboratory, issues of identification do not disappear. Rather than attempt

to survey this literature, we will focus on identification issues that arise in one particular

game, the trust game. The trust game was first studied in the laboratory by Berg,

Dickhaut, and McCabe (1995). The game is played as follows: A “trustor” is given a

stock of money. He may keep all or any part of it for himself, and turns the rest over

to the “trustee”. The experimenter increases the money handed to the trustee, so he

receives a multiple greater than one of the amount entrusted to him by the trustor. He

may keep all or any part of the money for himself, and returns the rest to the trustor.

At the conclusion of the game, the trustor has received what he kept for himself plus

what he received from the trustee. The trustee has received what he kept for himself.

If dollar returns are taken to be equivalent to payoffs, the only Nash (not just sub-

game perfect) equilibrium of this game is the trustee to return 0, and thus for the trus-

tor to give 0 to the trustee. Deviations from the 0, 0 play are alleged to be indications

of trust. Trustors in the Berg et al. experiment were given 10 dollars to allocate, and the

share going to the trustee was tripled. The average trustee’s share was 5 dollars, and

only two of the thirty-two subjects they reported on gave 0 to the trustee. The trustees

were less generous, returning on average 95% of what the trustor gave. (Only 11 out of
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30 trustees returned to the trustor more than he invested.) Thus, the trustors had a neg-

ative return on their investment in the trustees. Half of the trustees repaid a dollar or

less. These findings are robust. Repetitions of this experiment have been done all over

the world, with more or less similar findings. Different versions of the game have been

examined as well. Most popular have been binary choice games in which a trustor

chooses either to end the game and receive a fixed payoff, or pass the move to the

trustee. The trustee in turn chooses either a fixed split of a larger amount, guaranteeing

the trustee more than he would have made had he quit, or keeping the entire amount

for herself and returning nothing to the trustor.

Berg et al. (Berg, Dickhaut, and McCabe (1995), p. 23) ask the question, “Is trust a

primitive in models of economic behavior?” The first difficulty in bringing experimental

and other empirical methods to bear on trust is that one has to know what one is measur-

ing. Trust has proven to be a highly elusive concept. Many theorists of trust see it as par-

ticular. Baier (1986), Hardin (2002) and others see trust as a ternary relation: A trusts B

concerning C. Hardin (2002, p. 1) equates trust with “encapsulated self-interest”, by

which he means a reliance due to reciprocity. Baier (1986, p. 235) argues that trust is reli-

ance on another’s good will, rather than reliance on other attitudes and reactions, such as

fear or other incentives. It seems that she would reject Hardin’s reciprocity definition,

since fear of reprisal is distinct from good will. Baier also claims that potential loss is a pre-

condition for trust. “Trust, then, on this first approximation, is accepted vulnerability to

another’s possible but not expected ill will (or lack of good will) toward one” (Baier,

1986, p. 235). Social capital theorists such as Coleman (1988) and Putnam, Leonardi,

and Nanetti (1993), and the many economists who write on the importance of trust for

economic growth such as Knack and Keefer (1997), are interested in general trust rather

than in the particular.55 This is not to say that they believe there are no limits to trust, but

they theorize about trust in situations where it would be surprising if reciprocity played a

significant role. Trust, for them, is more a generalized version of Baier’s goodwill than it is

Hardin’s encapsulated self-interest.

Identification would seem to be the first fundamental question one asks when

confronting a data set: “Is it at all possible to observe a particular phenomenon in data

coming from the supposed data-generating process?” But this question presumes an

understanding of what constitutes a measure of the phenomenon being examined.

The interpretation of trust-game data suffers from a lack of models and even appropri-

ate categories for defining results. Thus Camerer (2003, p. 87) is able to write within

the space of a single paragraph and without any apparent irony, “K. . .found Bulgarian

students were surprisingly trusting. . .He speculates that Bulgarians are used to trusting

among themselves precisely because their trust in authority is so low. E. . .found very
55 The identification problems we have described for general social interactions models apply a fortiori to empirical

studies of social capital, see Durlauf (2002) for discussion.
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little trust and trustworthiness among Orma herders in Kenya. . .Note that Kenya is

considered one of the more corrupt countries in the world, measured by indices of

‘transparency,’ which guess the extent of bribery, bureaucratic corruption, and black

market trade, so it is encouragingly consistent that this simple game shows low levels

of trust also.” Scholars even disagree on what is being measured. Camerer (2003, p.

85) writes, “Sociologists and psychologists usually object that this game doesn’t capture

all there is to trust because the two-person one-shot game does not include relation-

ships, social sanctions, communication, and so many other rich features that may sup-

port or affect trust. That’s precisely the point—the game requires pure trust.” Ermisch

and Gambetta (2006, p. 12) disagree. “This fear of ‘framing’ the experiment simply

ends up generating indeterminate stimula. Trustworthiness, by contrast, does not exist

in the void. There is no such thing as pure trust. It is always trust in someone to do

something, e.g., pay their debts, or look after one’s children.”

The lack of a theory or even a generally accepted definition of trust has not inhib-

ited attempts to measure it. In addition to experimental measurement from behavior in

trust games, survey methods have been deployed in the measurement of trust. The

World Values Survey asks, for instance, “Generally speaking, would you say that most

people can be trusted, or that you can’t be too careful in dealing with people?” Other

surveys elicit a scale measurement of the same general kind of question. Unfortunately, sur-

vey and experimental measures of trust frequently disagree. Glaeser, Laibson, Scheinkman,

and Soutter (2000) and Ermisch, Gambetta, Laurie, Siedler, andUhrig (2009) find that atti-

tudinal questions about trust do not predict trusting behavior in trust games. Only Fehr,

Fischbach, von Rosenbladt, Schupp, and Wagener (2002) reach a different conclusion.

Keeping in mind that the entire enterprise is not well founded, we now turn to

some particular identification issues in the analysis of trust game data. It is clear that

for the game-form presented in Berg et al., the choices of a significant percentage of

trustors and trustees are not Nash play of any game where utility payoffs depend only

on money, and do so monotonically. Researchers have suggested a variety of explana-

tions for the choices of trustees, including a fairness norm and reciprocity. Explanations

for the choices of trustors include the expectation of trustworthy behavior and altruism

towards the trustees. The goal of statistical analysis is to uncover the distribution of such

behaviors in the population of trustors and trustees. There are two ways to proceed.

One requires that individuals understand the choice environment the experiment puts

them in. The analysis of such experienced players proceeds by estimating the distribution

of types such that the data appear to be the realization of draws from the Bayes-Nash

equilibrium distribution of play. The second approach is to assume that players are

inexperienced. In this case, the individuals are not obviously optimizers of anything

at all. Their behavior is imported from elsewhere. It is commonly believed that the

laboratory game induces a particular frame, perhaps by analogy with common experi-

ences. For instance, Henrich et al. (2005, p. 798), reporting on the choices of their
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inexperienced subjects in ultimatum games, say of their subjects: “Experimental play

often reflects patterns of interaction found in everyday life.” This approach poses

two problems for the experimenter. First, Manski (2002) has observed that without

restrictions on beliefs and decision rules other than that they rationalize choice (that

is, without any equilibrium restrictions), the distribution of players’ types may not be

identified. Second, if players’ beliefs and preferences come from frames of reference

external to the experiment, it does not seem that much will be learned about the world

unless the experimenter can either inquire about or control the subjects’ frames. Cronk

(2007) demonstrates both the importance of frames and how they may be manipulated

in trust games played by Maasai tribesmen in Kenya.

Manski (2002) is concerned with the identification of the distribution of preferences

and beliefs in a population of game players. He assumes that choice comes from maxi-

mization of expected utility, but does not make use of any constraints imposed on

beliefs that would normally come from equilibrium conditions. This is entirely appro-

priate for modeling games played by inexperienced players, but games played by expe-

rienced subjects offer more opportunities for identification because the Bayes-Nash and

other equilibrium conditions impose cross-player constraints on beliefs. The hope is

that when a suitable equilibrium theory is employed, one can do better than Manski

suggests. The following two-player, two-strategy version of the trust game demon-

strates some of the opportunities and issues that will be encountered.56

Player 1, the trustor, has an opportunity to keep 10 dollars or give it to player 2, the

trustee. The money is tripled along the way. The trustee then has the opportunity to

split the 30 dollars evenly or to keep it all for himself. The trustor’s strategies are illu-

strated in figure 1. The only Nash equilibrium in monetary payoffs is for the trustee to

keep everything given to her, and for the trustor to stay Out. We might imagine how-

ever, that trustors and trustees both have utility functions exhibiting pro-social prefer-

ences. We suppose that the trustees are of two types: Keepers care only about monetary

payoffs, and so keep all the money. Sharers are sufficiently motivated by fairness or rec-

iprocity that they return half of the proceeds. The probability that a given trustee is a

sharer is Q. This is a parameter known to the trustors but not to the econometrician,

who must estimate it. Trustors also come in types. The utility of going In is the sum

of the expected return, 15Q, and a utility of being altruistic a. That is, uo(I ) ¼ 15Q

þ a. The utility of Out is just the monetary reward, uo(O) ¼ 10. The type distribution

for trustors is uniform: a � U[0, A]. Trustors and trustees are drawn independently from

the appropriate type distributions and are matched to play. The equilibrium of this game
56 Ermisch and Gambetta (2006) study a similar binary action game. Identification arguments are informal. For instance,

they wish to distinguish acting fairly from being trustworthy as motives for the neighbor. They choose a nonsymmetric

sharing rule because, “Symmetric payments may encourage fulfilling trust for reasons of fairness, rather than because E

does what is expected of her. . .” (2006, p. 17). In other words, their identification strategy is to claim that, ipso facto,

any sharing that does not result from a 50:50 split is due to trustworthy considerations and not fairness.
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is simple to describe. Sharers Share, and Keepers Keep. Trustors of type a > 10 � 15Q

play In, while trustors of type a < 10 � 15Q stay Out. The econometrician wants to

estimate the parameters of the type distributions, A and Q. The possible parameters

are (A, Q) 2 [0, 10] � [0, 1]. Parameter values (A, Q) such that A þ 15Q > 10 are

point-identified. This region is labeled in figure 2. For these parameter values, the frac-

tion of trustors who play In identifies A, and Q is identified by the fraction of trustors

who Share. For parameter values on the other side of the boundary, all trustors stay

Out, the trustees never get to choose, and their type is never revealed. In this game,

it is the action of trustors that allows identification of the trustee type distribution

parameter to be observed.

