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1. Introduction

For many households, human capital constitutes the single most important component of

their wealth. Empirical evidence suggests that human capital is distinguished by three char-

acteristics.1 First, ex ante returns to human capital investment vary greatly across the

population. Second, human capital investment is very risky due to uncertainty about lifes-

pan, health status, and labor market conditions. Third, human capital cannot be pledged as

collateral. In this paper, we explore the macroeconomic implications of these special char-

acteristics of human capital using a combination of theoretical, quantitative, and empirical

methods. We emphasize five main findings.

First, we show theoretically that these three properties of human capital generate an

interesting form of under-insurance, with the households that are most exposed to human

capital risk also the least insured relative to their insurance needs. Second, we provide

microeconomic evidence in support of this prediction by examining data on insurance against

an important form of human capital risk: the death of a household member. Specifically,

we use data on life-insurance contracts drawn from the Survey of Consumer Finance (SCF)

and show that the extent of under-insurance is lowest for young households who also have

the greatest share of their wealth invested in human capital. Third, we show that when we

calibrate our model to life-cycle patterns in human capital returns, our model replicates the

observed quantitative pattern of under-insurance. Fourth, we show that this under-insurance

is important for welfare, with limited access to insurance against human capital risk reducing

the welfare of young households by an amount equivalent to a 4 percent reduction in lifetime

consumption. Fifth, we show that this under-insurance has important implications for policy:

making consumer bankruptcy as costly as defaulting on student loans leads to a substantial

increase in the volume of credit and insurance.

We begin our analysis by developing a macroeconomic model in which human capital

1The third characteristic is obvious. Section 6 discusses the empirical evidence on human capital risk and
heterogeneity of human capital returns.
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investments are risky, earn heterogeneous expected returns, and are not pledgeable as collat-

eral. Households can buy insurance and borrow using unsecured debt, with their ability to

borrow limited endogenously by the possibility that they might default. Default is modeled

along the lines of Chapter 7 of the US bankruptcy code: in the case of default all debt

is cancelled, all financial assets are seized, no future earnings are garnished, and access to

financial markets is restricted for a period of time.

In a first step, we consider a simplified version of our model and show analytically that the

equilibrium exhibits a negative relationship between risk and insurance: those households

who are most exposed to human capital risk are the ones who have the least insurance in

equilibrium. We show that this result holds for two different insurance measures, one that

is defined as the ratio of insurance pay-out relative to the income loss and another that

measures the reduction in consumption volatility due to insurance. Intuitively, households

with high ex-ante human capital returns choose to invest the bulk of their wealth in human

capital, that is, they are heavily exposed to human capital risk. In the absence of borrowing

constraints, these households would like to borrow in order to invest even more in human

capital and to buy insurance against human capital risk. However, the risk of bankruptcy,

combined with the fact that these households mainly hold non-collaterizable assets, prevents

them from borrowing and leaves them with little insurance in equilibrium.

In a next step, we turn to the quantitative analysis and study a calibrated version of the

full model in which ex-ante returns to investment in human capital vary by age: younger

households have higher human capital returns than older households. When we calibrate

the model economy to match the US evidence on labor market and mortality risk and the

life-cycle profile of median earnings growth, we find that in equilibrium a large number of

younger households are severely under-insured, but older households are almost completely

insured. Indeed, young households would gain around 4 percent of lifetime consumption from

being fully insured, but they would have to borrow to achieve this welfare improvement. In

short, the inability to pledge human capital generates large deviations from the full-insurance
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outcome for a large group of households.

Our analysis predicts that both human capital investment and the degree of under-

insurance should decrease over the life-cycle. In this paper, we examine these two im-

plications empirically using micro-level data drawn from the Survey of Consumer Finance

(SCF). Specifically, we first measure the degree of under-insurance against an important

form of human capital risks faced by a household: the death of a household member.2 When

we measure under-insurance using data on life-insurance purchases to estimate insurance

pay-outs relative to our estimate of the present value of lost earnings of the household, we

find that under-insurance is strongly decreasing in age. We also show that this result is

robust to different sample selections and modifications in the definition of under-insurance.