One advantage of the Bayesian framework is that it makes possible inferences across

games. For instance, Dufwenberg and Gneezy (2000) consider a variant on the game of

figure 1 where trustees can make any division of 20 (rather than 30) should they get the

move, and trustors can choose to play In or Out, and receive x, which is varied across

treatments. If it is assumed that the type distributions are independent of x, then by

changing the treatment, any type distribution can be identified.

One might think that identification problems in this environment stem from the

fact that choices have a binary support, which delimits the combinations of behaviors

that can be observed. It is instructive to approach the original Berg, Dickhaut, and

McCabe (1995) trust game experiment from an econometrics perspective to see how

complicated identification can be. Manski’s observation, that allowing for rationality

but not restricting beliefs through equilibria gives little identifying power, holds here

as well. Thus, we model the experiment as a Bayesian game wherein preferences

may reflect different motives for trusting and being trustworthy, and see what the data

say about the distribution of tastes. We imagine that the subjects of the experiment are

drawn independently from populations of trustors and trustees, respectively, and that

the Bayesian common prior beliefs are the distribution of players’ types in the
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population. There are many ways to turn the trust experiment into a Bayesian game.

The model we describe was chosen because it suggests some of the statistical techniques

that are used in the experimental literature.

To this end, we suppose that trustors are motivated by three potential considera-

tions: The monetary return, conformance to a sharing norm, and altruism. The utility

function of a trustor who gives oo and receives oe from the trustee is

uoðoo;oeÞ ¼ 10� oo þ oe � c
2
ðoo � �Þ2 þ roo:

The first term is the monetary payoff. The second term is the disutility of nonconfor-

mity to a social norm �, which is a feasible transfer. The third is altruism, the utility of

giving. A type for a trustor is a triple (c, �, r), and the type space is To ¼ Rþ � [0, 10] �
Rþ. A strategy for the trustor is a function so : To ! [0, 10].

The trustee has the utility function of the form

ueðoe;ooÞ ¼ dð3oo � oeÞ � f
2
ðoe � gooÞ2 þ aoooe; ð76Þ

where the parameter quadruple (d, f, g, a) describes the trustee’s type. For the utility

function described in equation (76), the first term is the monetary payoff, the second is

conformity to a social norm, and the third creates a taste for trustworthiness. Notice

that the marginal utility of giving depends upon what has been received.

We will simplify our analysis by imposing a constraint on the type space for trustees,

that the marginal utility of conformity is positive: f > 0. Hence utility can be renor-

malized so that f ¼ 1. The marginal utility of the transfer oe for the trustee when the

trustor transfers oo is then

u0eðoe;ooÞ ¼ ��d� oe þ ð�gþ �aÞoo þ v;

where �d, �g and �a are population means, and

v ¼ ooðea þ egÞ þ ed:

By construction, E(n) ¼ 0 since the e’s are deviations from population means. The type

of a trustee is, given our normalization, the vector (a, g, d).
We suppose that individual trustees can differ in their perception of what the norm is,

but this is not essential for our analysis.57 The type space is defined by 1) nonnegativity of
57 Perceptions of the norm come from the world external to the experiment. If we believed that individuals completely

internalized the experiment, then we could impose an additional equilibrium condition on the norm. This belief,

however, which we would require for observations of real social phenomena, is unnatural for the lab. Here is an

example of how, by not being able to control the frame, the laboratory setting introduces additional noise not present

in the world.
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the utility parameters, 2) that it is not the norm to give back more than the gross return

on the transfer from the trustor, and 3) an a priori constraint on the transfer oe, that it not

exceed the amount of money the trustee has been alloted to divide: oe � 3oo. Without

loss of generality, g þ a � d � 3, since behaviors of types with g þ a � d > 3 are indis-

tinguishable from that of types on the boundary, oe ¼ 3oo. Thus the type space for the

trustees is

Te ¼ fða; d; gÞ 2 R2
þ � ½0; 3� : aþ g� d � 3g

and trustee strategies are functions se : Te � [0, 10] such that se(t, oo) � 3oo.

The specification of the Bayesian game is completed by specifying type distributions

mo and me on the type spaces To and Te, respectively, for trustors and trustees. Each indi-

vidual trustor and trustee knows his own type, and the distribution from which the

other type is drawn. In this Bayesian game, the type of the trustor is irrelevant to the

trustee since the trustee sees the trustor’s action when she must choose. The trustor,

however, cannot be certain about how much the trustee will return. The trustor will

maximize expected utility, where the expectation will be over the type of the trustee

and the trustee strategy function is known to him. The econometrician knows the

structure of the game, but sees only transfers oo and oe. The econometrician’s task is

to estimate the type distribution, thereby pinning down the relative importance of

the different motivations for the transfer of money in the population of experimental

subjects.

It is easy to see in this framework how identification problems arise. First, suppose

that the type distributions are such that all decisions are interior.58 The first order con-

dition requires that u0eðoe;ooÞ ¼ 0, and so

oe ¼ ��dþ ð�gþ �aÞoo þ v;

and it is clear that while the marginal rate of substitution between monetary reward and

conformity can be identified from the trustee’s behavior, the social norm and marginal

rate of substitution between altruism or trustworthiness and conformity cannot. One

might argue that this is due to the excessive simplicity of the structural assumptions.

A more natural assumption might be to assume that the norm is affine rather than linear.

This introduces another parameter, and the consequence is that the marginal rate of sub-

stitution between private return and conformity can no longer be identified either.

Another possibility is to assume, for instance, that the norm is linear while trustworthiness
58 The set of parameters for which this will be true has a nonempty interior. We do not derive it here, but it is worth

noting that sufficient conditions involve both trustor and trustee parameters, since if oo ¼ 0, then of necessity oe ¼ 0.
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is quadratic. This is no less arbitrary than our linear assumption, and leads to a mismatch

between norm and equilibrium strategy, which is in some sense more severe than the

present model, since the equilibrium strategy would be quadratic in received transfers

while the social norm is presumed to be linear.

The trustee’s behavior does not exhaust the possibilities for identification. The

trustor knows the parameter values that the econometrician does not, and they are pay-

off-relevant for the trustor’s decision. This, unfortunately, does not help. The trustor’s

optimal strategy is

oo ¼ r� 1þ �gþ �a
c

þ �

(recall that we have assumed that we are in a region of To � Te where the righthand

side is positive), and no additional information is revealed that allows for distin-

guishing �a from �g. It is possible however, that variation in the initial stakes provided

to the trustor and the rate of return on the transfer to the trustee could lead to addi-

tional identifying restrictions on the distributions of both trustor and trustee type

distributions.

The constraint that equilibrium is interior is severe, and one might suspect that

relaxing it may introduce nonlinearities which may help with identification. Here

the blessings are mixed. On the one hand, there is no hope for nonparametric identifi-

cation, because the conditional means of the parameters given that one is in that set of

parameters where the transfer is positive is still not identified. On the other hand, we have

checked in several examples that with enough parametric assumptions, point identifica-

tion can be achieved.

The model just developed addresses particular behavioral hypotheses, and makes

particular assumptions about subjects’ preferences and behaviors. Other natural

behavioral hypotheses can be addressed with different game theoretic models, and

these models may offer different opportunities for identification of population types.

Levine (1998) for instance, evaluates experimental data for ultimatum games and

voluntary contribution games, among others, from the perspective of a model where

one player’s utility depends explicity on the type of the other rather than just

through the other’s action. One can see in his games that the hypothesis of equilib-

rium play and beliefs provides significant identifying power. It should be clear, how-

ever, that identification is a nontrivial matter, and that using exercises like this to

inform the design of laboratory experiments as well as the analysis of the data, might

lead to more convincing experimental research. In particular, experimental design

should be informed by what game it has the subjects play, what kinds of preferences

they could be expected to hold, what will be determined by the experience they
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gain as they learn to play the game, and what is uncontrolled and comes from exter-

nal frames of reference.

Although the application of equilibrium theory to experimental games holds some

promise for the design of economists’ identification strategies, laboratory experiments

with experienced subjects face additional problems. Chief among them is the problem

of external validity. For example, do the results of a private contribution public goods

experiment actually say something about charitable giving?
ii. Quasi-experiments
Other authors have focused on changes in group composition whose purpose was

not to study social interactions but whose structure is potentially informative of

their presence. One well-cited example is Angrist and Lang (2004), which focuses

on Boston’s Metropolitan Council for Educational Opportunities (METCO).59 This

is a voluntary desegregation program that involves enrolling underprivileged inner

city children in suburban public schools. Angrist and Lang (2004) show that the

receiving school districts, which have higher mean academic performance than

the sending ones, do experience a mean decrease due to the program. However, they

also show that the interactions are merely compositional in that there is little

evidence of statistically significant interactions of METCO students on their non-

METCO classmates. Their analysis with micro-data from one receiving district

(Brookline, Massachusetts) generally confirms this finding, but also produces some

evidence of negative interactions on minority students in the receiving district.

Since METCO is a voluntary program for both sides and thus involves self-selection

both at the individual and at the receiving end, at best it can be thought of as

uncovering treatment on the treated, which does not translate naturally into claims

about social interactions per se for reasons we will discuss in detail below in the next

subsection.
iii. Moving to Opportunity
There exists one intervention in group formation that has been implemented on a large

scale in order to understand social interactions. Interest in understanding the effects of

poor neighborhoods on their residents led the Department of Housing and Urban

Development to implement the Moving to Opportunity (MTO) demonstration
59 Another prominent study of this type is Sacerdote (2001). See Durlauf and Ioannides (2010) for some assessment of

its information content with respect to social interactions.
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in Baltimore, Boston, Chicago, Los Angeles, and New York, starting in 1994.60

The program provided housing vouchers to a randomly selected group of families from

among residents of high-poverty public housing projects. Within this subsidized group,

families in turn were randomly allocated between two subgroups: one which received

unrestricted vouchers; and another which received vouchers that could only be used in

census tracts with poverty rates below 10% (these users are termed the experimental

group). Members of the experimental group also received relocation counseling. The

presence of both unrestricted and restricted voucher recipients is a nice feature of the

demonstration.