Second, when we measure the human capital choice of households in the data by computing

the ratio of net financial wealth over labor income, we also find that the fraction of total

wealth invested in human capital strongly decreases over the life-cycle. Moreover, the mag-

nitude of the decline in under-insurance and human capital over the life-cycle is in line with

predictions of our calibrated model economy. This provides additional corroboration of the

theory since the model has not been calibrated to match these two targets.

Finally, we argue that our approach has important macro-economic implications. There

has been a long-standing debate among academic scholars and policy makers with regard

to the relative merits of alternative consumer bankruptcy codes. In the US, this debate has

led to legislation making it more costly to declare bankruptcy. In this paper, we add to this

debate by exploring a channel that has not been studied by the previous macro literature on

consumer bankruptcy: making it more costly to declare bankruptcy not only increases the

volume of credit, but also the amount of insurance purchased by households. In the human

capital model analyzed here, it further increases economic growth since it leads to more

2One advantage of focusing on the market for life insurance is that other market imperfections, such as
adverse selection, are likely to be less important. Further, pure life-insurance contracts (term life insurance)
have a relatively simple structure and can in principle be purchased by most households.
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investment in the high-return asset. For the calibrated version of the model, we show that

these effects are quantitatively substantial, though the positive growth impact is dampened

as a result of strong general equilibrium effects.

In addition to these substantive contributions, this paper also makes a methodological

contribution by developing a tractable macro-economic model with risky human capital

and limited contract enforcement. Both theoretical and applied work on heterogeneous-

agent models with idiosyncratic risk and limited enforcement/commitment has struggled

with two fundamental problems. First, the infinite-dimensional wealth distribution is in

general a relevant state variable when computing recursive equilibria. Second, in models

with investment, the choice of individual households is typically not convex, which calls into

question the application of any first-order approach to the computation of equilibria. In

contrast, for the class of models developed in this paper, we show that the maximization

problem of individual households can be transformed into a convex problem and that the

infinite-dimensional wealth distribution is not a relevant state variable.3 This property

allows us to show analytically our main result about risk and insurance, and is of great use

in quantitative work dealing with higher-dimensional state variables.

2. Literature

This paper is most closely related to the large literature on risk sharing in models with lim-

ited commitment/enforcement. See, for example, Alvarez and Jermann (2000), Kehoe and

Levine (1993), Kocherlakota (1996), Thomas and Worrall (1988) for contributions based on

exchange models and Ligon, Thomas, and Worrall (2002), Kehoe and Perri (2002), Krueger

and Perri (2006), and Wright (2001) for work on production models with capital. In addition

to our methodological contribution, which shows how to deal with the non-convexity issue

3In this paper, we focus on logarithmic one-period utility functions, but it is easy to see that our characteri-
zation result holds more generally for CRRA utility functions. Indeed, our basic argument uses homotheticity
of preferences, which means that the assumption of Epstein-Zin preferences is sufficient for the proof.
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in a certain class of production models, we make three substantive contributions to this

literature. First, we show that a calibrated macro model with physical capital and limited

contract enforcement can generate substantial lack of consumption insurance once we intro-

duce life-cycle considerations and human capital choices. In contrast, previous work in this

literature, which has not considered ex-ante heterogeneity and human capital choice, has

concluded that the effects of limited enforceability of contracts on risk sharing are small in

calibrated macro models with physical capital and production.4 Second, we show that our

calibrated model economy provides a good quantitative account of the empirically observed

life-cycle profile of human capital investment and consumption insurance. In particular,

we show that the model can quantitatively explain the “under-insurance” puzzle in the life-

insurance market. Finally, we introduce the human capital channel and show that our model

has important implications for macro-economic policy analysis.5

This paper is also related the literature on macro-economic models with incomplete mar-

kets. Most work in this literature has taken the human capital of individuals as exogenous,

but Krebs (2003), Guvenen, Kuruscu, and Ozkan (2011), and Huggett, Ventura, and Yaron