The data from the MTO program have been used to study social interactions in what

now amounts to a large number of studies. Goering and Feins (2003) is a compendium of

results for the different program sites. Briggs, Popkin, and Goering (2010) is the most

recent overview of the demonstration and is of interest not only because of its statistical

evidence but because it focuses on qualitative information such as interviews to under-

stand the specific mechanisms associated with program effects. In terms of the scholarly

literature, Kling, Liebman, and Katz (2007) represents the most comprehensive analysis

both in terms of its methodology and because of its coverage of all the study sites. Earlier

analyses include Ludwig, Duncan, and Hirschfield (2001) and Kling, Ludwig, and Katz

(2005). As most clearly articulated in Kling, Liebman and Katz, social interactions are

inferred from MTO studies when evidence is found that movement of families from

high poverty to low poverty neighborhoods is associated with changes in various socio-

economic outcomes. The MTO demonstration has collected data on outcomes ranging

from health to education to employment. Focusing on Kling, Ludwig, and Katz, calcula-

tions of social interaction effects are derivative from calculations of treatment effects asso-

ciated with the vouchers. These authors are careful to distinguish between measures of

the effects of intent to treat and treatment on the treated, corresponding to the treatment

effects associated with eligibility for a voucher and use of the voucher respectively.
60 One reason why HUD implemented the MTO demonstration was that there was a prior program in the Chicago

area that had found large effects from moves from inner city public housing to more affluent suburbs of the city. The

Gautreaux program, named after the lead plaintiff in a law suit against the Chicago Housing Authority dating from

1967, led to the movement of some public housing families in Chicago to other parts of the city whereas other

families moved to nearby suburbs. Sociologist James Rosenbaum is responsible for the construction of data sets of the

families that participated in the Gautreaux program and initiated use of these data to study neighborhood effects.

Rosenbaum (1995) is a good overview of Gautreaux findings, which found that families who moved to suburbs

exceeded those who stayed in Chicago for a broad range of socioeconomic outcomes. For example, the percentage

of college attendees among children who families moved to suburbs was 54% whereas the percentage for children

whose families moved to other locations in Chicago was 21%; when one considers only 4-year colleges the

attendance rates are 27% and 4% respectively. As Rosenbaum and other students of the Gautreaux data are well

aware, there are problems with the data that delimit how informative they are with respect to social interactions.

Information about families who moved to suburbs and then returned to the city is missing, so comparisons of city

and suburban families at the time the data were collected suffers from self-selection problems. Self-selection was also

present in the initial set of families who participated in the program, as the program was restricted to families that had

good track records of public housing upkeep. MTO was explicitly designed to avoid these problems.
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Overall, Kling, Liebman, and Katz (2007) do not find that residence in low poverty

neighborhoods had particularly strong effects on families. This is so even though the

housing voucher randomization resulted in families with similar observable character-

istics living in very different neighborhoods. For adults, there is little evidence that

movement to low poverty neighborhoods affected economic self-sufficiency as

measured across several criteria. The strongest effects suggest that lower poverty neigh-

borhoods are associated with better mental health. For children, lower poverty neigh-

borhoods appear to benefit teenage girls for outcomes ranging from education to risky

behavior to physical health. In contrast, teenage boys seem to be adversely affected by

relocation to a lower poverty neighborhood. While there was deterioration along a

number of outcomes, increases in criminal behavior by the teenage boys was particu-

larly noteworthy. While other authors are more sanguine in their reading of the find-

ings from the MTO demonstration, it is difficult to conclude from the body of

empirical work that the movement of poor families to more affluent neighborhoods

did much to improve overall socioeconomic outcomes.

Durlauf and Ioannides (2010) discuss some of the difficulties in drawing policy con-

clusions from the MTO data. For the purposes of this chapter, the relevant question is

the extent to which the MTO findings speak to the empirical salience of social inter-

actions. While at first glance, it would seem the unimpressive evidence of treatment

effects from the low poverty neighborhood vouchers speaks against the importance

of neighborhood social interaction effects, such a conclusion is questionable. The basic

problem concerns the mapping from treatment effects that have been estimated from

the MTO data and social interactions mechanisms. Moving a family from a high to

low poverty neighborhood means that a range of neighborhood characteristics beyond

the aggregate poverty rate are changed. For example, while low poverty neighbor-

hoods might provide “better” role models from high poverty ones, they will also be

associated with weaker social ties, friendships, proximity to relatives and the like.

Movements from high to low poverty neighborhoods cannot be facilely equated with

movements from worse to better neighborhoods. These moves represent changes in a

vector of neighborhood characteristics that constitute types of social interactions. There

is no reason to think that the moves observed in the MTO study did not constitute a

tradeoff of some elements of this vector for others.

This problem does not merely provide a reason why certain treatment effects can be

small in the presence of large social interaction effects, but indicates why the interpre-

tation of strong treatment effects as evidence of social interactions is problematic. One

example is discussed by Kling, Liebman and Katz: the reduction in asthma among chil-

dren who move to low poverty neighborhoods. One reason this may occur is due to

stress reduction. To the extent this is generated by neighborhood characteristics this

is reasonably a social interaction effect. Another reason for lower asthma rates, how-

ever, could be reduced exposure to vermin infestations, which in turn could be a
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consequence of changes in housing quality induced by the requirement that the vou-

chers were used in low poverty neighborhoods. This is not a social interactions effect.

These considerations suggest that an important next step in the study of MTO data is

an explicit consideration of how the data can be directly employed to evaluate social inter-

action effects. This may involve the development of measures of “social interactions-

relevant treatment effects” which contrast with the standard treatment effect measures that

economists use; such a development would parallel the work on policy-relevant treatment

effects of Heckman and Vytlacil (2001). For example, the issue of self-selection in voucher

use (less than a quarter of eligible families took up the restricted voucher) is a nuisance from

the perspective of some treatment effect calculations, but may be informative in terms of

social interactions, for reasons we have discussed in the context of the linear inmeansmodel

and elsewhere.61 These suggestions are admittedly speculative, though we note that this is

the flip side of the analysis in Manski (2010) who argues that certain types of treatment

effects may be identified without full knowledge of social interactions structure.

To be clear, the body of existing MTO studies is of great importance in thinking

about alternative policies. One example that is suggested by the findings in Kling, Lieb-

man and Katz is the distinction between efforts to promote socioeconomic integration of

neighborhoods versus effects to reduce poverty rates in the least affluent neighborhoods.

Kling, Liebman, and Katz find that changes in neighborhood poverty rates are responsible

for those MTO voucher effects they do find as opposed to moves per se, hence the sug-

gestion that it might make more sense to lower poverty rates in currently poor neighbor-

hoods than to promote general socioeconomic integration. Our criticisms only apply to

the extent to which claims about the significance of social interactions are made based

upon the calculations that have appeared. To return to our argument, the finding that,

conditional on poverty rate changes, moves had no positive effects does not speak to

the magnitude of social interaction effects that are uncorrelated with poverty levels,

which presumably included social features such as friendship ties that were damaged by

the moves to more affluent communities.
7. SUGGESTIONS FOR FUTURE DIRECTIONS

In this section, we suggest some new directions we regard as promising in developing a

full econometrics of social interactions.
i. Measurement
The empirical literature on social interactions suffers from serious measurement

problems. This is a first important area that needs new econometric work. Here we

follow the discussion in Durlauf and Ioannides (2010). Economic theory does not
61 This may suggest new uses for the Gautreaux data as well.
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dictate the appropriate empirical measures of contextual variables that a researcher

ought to use. As a result, one for example finds Bertrand, Luttmer, and Mullainathan

(2000) using the product of welfare usage and own-ethnic group intensity to explain

individual welfare usage, whereas Aizer and Currie (2004) use the utilization rate of

an individual’s language group to measure social interactions on public prenatal-care

utilization. Similarly, the empirical literature does not typically consider how social

variables should interact with individual decisions, so that linearity assumptions are

too often employed without reflection. If the reason why utilization of social services

depends on the usage of others is because of information transmission, as argued by

Bertrand et al., then it is unclear why the percentage of users is the appropriate variable,

as opposed to some nonlinear transformation, as presumably one only needs one neigh-

bor to provide the information. While considering this type of problem in studying

social interactions in marriage markets, Drewianka (2003) argues that a higher marriage

rate in a community may reduce the propensity of unmarried people to marry as a

higher rate hampers search.

A second measurement problem arises because theory does not provide guidance as

to the appropriate measure of groups. One aspect of this problem is relatively simple

and involves the choice of scale for a given measure of group; in the case of physical

proximity, one finds the use of Zip codes in Corcoran, Gordon, Laren, and Solon

(1992) and census tracts and blocks in Weinberg, Reagan, and Yankow (2004)

to determine neighborhoods. In other cases, measurement problems involve the

categories that define groups. The study by Conley and Topa (2002) is unusual in

seeking to identify the appropriate axes on which to situate the actors in social space,

finding that ethnicity is of particular importance in defining social interactions for labor

market outcomes in Chicago. To do this, Conley and Topa construct measures of

proximity between neighborhoods based upon physical proximity, ethnic similarity

and socioeconomic similarity to determine which measure best explains correlations

in unemployment patterns across neighborhoods, finding that ethnicity dominates the

other measures.

Conley and Topa’s work is an important advance, but follows the literature in

equating group memberships with scalar categories. Typically, categories are treated

as the relevant groups for social interactions. Hence one sees one body of research

that explores the effects of the residential neighborhood in which a person grows

up on his adult economic prospects while another explores the effects of friends’

smoking behavior on individual smoking decisions. Akerlof (1997) argues that social

interactions are best understood as occurring in a social space that may have many

dimensions; this follows naturally when one considers the overlapping interactions

of factors such as physical proximity, ethnicity, gender, and education on the ways

in which individuals interact. One limitation of much of the existing literature is thus

the absence of attention to the multiple groups to which an individual is a member.
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The major exception to this claim is the networks literature, which allows for

differential social connections within a population, but even here, the analysis does

not focus on how categories interact to produce an individual-specific social

environment.

The development of methods for dealing with the proper measurement of social

space represents one of the key outstanding research areas in the econometrics of

social interactions. A few papers have explicitly attempted to explore multiple

channels for social interactions. A nice example is Iyer and Weeks (2009) who con-

sider the joint roles of ethnicity and geographic proximity in fertility decisions in

Kenya, finding a particularly strong role for ethnicity. Methodologically, Conley

and Topa (2003) is unique in considering the identification of social interactions

when groups are measured with error and when the relevant group for social

interactions is not observable, but some other grouping which contains the behavior-

ally relevant group is observable, as may occur if an analyst knows an agent’s census

tract but not his actual neighborhood. They find that measurement error leads to

nonidentification. Simulation evidence suggests that local identification may still

be possible when superset data are available. As Conley and Topa acknowledge,

their analysis applies to a very specific model, so much more research is needed on

this question.

Some aspects of measurement problems relating to groups have been addressed

through the development and clever analysis of interesting data sets. An especially

nice example is Mas and Moretti (2009), who employ a data set that measures super-

market employee productivity in 10-min intervals. Their data set is also impressive

because the set of peers for a given worker regularly changes due to differences in

shift composition and because the spatial orientation of workers in a store is known.

This allows for analyses of such questions as whether frequent interactions induce

stronger social interactions and whether physical proximity to others matters. Guryan,

Kroft, and Notowidigdo (2009) follow a similar strategy using data on performance in

golf tournaments but find little evidence of social interactions. These types of data sets,

in our view, provide clean ways of describing social space, but are of course limited in

terms of the extent to which their findings may be extrapolated to alternative

environments.
ii. Social interactions and prices
Most social interactions work has ignored the informational content of prices for group

membership. For example, social interactions of residential neighborhoods will be

reflected in housing prices, via standard hedonic price arguments. Nesheim (2002) is

a pioneering advance in this regard. Social interaction effects, measured as averages

of parental characteristics, can be extracted from housing prices using hedonic pricing
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methods. Implementation of Nesheim’s approach is facilitated when assumptions are

made to allow an explicit solution for the hedonic price in terms of neighborhood

characteristics; see Ioannides (2008) for a very straightforward way of doing this. So

far, Nesheim’s methods have not received the empirical attention they warrant. Bayer,

Ferreira, and McMillan (2007) report some nonstructural hedonic regressions of housing

prices on neighborhood characteristics. See also Bayer and Ross (2009) who propose

using neighborhood prices to construct a control function to proxy for unobserved

neighborhood characteristics.
iii. Group characteristics as evidence of social interactions
Another dimension along which endogenous group formation can be used to provide

evidence of social interactions is the equilibrium distribution of types across groups.

The informational content of this distribution was first recognized in the context of

racial discrimination in Becker (1971). Becker showed that taste-based discrimination

may not manifest itself in black white wage differences but rather in segregation of a

subset of firms. Analogous reasoning applies in social interactions contexts. Models such

as Bénabou (1993, 1996) and Durlauf (1996a,b) emphasize how social interactions can

produce stratification of neighborhoods by income; work such as Epple and Sieg

(1999) and Calabrese, Epple, Romer, and Sieg (2006) show how these types of effects

can be incorporated into sophisticated models of locational choice; the latter paper is of

particular interest since social interactions are essential to the analysis. Yet another con-

text where group compositions are informative about interactions concerns assortative

matching, where as discussed above, following Becker (1973), supermodularity in

production functions can produce efficient stratification of firms by ability. In general,

the tight relationship between supermodularity and stratification has been underutilized

as a strategy for uncovering social interactions.62 We believe that group composition

represents a potentially powerful source of evidence on social interactions.

Card, Mas, and Rothstein (2008) can be interpreted as using group composition to

uncover social interactions. The objective of their analysis is to assess the empirical

salience of the classic Schelling (1971) tipping point model of segregation. Schelling’s

analysis assumes that there is a threshold value for the percentage of blacks in a commu-

nity such that whites will move when the threshold is exceeded, generating rapid seg-

regation. Card et al. study the time series of neighborhood racial compositions across the

United States and find evidence of break points in the series that are consistent with the

predictions of the Schelling model. In our view, this represents partial identification evi-

dence on the effects of neighborhood racial composition on individual utility. What is
62 See Durlauf and Seshadri (2003) and Prat (2002) for examples of a tight supermodularity/stratification link for payoff

functions other than those studied by Becker as well as for some caveats.
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important from the perspective of our discussion is that the Card et al. evidence derives

entirely from group composition.63
iv. Joint modeling of group memberships and behaviors
Our discussion of prices and group characteristics as sources of information on social

interactions suggests yet another direction for new research: the joint modeling of

group memberships and behavioral choices as facets of a general decision problem.

Brock and Durlauf (2006) give an example of this perspective using a logit framework;

we borrow heavily from their original presentation. The basic idea of this approach is

to model individuals as making joint choices of group memberships, g 2 {0,. . . ,G � 1},

and behaviors, l 2 {0, . . .,L � 1}. Group choices are denoted as di while oi continues

to denote the behavioral choice. This joint decision is sequential as groups are chosen

first and then behaviors are chosen once groups form; this particular sequencing renders

the model mathematically equivalent to a standard nested logit model (Ben Akiva

(1973) and McFadden (1978) ) with the exception of the presence of endogenous social

interactions.

The sequential logit structure ensures that choice probabilities at both stages have a

multinomial logit probability structure. Defining hilg ¼ kl þ clxi þ dlyg, the behavioral

choices conditional on a group choice g will be defined by the probabilities

m
�
oig ¼ �i jðhilg; peilgÞL�1

l¼0

�
¼ exp bðhilg þ JpeilgÞP

m exp bðhimg þ JpeimgÞ
: ð77Þ

Group choices reflect the fact that choices in the stage will produce utility in the fash-

ion of our original multinomial choice model. This is operationalized by making the

group choice probabilities depend on the expected utility of the choice oi will produce

in the second stage. Letting di ¼ g code for the choice of group by individual i, these

choices are also assumed to exhibit a logit structure:

m
�
di ¼ �g jðhilg; peilgÞL�1 G�1

l¼0 g¼0

�
¼ exp bGZi�gP

g exp bGZig

ð78Þ

where bG denotes the heterogeneity parameter for the unobservable shocks associated

with group choices and

Zig ¼ E max
l

ðhilg þHpeilg þ eilgÞjðhilg; peilgÞL�1
l¼0

� �
:

63 The nonlinear model estimated in Easterly (2009), which leads him to argue that the Schelling model does not

explain the global dynamics of segregation in the US, is also consistent with the presence of social interaction effects

in terms of preferences over neighborhood racial composition, although it is not clear that the model provides

affirmative evidence of these effects that is as strong as found in Card et al.
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Implicit in equation (78) is the existence of unobservable location-specific utility terms

that are irrelevant with respect to the utility of a choice once the group is formed. A

standard result is that64

E max
l

ðhilg þHpeilg þ eilgÞjðhilg; peilgÞL�1
l¼0

� �
¼ b�1 log

�X
i

exp bðhilg þ Jpeilg

�
: ð79Þ

Equation (79), together with equations (77) and (78) produce a joint probability

description of group memberships and behaviors

m
�
oi�g ¼ �l; di ¼ �g jðhilg; peilgÞL�1 G�1

l¼0 g¼0

�
¼

exp
�
bGb

�1 log
�P

l expbðhil g þ Jpeil gÞ
��

P
g exp

�
bGb

�1 log
�P

l expbðhilg þ JpeilgÞ
��� exp bðh

il g
þ Jpe

il g
ÞP

l expbðhil g þ Jpeil gÞ
:

ð80Þ

As is well known, the compatibility of the nested logit structure (80) with an explicit util-

ity maximization problem requires conditions on the parameters.65 One condition that

ensures compatibility with a well posed maximization problem is bG � b (McFadden,

1978, pp.86–7). This condition requires that the dispersion of random payoff terms across

groups is greater than the dispersion in random payoff terms across behavioral choices

within a group. We close the model with the equilibrium condition: For all i, l and g,

peilg ¼ plg, which links the choices at the two levels.

Models of this type have yet to be analyzed either in terms of their theoretical prop-

erties or in terms of identification. We believe models of this type can prove to be a

valuable complement to existing social interactions models. For example, the sequential

choice structure introduces a new mechanism by which multiple equilibria may

emerge, namely the influence of beliefs about group behaviors on group memberships,

which reciprocally will affect behaviors. The presence of these types of multiple equi-

libria can, we believe, provide information on identification. More generally, the sort

of probability structure we have described integrates group memberships and individual

behaviors in a way analogous to what we referred to as the Becker view of discrimina-

tion, in which wages and firm composition are affected by the existence of taste-based

discriminators. Our strong conjecture is that this joint modeling will produce new

routes to identification.

This discussion also suggests that work to integrate the evolution of social networks

with choices in networks may produce valuable insights. Copic, Jackson, and Kirman

(2009) is a rare example in economics of the development of likelihood methods to
64 See, for example, Anderson, de Palma, and Thisse (1992, p. 46).
65 See McFadden (1978) and Börsch-Supan (1990).
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describe network structure. The sort of coupling we have described for group and behav-

ior choices in the nested logit context should be explored using this type of approach.
v. Transition dynamics versus steady-state behavior
A final research direction we believe can prove to be important concerns the use of

transitional behavior to uncover social interactions. The linear in means and discrete

choice models look at steady state behaviors in the sense that these systems, including

their dynamic analogs, conceptualize the data as drawn from their associated invariant

measures. While the duration models we describe, especially that of de Paula (2009),

focus on transitions in a population, there has yet to be much systematic exploration

of the evidence on social interactions that may be found in transitional dynamics versus

steady state behavior. By analogy, the steady state distribution of disease rates across

locations in a region will not speak to the contagion mechanism for the disease in

the way that would data on the transition of the disease across locations.

Brock and Durlauf (2010) provide an example of how transition dynamics can pro-

duce evidence of social interactions. They consider a population of perfect foresight

actors who, in continuous time, are deciding whether to adopt a new technology.

The cost of the new technology is falling over time. The payoff to adoption is the pres-

ent discounted value of payoff from the time of adoption. The payoff to adoption

is increasing in the fraction of the population that has adopted. Agents are indexed

by a scalar x, in which the payoff function is strictly increasing. Data are restricted to

q(t), the adoption curve for the technology, i.e., the fraction of the population that

has adopted as of time t, and fx, the cross sectional density of x. Brock and Durlauf con-

sider the case where the distribution of types among adopters at each t is unknown as

well as the case where the distribution of types among adopters is known at each t.