(2011) are three contributions that have explicitly dealt with human capital investment

when returns are uncertain and insurance markets are incomplete. Though these models

provide useful insights into a number of important issues, they are necessarily silent about

the underlying financial friction that explains the observed lack of insurance and the limits

on borrowing. In particular, the standard incomplete-market model can in principle explain

why self-insurance increases with age,6 but it has nothing to say about the use of existing

insurance markets over the life-cycle. Moreover, our analysis of the personal bankruptcy

4Krueger and Perri (2006) match the cross-sectional distribution of consumption fairly well, but the
implied volatility of individual consumption growth is negligible in their model. A similar ”almost full-
insurance” result is obtained by Cordoba (2006).

5Andofatto and Gervais (2006) and Lochner and Monge (2011) analyze models with human capital
investment and endogenous borrowing constraints due to enforcement problems, but they abstract from risk
considerations and therefore cannot address the issues that take center stage in this paper.

6See, for example, Kaplan and Violante (2010).

5



law heavily relies on the endogeneity of borrowing constraints and the existence of some

insurance markets.

Recent contributions by Chatterjee, Corbae, Nakajima, and Rios-Rull (2007), and Livshits,

MacGee, and Tertilt (2007) analyze the consequences of reforming the consumer bankruptcy

code based on models with equilibrium default and no insurance markets. In these pa-

pers, an increase in the cost of bankruptcy increases borrowing and reduces default, which

leads to a reduction in risk sharing since default is a means towards smoothing consumption

across states of nature. In contrast, in our model an increase in the cost of bankruptcy

increases borrowing and improves risk sharing since households can take better advantage

of existing insurance markets. Moreover, our quantitative work shows that the increase in

equilibrium insurance is substantial. Clearly, neither our assumption of a complete set of

insurance markets nor the assumption of no insurance markets is a correct representation

of reality. Despite this caveat, our work makes a simple yet important point: any reform of

the consumer bankruptcy law is likely to affect not only credit markets, but also insurance

markets.

There is an extensive literature analyzing insurance markets based on models of adverse

selection and moral hazard, and one basic implication of this approach is that households

with higher risk exposure should buy more insurance (Chiappori and Salanie, 2000, and Chi-

appori, Jullien, Salanie, and Salanie, 2006). A number of empirical studies have found that

this hypothesis is often rejected by the data (Chiappori and Salanie, 2000, and Bernheim,

Forni, Gokhale, and Kotlikoff, 2003), and has dubbed this finding the “under-insurance puz-

zle”. In this paper, we provide additional evidence supporting the findings of the previous

literature and put forward an explanation of the puzzle for mortality risk in terms of limited

contract enforcement. Of course, there are alternative explanations of a negative relationship

between risk exposure and insurance based on adverse selection and preference heterogeneity

(Chiappori et al.., 2006, and Cutler, Finkelstein, and McGarry, 2008), but we are not aware

of any work in the macro literature that addresses this issue.
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At a very general level, models of limited enforcement/commitment have one basic im-

plication: in equilibrium, there is imperfect risk sharing if borrowing (short-sale) constraints

are binding. We are not aware of any empirical study directly testing this joint hypothe-

sis, but both the “perfect risk sharing hypothesis” and the “binding borrowing constraints

hypothesis” have been tested separately. On risk sharing, almost all empirical studies us-

ing household level data have found that the full-insurance hypothesis is strongly rejected

(Attanasio and Davis, 1996, Blundell, Pistaferri, and Peston, 2008, Cochrane, 1991, and

Townsend, 1994). On borrowing constraints, Jappelli (1990) finds that a significant fraction

of US households are credit constrained, and that these households are on average younger

than the rest of the population. There is also an extensive empirical literature on credit

constraints and college enrollment, which has reached somewhat mixed results. For exam-

ple, Card (2001) concludes that borrowing constraints affect college enrollment decisions

substantially, whereas Carneiro and Heckmann (2002) argue that only a small fraction of

the population is affected. Lochner and Monge (2011) show that the number of affected

individuals has increased significantly since the 1980s.