From the perspective of steady state behavior, there is nothing that can be learned

about social interactions; the steady state data will consist of an adoption rate for the

population as well as a cutoff value x such that agents with xi < x have not adopted

while other agents have adopted. Such an observation is fully consistent with individual

payoffs being independent of the adoption decisions of others. However, the full adop-

tion curve, which represents the transition dynamics for the steady state adoption

rate, can be informative about social interactions. For example, even if fx is unobserv-

able, q(t) can be informative about social interactions. Brock and Durlauf show that

if one is willing to assume that fx contains some mass points, discontinuities in q(t)

can only occur because of endogenous social interactions. This does not follow because

of multiple equilibria as occurred in the partial identification results under primary

choice. Rather it follows from the fact that since higher x types who have not yet

adopted always have a greater incentive to adopt than lower x types, even though

the population fraction of the lower x types is larger, self-consistent bunching can
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occur at particular t values; intuitively, at these jump points the lowest x will meet the

first order condition for adoption with equality whereas all others do not.66

Brock and Durlauf (2010) also consider a case where x is a vector consisting of

an observed variable x1 and an unobserved variable x2. For conditional adoption curves

q(tjx1), social interactions can produce pattern reversals where lower x1 types adopt

before higher x1 types. A condition such as stochastic dominance of the conditional

density of x2 given x1 is needed for this type of observation to represent evidence of

social interactions. As such, the Brock and Durlauf results are another example of

how delineation of a complete economic environment can allow for partial identifica-

tion of social interactions under what appear to be modest assumptions. Arguments of

their type can be taken further, as is done in Young (2010), which we discuss next.
vi. Microfoundations
A final area that warrants far more research is the microfoundations of social interac-

tions. In the econometrics literature, contextual and endogenous social interactions are

defined in terms of types of variables rather than via particular mechanisms. This can

delimit the utility of the models we have, for example, if the particular mechanisms

have different policy implications. Put differently, the current generation of social

interactions models focuses on a relatively crude division of social interactions

between factors that are predetermined and those that are contemporaneous; while

one can rationalize this division as structural, this is only true by assumption; work

in evolutionary game theory, for example, has a much more subtle view of how

endogenous interactions arise. Young (2010) is an important next step in the social

interactions research program as it explicitly studies the different empirical implica-

tions of alternate social interactions mechanisms. Young derives implications for

aggregate behavior by considering where the social interaction comes from. Behav-

ioral economists may be interested in individual behaviors for their own sake, but

Young demonstrates here that particular features of the process generating the social

interaction determine aggregate behavior, and it raises the prospect that microeco-

nomic and behavioral hypotheses about where social interactions come from may be

identifiable from aggregate data.

Young writes on identification of types of social interactions in diffusion processes

from a theoretical perspective. He examines different diffusion models in a rather general

large-population setting. The different explanations, inertia, contagion, social influence

and social learning, are sets of assumptions about individual behaviors. The outcome

of the analysis is a set of distinct properties of the diffusion curve, a system aggregate, an
66 The possibility that social interactions could induce discontinuity in adoption curves was first recognized in a

relatively neglected paper by Cabral (1990). Differences in the economic environments studied by Cabral and Brock

and Durlauf are discussed in the latter. That said Cabral has priority in discovering the qualitative finding.
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emergent property of the system.67 Inertia is the hypothesis that individuals learn pri-

vately, but delay in making their decision. He supposes that each individual i in the (con-

tinuum) population can be characterized by a switch rate, li, which is independent of the
numbers and identities of those who have already switched. Young shows that no matter

the distribution of the li, the adoption curve must be concave. Contagion is a process

wherein a given individual adopts when she sees an instance of the innovation, or hears

about it. Perhaps the most famous model of this kind is the Bass (1969) model of new

product adoption. In these models the instantaneous rate at which an individual adopts

will depend upon the size of the pool of current adopters. Adoption curves derived from

contagion models will be S-shaped, and under some reasonable assumptions, it must

decelerate when the pool of adopters exceeds 1/2 the population. Social influencemodels

are thresholdmodels. Each individual has a threshold ri. If the adopting pool contains frac-

tion ri of the population, then individual i will adopt. Under some mild assumptions, the

adoption process either initially decelerates or it accelerates at a super-exponential rate

over some time interval.

There are many ways to build social learning models, and Young’s main point is

that details matter. Nonetheless, for an interesting class of social learning models he

shows that diffusion must initially decelerate, but that the rate of diffusion relative to

the pool of potential adoptees increases. Under some additional assumptions, Young

can show that if the process begins to accelerate, it does so at a super-exponential rate.

Thus Young’s work suggests strategies for nonparametric identification of the different

behavioral models he considers. What happens when the different behavioral models

are mixed in the population, and how to build empirical models that would reflect

Young’s identifying structural features, are still open questions.
8. CONCLUSIONS

As this chapter has demonstrated, a wide range of identification strategies for uncover-

ing empirical evidence of social interactions are available to empirical workers. These

approaches range across linear and nonlinear models, cross-section and time series data,

and involve a remarkably broad range of portfolios of assumptions. The existing set of

identification results thus does not lend itself to any straightforward summary. Rather,

the body of arguments we have described represent different approaches to producing

evidence of social interactions at two levels. First, under “ideal” assumptions with

respect to unobserved heterogeneity, identification questions revolve around the disen-

tangling of types of social interaction effects: contextual versus endogenous. Second, under

more realistic specifications of unobserved heterogeneity, i.e., grouped individual-level
67 Emergent properties of dynamical systems are properties or structural features that occur on scales of aggregation or

temporal scales which are different from those of the rules defining the system. See Blume and Durlauf (2001) for

discussion of emergence in socioeconomic environments.
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heterogeneity as emerges from endogenous group formation and group-level heteroge-

neity that is not related to social interactions, identification involves the question of

whether any evidence may be adduced for social interactions, let alone whether the

specific type of social interaction is recoverable from the observed data.

One way to understand the many methods we have described is that they represent

points along an “assumptions/possibilities” frontier. As is true throughout economics,

there is a tradeoff between the strength of assumptions made prior to empirical analysis

and the precision of the empirical claims that follow. And the types of assumptions we

have described, whether they represent restrictions on the probability structure of

unobservable stochastic processes or substantive assumptions about individual behavior,

can never be expected to hold literally. This should not jaundice the consumers of

empirical work on social interactions any more than it should affect consumers of other

types of empirical social science. Scientific progress, arises from the interaction of a

priori beliefs, data and logical reasoning. We therefore regard the interplay of economic

theory, econometrics and empirical work as all necessary ingredients in understanding

the social determinants of individual behavior.
68 C

8

It is no disparagement, therefore, to the science of Human Nature, that those of its general pro-
positions which descend sufficiently into detail to serve as a foundation for predicting phenom-
ena in the concrete, are for the most part only approximately true. But in order to give a
genuinely scientific character to the study, it is indispensable that these approximate generaliza-
tions, which in themselves would only amount to the lowest kind of empirical laws, should be
connected deductively with the laws of nature from which they result; should be resolved into
the properties of the causes on which the phenomena depend. In other words, the science of
Human Nature may be said to exist, in proportion as the approximate truths, which compose
a practical knowledge of mankind, can be exhibited as corollaries from the universal laws of
human nature on which they rest; whereby the proper limits of those approximate truths would
be shown, and we should be enabled to deduce others for any new state of circumstances, in
anticipation of specific experiences.

John Stuart Mill, A System of Logic (1859)68
ollected Works of John Stuart Mill, J. Robson ed. Indianapolis: Liberty Fund Press. Book VI, chapter iii, section 2, pp.

47-848.
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A1. DERIVATION AND ANALYSIS OF EQUILIBRIA
IN THE LINEAR IN MEANS MODEL

i. Structure
The linear-in-means model can be derived simply as the unique Bayes-Nash equilib-

rium of a game in which each individual’s choice is determined by a private benefit

and a conformity benefit. Not surprisingly, the utility functions are quadratic, and

the conformity benefit is modeled as linearly decreasing in the quadratic deviation of

an individual’s choice from the average behavior of all other players. Individuals belong

to a common group g of size ng. Group membership is exogenous. An individual’s rea-

lized utility depends upon his own choice and the choices of others. Preferences are

expected utility, and are of the form

uiðoig;o�igÞ ¼ yigoig �
o2

ig

2
� f

2
Eððoig � �o�igÞ2Þ; ð81Þ

where �o�ig ¼ (ng � 1)�1P
j 6¼iojg is the average choice of the others in g. The individ-

ual marginal benefit yig can be linearly decomposed as follows:

yig ¼ w0 þ w1xi þ w2yg þ ei þ fg ð82Þ

where xi and ei are observable and unobservable individual characteristics, and yg is a

vector of observable group characteristics and fg is a group characteristic observable to

all individuals in the group but unobservable to the econometrician. The determina-

tion of individual choices is a game of incomplete information, since each individual,

and only that individual, observes ei. (Group characteristics unobservable to individ-

ual group members are irrelevant to choices as this model exhibits certainty equiva-

lence in individual choices.) The ei elements are i.i.d. draws from a distribution on

the real line R with mean 0. For expositional purposes it will be useful to write yig
¼ gi þ gg þ ei where gg ¼ w0 þ w2yg þ fg is the internally (to the actors) observable

group contribution to the marginal utility of oi, and gi ¼ w1xi, the externally (to

the econometrician) observable contribution to marginal utility of an individual’s

characteristics.

ii. Existence of equilibrium
In a Bayes-Nash equilibrium, each individual maximizes expected utility, taking the

expectation on �o�ig with respect to his belief distribution, and all belief distributions

will be correct. The first-order condition for individual i is

gg þ gi þ ei � fðoig � E�o�igÞ � oig ¼ 0;
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and so

oig ¼ 1

fþ 1
gg þ

1

fþ 1
gi þ

f
fþ 1

E�o�ig þ 1

fþ 1
ei

¼ w0
fþ 1

þ w1
fþ 1

xi þ 1

fþ 1
fg þ w2

fþ 1
ygþ

f
fþ 1

Eð�o�igÞ þ 1

fþ 1
ei

ð83Þ

This equation justifies (6) when there is no group level unobservable and (30) when

there is such an unobservable, since the coefficients in (6) and (30) are proportional

to those in (83), assuming that an equilibrium exists. Notice that the shock in (83),

(f þ 1)�1ei, has a variance that is affected by the strength of the conformity parameter.

We find an equilibrium by positing a functional form with undetermined coeffi-

cients, and then solving for the coefficients to make the beliefs correct. It will be con-

venient to define �g�ig ¼ (ng � 1)�1 P
j 6¼igj to be the mean observable type

component in the population. This is simply a sample mean. We suppose that for

each individual j,

ojg ¼ Agg þ Bgj þ C�g�jg þDej þ F: ð84Þ

We derive consistency of beliefs by assuming all individuals other than individual i are

choosing according to this functional form, computing the best response for individual

i, seeing that it is of this linear form, and then solving for the coefficient values

such that A through F are common through the entire population. We compute the

best response simply by deriving an expression for �o�ig by substituting from equation

(84) into equation (83). After some algebra one can show that the coefficients in (84)

must fulfill

A ¼ 1þ fA
fþ 1

; B ¼
1þ C

ng � 1

fþ 1
; C ¼

f Bþ ng � 2

ng � 1
C

 !
fþ 1

;

D ¼ 1

fþ 1
; F ¼ fF

fþ 1
:

Solving these equations gives the values of the undetermined coefficients. Thus

oig ¼ gg þ
ng � 1þ f

ðfþ 1Þng � 1
gi þ

fðng � 1Þ
ðfþ 1Þng � 1

�g�ig þ
1

f� 1
ei: ð85Þ
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When the population size is large, this is approximately

oig ¼ gg þ
1

fþ 1
gi þ

f
fþ 1

�gg þ
1

f� 1
ei ð86Þ

where �gg is the group-level average of gi.
69 Recalling the definitions of the g terms,

oig ¼ w0 þ w2yg þ fg þ w1
fþ 1

xi þ fw1
fþ 1

�xg þ 1

fþ 1
ei

where �xg is the group mean of the individual characteristics. This expression corre-

sponds to the reduced form equation (11) in the text when there is no group-level

unobservable. Extending the model in this and a variety of other ways to match the

other specifications discussed in section 3 is straightforward.

iii. Uniqueness of Bayes-Nash equilibrium
A strategy for player i is a map fi(gg, gi, g�ig, ei) ↦ R, where g�ig ¼ (gj)j 6¼i. The pre-

ceding section demonstrates the existence of a symmetric Bayes-Nash equilibrium

with linear strategies. Discrete-choice models of social interaction are replete with

multiple equilibria, so one might believe that multiple equilibria may arise here as

well. This is not the case.

Theorem A.1. Uniqueness of equilibrium in the linear in means model. The

Bayes-Nash equilibrium strategy for the model (81) and (82), and defined by (83), is unique.

Proof. Equation (83) implies that ðf �1 ; . . . ; f �ngÞ is a symmetric Bayes-Nash equilibrium

if and only if for all i,

f �i ðgg; gi; g�ig; eiÞ ¼
1

fþ 1
ðgg þ gi þ eiÞ þ f

fþ 1

1

ng � 1

X
j 6¼ i

E
�
f �j ðgg; gj; g�jg; ejÞ

�
Let Bi denote the set of measurable functions fi: (gg, gi, g�ig, ei) ↦ oi and let B denote

the product of the Bi. Define the operator T : B ! B such that

Tðf1; . . . ; fngÞiðgg; gi; g�ig; eiÞ ¼
1

fþ 1
ðgg þ gi þ eiÞ

þ f
fþ 1

1

ng � 1

X
j 6¼ i

Eðfjðgg; gj; g�jg; ejÞÞ:

A strategy profile ðf �1 ; . . . ; f �n Þ is a (not necessarily symmetric) Bayes-Nash equilibrium

if and only if it is a fixed point of T. A straightforward calculation shows that T is a

contraction mapping. At any point (gg, g1g,. . ., gngg, ei),
69 Note that �gg is different from gg, which is the direct group marginal utility contribution for an individual’s choice.
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jðTf Þi � ðTgÞij ¼
f

fþ 1

1

ng � 1
j
X
j 6¼ i

E
�
fjðgg; gj; g�jg; ejÞ

�
� Eðgjðgg; yj; g�jg; ejÞÞj
� f

fþ 1
jjf � gjj1:

Since T is a contraction, it has a unique fixed point, and so equilibrium is unique. □

A2. PROOF OF THEOREMS 3, 4, 5 AND 7 ON SOCIAL NETWORKS

For exclusive averaging Bramoullé, Djebbari, and Fortin (2009) have already proven

that if the network is the union of groups, then I, A and A2 are linearly dependent if

and only if groups are all the same size. They also have shown that if the network is

transitive and contains no groups, then A2 ¼ 0. All we need to show is that linear

dependence implies transitivity, and that transitivity implies that the network is the

union of weakly connected components each of which either has A2 ¼ 0 or is a group.

For inclusive averaging we simply replicate the entire program.

We begin with an elaboration of theorem 4 which does not depend on how the

weighted adjacency matrix is assembled. The proof of this theorem, when combined with

theorem 2, implies theorem 4 in the text. Theorem 2 states that the failure of identification

implies that I,A andA2 are linearly dependent. TheoremA.2 states that if thesematrices are

linearly dependent, then the network must be transitive. If the network is both transitive

and undirected, it must consist of the union of groups. It follows from theorem 2.i that if

the hypothesis of theorem 4 is true, there are scalars l0, l1, and l2, not all 0, such that

l0 I þ l1A þ l2A
2 ¼ 0.

Theorem A.2. Characterization of networks satisfying the dependence

hypothesis. Let (V, E) be a network with a weighted adjacency matrix A such that (I �
JA) is invertible for all values of J. Suppose that l0I þ l1A þ l2A

2 ¼ 0 for some l weights

not all zero.

i. The network is transitive.

ii. If l2 ¼ 0, the network is totally disconnected.

iii. If l2 6¼ 0 and l1 ¼ 0, with exclusive averaging, the network is the union of groups of

size 2 or, if A2 ¼ 0, the network is bipartite directed. With inclusive averaging,

A ¼ I and the network is totally disconnected.

Proof of theorem A.2. If l2 ¼ 0, then l0I þ l1A ¼ 0. If l1 ¼ 0, then l0 ¼ 0, contradicting

the hypotheses of the theorem. Thus if l2 ¼ 0, then l1 6¼ 0 and the matrix A is diagonal.

With exclusive averaging, l0 ¼ 0 and A ¼ 0; with inclusive averaging, l0 ¼ 1 and

A ¼ I. In either case, the network is totally disconnected (and, in particular, transitive).

If l2 6¼ 0, and l1¼0, there is a scalar g0 such thatA
2¼ g0I.With inclusive averaging, the

row sums ofA andA2 are both 1, and so g0¼ 1 andA2¼ I. If (i, k)2 E and (k, j )2 E, then
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j ¼ i. If not, [A2]ij > 0 for j 6¼ i. Since A is non-negative, A2 ¼ I implies that if i 6¼ k and

aij > 0, then ajk ¼ 0. Since akk > 0 for all k, it follows that for i 6¼ k, aik ¼ 0. Thus aii ¼ 1,

and so A ¼ I.

For exclusive averaging, suppose first that A2 6¼ 0. Then g0 6¼ 0, and so A2 is a diag-

onal matrix in which [A2]ii ¼ g0 > 0. If aij > 0 and ajk > 0, then [A2]ik > 0, so k ¼ i.

That is, there are no chains connecting three nodes, and so trivially, the network is

transitive. Now [A2]ii > 0 if there is a j such that aij and aji are both positive. There

cannot be another k 6¼ j such that aik > 0, because then [A2]jk > 0. Thus the social

network is a collection of marriages; groups of size 2. The other possibility is that

A2 ¼ 0, which happens if and only if the network is either a directed bipartite graph

(A 6¼ 0) or totally disconnected (A ¼ 0). These graphs are transitive.

If l2 6¼ 0 and l1 6¼ 0, then g1 6¼ 0 and for nodes i 6¼ j, [A2]ij ¼ g1aij. If there is path
of length 2 from nodes i to j, then [A2]ij > 0, and hence aij > 0, so (i, j ) 2 E and the

network is transitive. □
We now turn to the proof of theorem 3. The remainder of this appendix explores

the case where l2 6¼ 0 and l1 6¼ 0. Thus A2 ¼ g1Aþg0I, with g1 6¼ 0. To proceed we

need some facts about transitive graphs.

Lemma A.1. If (V, E) is transitive, then

i. If (i, j) 2 E for some i 2 Vg and j 2 Vh, then for all i0 2 Vg and j0 2 Vh, (i
0, j0) 2 E.

ii. The relation Vg 	 Vh iff (i, j) 2 E for some i 2 Vg and j 2 Vh and Vg 6¼ Vh is transitive

and asymmetric.

Each weakly connected component corresponds to a block of the blockdiagonal

matrix A, and if the powers of A are linearly dependent then the powers of each diag-

onal block are too. So we begin by assuming the existence of only one block. The facts

about transitive networks imply that the matrix A has the following structure:

A ¼

Aga;ga Aga;gb � � � Aga;gc

0 Agb;gb � � � Agb;gc

0 0

..

. ..
. . .

. ..
.

0 0 � � � Agc ;gc

0 0 � � � 0

..

. ..
. ..

. ..
.

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Matrix Agx;gy is of size jVgx j � jVgy j. With exclusive averaging, each matrix on

the diagonal has 0s on its diagonal, and is strictly positive off it. With inclusive aver-

aging, diagonal entries are not 0. If a block Agx;gy has only 0 blocks to its right, there

must be a non-zero block above. Finally, for each i, j and k, aij ¼ aik, and the row

sums are 1.
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Proof of theorem 3. First we take up the case of exclusive averaging.

Lemma A.2. Assume exclusive averaging. g0 6¼ 0 iff (V, E) is a group of size at least 2.

If so, then

A2 ¼ 1

jV j � 1
I þ jV j � 2

jV j � 1
A: ð87Þ

Proof of lemma A.2. “If ” is a calculation. For the other direction, suppose the two coef-

ficients are positive. Then [A2]ii ¼ g0 for all i since aii ¼ 0. Suppose (V, E) is not a

group. There must be a strongly connected component Vh which is minimal with

respect to 	, and another strongly connected component Vg such that Vg 	 Vh. Mem-

bers of Vh connect only to themselves, and so the cardinality of Vh must exceed 1, or

else g0 ¼ 0. For i 2 Vg and j 2 Vh,

½A2�ii ¼
jVg j � 1

ðjVg j � 1þ jVhj þ mÞ2

½A2�jj ¼
1

jVh j � 1

wherem is the number of nodes outside ofVhmembers ofVg are connected to. Both of these

numbers must equal g0, and so (jVgj � 1)(jVhj � 1) ¼ (jVgj � 1 þ jVhj � 1 þ m þ 1)2,

which is impossible. Thus (V, E) is a group, and equation (87) follows. □
Now we identify the structure for the remaining case, which has g1 > 0 and g0 ¼ 0.

Note that directed bipartite networks are characterized by the property that A2 ¼ 0.

Anyone who is influenced by someone influences no one.

Lemma A.3. Assume exclusive averaging and that g0 ¼ 0. Then g1 ¼ 0, and the weakly

connected component is either a singleton or a directed bipartite graph.

Proof. From the assumption it follows thatAn¼ gn1A for all n. In particular, [An]ii¼ 0 for

all i and n. Thus there are no paths that return to their starting point, and so no path can have

length more than jVj � 1. Thus AjVj ¼ 0 and it follows that g1 ¼ 0 and A2 ¼ 0. If A¼ 0,

then the weakly connected component has only one member. If A 6¼ 0, all paths are of

length 1. The network is a directed bipartite graph. □
Now we repeat the same exercise for inclusive averaging. Again, assume (V, E) is

weakly connected.

Lemma A.4. Assume inclusive averaging. If (V, E ) is a group, then A2 ¼ A, g1 ¼ 1 and

g0 ¼ 0. If A2 ¼ A and A 6¼ 0, then (V, E) is a group.

Proof of Lemma A.4. If (V, E) is a group, then all elements of A are identical and the

row sum is 1. Thus A2 ¼ A, and so forth.

Suppose now that (V, E) is not a group. Then there are subgraphs (V1, E1),. . . ,
(VK, EK) such that the Vk partition V each component is strongly connected, and

maximally so. All edges not in [kEk run between components. Transitivity implies that

if there is an edge from any vertex in Vj to any vertex in Vk, then there is an edge from
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every vertex in Vj to every vertex in Vk. Say there is a path from component (Vi, Ei) to

component (Vj, Ej) if there is a path from any vertex in Vi to any vertex in Vj.

Any such path must be acyclic. Otherwise, transitivity implies that all nodes in the

components with all edges between them form a strongly connected component, con-

tradicting the maximality of the (Vk, Ek). Thus there is at least one “terminal compo-

nent”, (V1, E1), from which there is no path to any other component. Since (V, E)

is weakly connected and not a group, there must be a component (V2, E2) which

connects directly to (V1, E1). Each element may be connected to vertices not in either

V1 or V2. Choose i 2 V2, and let W denote the set of vertices not in V1 [ V2 to which

i is connected. Observe that

½A2�ii ¼
X
j2W

1

jV1j þ jV2j þ jW jaji þ
X
j2V2

ð 1

jV1j þ jV2j þ jW jÞ
2

þ
X
j2V1

1

jV1j þ jV2j þ jW j
1

jV2j

¼ 1

jV1j þ jV2j þ jW j
X
j2W

aji þ jV2j
ðjV1j þ jV2j þ jW jÞ2

þ jV1j
jV1j þ jV2j þ jW j

1

jV1j

¼ 1

jV1j þ jV2j þ jW j þ
1

jV1j þ jV2j þ jW j
X
j2W

aji þ jV2j
ðjV1j þ jV2j þ jW jÞ2

>
1

jV1j þ jV2j þ jW j ¼ Aii

since jV2j > 0; soA2 6¼ A. □
Lemma A.5. If l2 6¼ 0, (V, E ) is a group.

Proof of lemma A.5. If (V, E ) is not a group, each strongly connected component is

of size 1. If not, and both i and j are in the same component, then

g0 þ g1aii ¼ ½A2�ii ¼ ½A2�jj ¼ g1ajj ¼ g1aii: ð88Þ

Since aii 6¼ 0, g0 ¼ 0 and g1 ¼ 1 and so A is a group, which is impossible. If so, suppose

that { j} is minimal with respect to 	 and that {i} 	 { j}. Let m denote the number of

other nodes that influence i. Then

½A2�ii ¼
1

ð2þ mÞ2 ¼ g0 þ g1
1

2þ m

½A2�ij ¼
1

ð2þ mÞ2 þ
1

2þ m
¼ g0 þ g1

1

2þ m

and would imply 0 ¼ 1/(2 þ m) which is impossible. □
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To complete the proof of theorem 3, consider first the case of exclusive averaging.

If the parameters are not identified, then I, A and A2 are dependent. In particular, the

powers of each matrix block corresponding to a given weakly connected component

are dependent. Each component is either a group, a singleton, or a directed bipartite

network. Furthermore, Bramoullé et al. show that all groups must be the same size.

Both singleton components and directed bipartite networks have individuals who are

influenced by no one. It follows from Bramoullé et al. proposition 3 that if k 6¼ 0,

the parameters are identified if such individuals exist. Consequently, all weakly

connected components are groups of a common size, at least 2. Conversely, if all

components are groups of the same size, there are no individuals influenced by no

one, and identification fails according to lemma A.2 and theorem 2.ii.

In the case of inclusive averaging, it follows as before that the relevant matrix

powers are linearly dependent. It follows from lemma A.5 that each component is

either a group or a singleton. A singleton gives identification, so each component is

a group of size at least 2. A calculation shows that the groups need not be the same

size for the powers of the entire matrix to be linearly dependent. Conversely, if all

components are groups, then identification fails according to lemma A.4 and theorem

2.ii. □
Proof of theorem 5. It suffices to prove the theorem for the open and dense set of

matrices S1 which are strictly positive. Then l2 6¼ 0, so write A2 ¼ g1A þ g0I. We

need to prove the claim of the theorem for the set S1 of matrices that can be written

this way. The set S1 is semi-algebraic and closed. It suffices to show that S/S1 is dense.

Consider a matrix A in S, and denote its square by B. Consider matrices of the form

A(e) whose i, j element is a11 þ e for i ¼ j ¼ 1 and aij otherwise. Then

BðeÞ11 ¼ b11 þ 2a11eþ e2;
BðeÞ1j ¼ b1j þ a1je for j 6¼ 1;
BðeÞi1 ¼ bi1 þ ai1e for i 6¼ 1;
BðeÞij ¼ bij otherwise:

Suppose that B(e) is in S for all small e. Computing.

g1 ¼ ðb21 þ a21eÞ=a21
g0 ¼ b22 � g1a22:

Then the equation B(e)11 ¼ g1A(e)11 þ g0 is a linear (not quadratic) equation in e. A
necessary condition for linear dependence of the powers of A(e) for more than 1 value

of e is that the coefficient on e is zero. This happens only for a set of A-matrices S2 of

codimension at least 1. Hence for all but at most one small enough e, A(e) =2 S1/S2.

Since S2 is nowhere dense, this proves the theorem. □
Proof of theorem 7. Let m ¼ F(c, d, J, g); M is the matrix of reduced form coefficients.

Our goal is to see how they map back to the structural parameters. We will prove the

theorem for nv odd and equal to 2K þ 1. The proof for even nv is similar.
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By hypothesis, I � JA(g) is nonsingular. Thus

M ¼ ðI � JAðgÞÞ�1ðcI þ dAðgÞÞ
¼ ðI � JAðgÞÞ�1ðcI þ dI � dI þ dAðgÞÞ
¼ ðc þ dÞðI � JAðgÞÞ�1 � dI

ð89Þ

and so

dI þM ¼ ðc þ dÞðI � JAðgÞÞ�1; ð90Þ
which verifies that dI þ M is nonsingular if c þ d 6¼ 0.

In view of equation (57) which defines A(g),

ðI � JAðgÞÞ11 ¼ 1

and

�ðI � JAðgÞÞ12
ðI � JAðgÞÞ11

¼ Jg;

ðI � JAðgÞÞ13
ðI � JAðgÞÞ12

¼ � � � ¼ �ðI � JAðgÞÞ1Kþ1

ðI � JAðgÞÞ1K
¼ g:

Now define

M ¼ fM : for some ðc; d; J ; gÞ 2 P;Fðc; d; J ; gÞ ¼ Mg
MdJ ¼ fM : for some ðc; gÞ 2 R2 � ½0; 1Þ; Fðc; d; J ; gÞ ¼ Mg:

These are, respectively, the sets of all possible reduced form matrices and those reduced

forms consistent with a particular parameter pair of structural parameters (d, J ).

Equation (90) then requires the following: If M 2 MdJ, then

ðdI þMÞ11 6¼ 0

and

�ðdI þMÞ�1
12

ðdI þMÞ�1
11

¼ Jg; ð91Þ

ðdI þMÞ�1
13

ðdI þMÞ�1
12

¼ � � � ¼ ðdI þMÞ�1
1Kþ1

ðdI þMÞ�1
1K

¼ g: ð92Þ

We will use this fact to show that for a given reduced form matrix M 2 M there are

at most 2(nV � 1) possible values of (d, J ) pairs consistent with equation (92). We will

show that each of these (d, J ) pairs is consistent with a unique (c, g) pair, which proves

the theorem.

Under our assumed model specification, M is symmetric. Thus it has real eigenva-

lues l1; . . . ; lnv , and is diagonalizable by a unitary matrix P. Furthermore, for any
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scalar d, dI þ M is diagonalized by the same matrix P, and has eigenvalues

d þ l1; . . . ; d þ lnv . Consequently,

ðdI þMÞ�1 ¼ P�1

1

d þ l1
0 � � � 0

0
1

d þ l2
� � � 0

. .
.

0 0 � � � 1

d þ lnV

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
P:

The i, j’th entriy of the matrix product on the right is

ðdI þMÞ�1
ij ¼ 1Q

jðd þ ljÞ
X
k

pkipkj
Y
l 6¼ k

ðd þ llÞ;

for any d which is not the negative of an eigenvalue of M (which would make dI þ M

singular). We now ask, for which values of d can equation (92) be satisfied? Define

fij(d) ¼
P

k pikpkj
Q

l6¼k(d þ ll). Equation (92) implies that

f13ðdÞ
f12ðdÞ

¼ f14ðdÞ
f13ðdÞ

and so

pðdÞ � f13ðdÞ2 � f14ðdÞf12ðdÞ ¼ 0:

Then p(d ) is a polynomial of degree at most 2(nV � 1). The dependence of the polyno-

mial on the terms pij is the link between the reduced form coefficients and the structural

parameters. To see that it is not identically 0, suppose that M ¼ F(c0, d0, J0, g0). From
equation (89), it follows that the value of the derivative of the matrix dI þ M at d ¼
d0 is (c0 þ d0)2(I � J0A(g0) )2. From this fact, a calculation shows that if neither g0 nor J0

are 0, and c0 þ d0 6¼ 0, then p0(d0) ¼ 0 only for the solutions to a polynomial equation

in g and J which is not identically 0. Thus p0(d0) 6¼ 0 only on a lower-dimensional set C of

(c0, d0, J0, g0). That is, forM 2M0 ¼ {M : for some (c, d, J, g) 2 P=C, F(c, d, J, g) ¼M},

Off of this set, for any d sufficiently near to but not equal to d0, p(d0) 6¼ 0. Thus for

M 2 M0 ¼ {M : for some (c, d, J, g) 2 P=C, F(c, d, J, g) ¼ M}, p(d) ¼ 0 has at most 2

(nV � 1) solutions. For each d which is a root of p(d), �ðdI þMÞ�1
12 =ðdI þMÞ�1

11 ¼ Jyd
(equation (91) ). The ratio of any other pair of adjacent entries of the (dI þ M)�1

matrix determines gd. Finally, cd solves (I � JA(gd) )(dI þ M) � dI ¼ cI for c. Suppose,

then, that M ¼ F(c0, d0, J0, g0) for (c0, d0, J0, g0) 2 P=C. If a parameter vector (c00, d00, J00,
g00) is not such that d00 is a root of p(d), or that c00, J00, and g00 do not equal the

corresponding cd, Jd and gd, then (c00, d00, J00, g00) is not observationally equivalent to
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(c0, d0, J0, g0). If g ¼ 0, then neither d nor J can be identified. In this case M ¼ cI. Con-

versely, if M ¼ c0I, from (90) either J ¼ 0 and d ¼ 0 or g ¼ 0. From equation (58), if

J ¼ 0 and M ¼ c0I, then either g ¼ 0 or d ¼ 0 as well, and c0 ¼ c. □
A3. EQUILIBRIUM PROPERTIES OF DISCRETE CHOICE
MODELS WITH SOCIAL INTERACTIONS

This appendix describes some aspects of the group-level equilibria for discrete choice

models of social interactions. The models we discuss are similar in structure to the

quantal response equilibria first developed by McKelvey and Palfrey (1995). The social

interactions and quantal response equilibria literatures have evolved independently; as is

true for other cases of parallel development that we have noted, each literature would

benefit from integration with the other.

i. Basic structure of the binary choice model with social interactions
We first outline the theoretical properties of the binary choice model with social inter-

actions for a single group g, following Brock and Durlauf (2001a). As in the text,

choices are coded so that oi 2 {�1, 1}. Define hi ¼ k þ cxi þ dyg. From the perspec-

tive of the equilibrium of the group, contextual effects act in a way analogous to a con-

stant term, an observation that is used in the proof of theorem 4 on identification. The

utility function for a given choice is

ViðoigÞ ¼ hioig � J

2
Eððoig � �o�igÞ2Þ þ �iðoigÞ ð93Þ

where �o�ig ¼ (I � 1)�1P
j 6¼iojg and �i(oig) is a choice-specific random utility term. In

parallel to the linear in means model, there is a penalty for expected square deviations

of i’s choice from the mean choices of others. Since o2
ig � 1,

� J

2
ðoig � �o�igÞ2 ¼ Joig �o�ig � J

2
ð1þ �o2

�igÞ:

The second term on the right is independent of oig, and so the utility function of equa-

tion (93) yields the same behaviors as

ViðoigÞ ¼ hioig þ Joigm
e
ig þ �iðoigÞ

where me
ig ¼ ðI � 1Þ�1P

j 6¼iEoigjFi. It is immediate that

Við1Þ � Við�1Þ ¼ 2hi þ 2Jme
ig � ei ð94Þ

where ei ¼ �i(�1) � �i(1). This justifies equation (59). As the group size grows large,

me
ig will become independent of i.
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ii. Equilibria under logit models of social interactions
To illustrate the qualitative properties of the binary choice model with social interac-

tions, following Brock and Durlauf (2001a), we maintain the i.i.d. error assumptions

(60) and (61) and further assume a functional form for Fe:

FeðzÞ ¼ 1

1þ exp ð�bzÞ

that is, the individual-specific utility terms errors are negative exponentially distributed.

The parameter b indexes the degree of unobserved heterogeneity. A larger b implies

less heterogeneity in the sense that the probability mass of Fe(z) is more concentrated

towards the origin.

This functional form, when combined with equation (94), produces the canonical

logistic density for equilibrium choices

mðoigjhi;mgÞ ¼ exp ðbhioig þ bJmgoigÞ
exp ðbhioig þ bJmgoigÞ þ exp ð�bhioig � bJmgoigÞ : ð95Þ

From equation (95) it is immediate that the expected value of agent i’s choice is

Eðoigjhi;mgÞ ¼ exp ðbhioig þ bJmgoigÞ � exp ð�bhioig � bJmgoigÞ
exp ðbhioig þ bJmgoigÞ þ exp ð�bhioig � bJmgoigÞ

¼ tanh ðbhi þ bJmgÞ:
ð96Þ

The expected group mean is simply the unweighted average of (96) across i. Letting

dFhjg denote the empirical density of hi within group g, mg is implicitly defined by

mg ¼
ð
tanh ðbhþ bJmgÞdFhjg:

To understand the properties of the equilibrium, we consider the baseline case in the

literature in which hi is constant, that is, for all i, hi � h, so that the equilibrium

expected average choice levels are described by a functional equation.

mg ¼ tanh ðbhþ bJmgÞ: ð97Þ

No closed form solution exists. Brock and Durlauf (2001a) characterize the properties

of solutions to equation (97), which we summarize as

Theorem A.3. Equilibria in the logistic version of the binary choice model

with social interactions.

i. If bJ < 1, equation (97) has a unique solution.

ii. If bJ > 1, then there exists a nondecreasing and positive function �h (bJ) of bJ such that
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i. the equilibrium solution to equation (97) is unique if jhj > �h (bJ); and
ii. there exist three equilibrium solutions to equation (97) if jhj < �h (bJ). One equili-

brum has the same sign as h.
The intuition for the theorem is straightforward. bJ < 1 means that the endogenous

social interaction effect is too weak to generate multiple equilibria. Notice that strength

of the interaction effect is not determined by J, the endogenous effect parameter, in

isolation, but is multiplied by the measure for heterogeneity. Why would a small value

of b work against the existence of multiple equilibria? A small b implies fatter tails for

the unobserved heterogeneity density. By symmetry of this density, fat tails means a

relatively large fraction of the population will, in expectation, have their choices deter-

mined by their heterogeneity draws. This leaves too small a fraction whose behavior

can exhibit multiple equilibria via self-consistent bunching; the utility differential

between the choices is insufficiently affected by the range of possible mg values once

the tail draws are accounted for. In contrast, bJ > 1 means that the endogenous social

utility payoff is large enough relative to the symmetrically distributed heterogeneity,

then multiple expected average choice levels are possible, if jhj < �h (bJ). Why is this

second condition needed? If the common private incentive h has sufficient magnitude,

it will determine a sufficiently large fraction of choices so that self-consistent bunching

is not possible. Again, greater heterogeneity reinforces this effect. Notice that qualita-

tive changes in the number of equilibria for this model occur in neighborhoods of the

value 1 for bJ and �h (bJ) for h. These are bifurcation thresholds.

Blume and Durlauf (2003) extend this theorem by considering a dynamic analog of

the binary choice model with social interactions. Their analysis focuses on the stability

of the rational expectations equilibria associated with (97). For a dynamic analog of

the model we have outlined, one can show the population spends most of its time

in the vicinity of the equilibrium that maximizes average utility in the group, which

is the equilibrium whose mean choice has the same sign as h.

iii. Generalizations of the binary choice model
The properties of this model generalize to a number of interesting related structures.

For example, one can analyze the general preference specification

Við1Þ � Við�1Þ ¼ hi þ Jmg � b�1ei

where Fe is is an arbitrary probability distribution function for the unobservable indi-

vidual-level e heterogeneity. Retaining the i.i.d. error assumptions (60) and (61) and

focusing on the case where h is constant, Brock and Durlauf (2006) prove that a close

analog to theorem A.3 holds for this general binary choice model. Two changes occur

when the logit function form assumption is dropped. First, the necessary condition for
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multiple equilibria takes the form bJ > T, where the threshold T cannot be determined

without specification of Fe. In other words, some threshold for bJ always exists that can
produce multiple equilibria. Second, for part ii.b, the threshold result for multiple equi-

libria states that at least three equilibria exist. The more precise structure of theorem

A.3 derives from the specific functional form found in equation (97). The qualitative

features of the theorem do not.

The qualitative properties of the theorem also extend to local interactions environ-

ments, i.e., contexts where individuals are arrayed in some social space and only inter-

act with their suitably defined neighbors. One version of a local interactions model is

studied in Blume (1993). An expectational version of his model can be represented by

Við1Þ � Við�1Þ ¼ hi þ J
X

ji�jj¼1

EðojgÞ � ei;

where E(ojg) is the equilibrium expectation of ojg conditional on the values of hi across

the population. If we impose the assumption that for all i, hi ¼ h, then it is immediate

that equation (97) continues to characterize the symmetric equilibrium average choice

levels in the population. It is obvious that other interactions structures can do the same.

The similar aggregate properties for different interactions specifications is itself known

as the property of universality, which in social interactions contexts means that there

exist dimensions along which the qualitative properties of the models do not depend

on the details of the interaction structure. The reader should consult Ioannides

(2006) for extensions of these types of models to more complex interactions structures.
iv. Multinomial choice models with social interactions
Multiple equilibria and bifurcations are not unique to the binary choice context. Brock

and Durlauf (2006) show that theorem A.3 is a special case of

Theorem A.4. Multiple equilibria in the multinomial logit model with

social interactions. Suppose that individual choices are characterized by equations (71),

(72), and (73). Assume that hil ¼ k for all i and l. If bJ > L, there will exist at least three

self-consistent choice probabilities.

The dependence of the threshold on the number of choices L is intuitive. The

larger the number of choices, under independence of eil across l, the greater the prob-
ability that one of the draws will dominate the agent’s choice, which reduces the frac-

tion of agents whose behavior can exhibit self-consistent bunching. Brock and Durlauf

(2006) additionally provide analogous results for general density functions for eil. As in
the binary choice case the results are less precise. This theorem and its generalization in

Brock and Durlauf (2006) explain various simulation results in Bayer and Timmins

(2005).
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