3. Model

In this section, we develop the model and define a stationary (balanced growth) recursive

equilibrium.

3.1. Production

Time is discrete and open ended. There is no aggregate risk and we confine attention to

stationary (balanced growth) equilibria. We assume that there is one all-purpose good that

can be consumed, invested in physical capital, or invested in human capital. Production

of this one good is undertaken by one representative firm (equivalently, a large number of

identical firms) that rents physical capital and human capital in competitive markets and

uses these input factors to produce output, Y , according to the aggregate production function

Y = F (K, H), where K and H denote the aggregate levels of physical capital and human

7



capital, respectively. The production function, F , has constant-returns-to-scale, satisfies

a Inada condition, and is continuous, concave, and strictly increasing in each argument.

Given these assumptions on F , the derived intensive-form production function, f(K̃) =

F (K̃, 1), is continuous, strictly increasing, strictly concave, and satisfies a corresponding

Inada condition, where we introduced the “capital-to-labor ratio” K̃ = K/H. Given the

assumption of perfectly competitive labor and capital markets, profit maximization implies

rk = f ′(K̃) (1)

rh = f(K̃) + f ′(K̃)K̃ ,

where rk is the rental rate of physical capital and rh is the rental rate of human capital. Note

that rh is simply the wage rate per unit of human capital and that we dropped the time

index because of our stationarity assumption. Clearly, (1) defines rental rates as functions of

the capital to labor ratio: rk = rk(K̃) and rh = rh(K̃). Finally, physical capital depreciates

at a constant rate, δk, so that the (risk-free) return to physical capital investment is rk − δk.

3.2. Households

There are a continuum of long-lived households of mass one. Households have an uncertain

life-span and in the case of death they are replaced by new-born households. The exogenous

state of an individual household in period t is denoted by st. We assume that the process

of exogenous states, {st}, is Markov with stationary transition probabilities π(st+1|st). Note

that st can have several components (age, ability, mortality risk, labor market risk) and that

we can incorporate ex-ante heterogeneity (age, ability) by assuming degenerate transition

probabilities for certain components (see Sections 5 and 6 for particular applications). We

denote by st = (s1, . . . , st) the history of exogenous states up to period t (date-event, node)

and let π(st|s0) = π(st|st−1) . . . π(s1|s0) stand for the probability that st occurs given s0.

At time t = 0, the type of an individual household is characterized by his initial state,

(k0, h0, s0), where k0 denotes the initial stock of physical capital and h0 the initial stock of

human capital (note that s0 is not included in st). We take as given an initial distribution,
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µ0, of households over initial states (k0, h0, s0), and a sequence of distributions, {µt,new}, of

new-born households over initial states.

Households are risk-averse and have identical preferences that allow for a time-additive

expected utility representation with logarithmic one-period utility function and pure discount

factor β. That is, for a household choosing the consumption plan {ct}, expected life-time

utility is given by
∞
∑

t=0

∑

st

βtν(st)lnct(s
t)π(st|s0) (2)

where ν is a preference shifter that in the event of death of the household (family ceases to

exists) is set to zero. Note that we have abstracted from the labor-leisure choice of house-

holds. Note also that with log-utility preferences, any deterministic change in household-size

simply adds a constant to (2) without changing the optimal choice of households.

Each household can invest in human capital and buy and sell a complete set of financial

assets (contracts) with state-contingent payoffs. More specifically, there is one asset (Arrow

security) for each exogenous state s. We denote by at+1(st+1) the quantity bought (sold) in

period t of the asset that pays off one unit of the good in the next period if st+1 occurs in the

next period. Given his initial state, (h0, a0, s0), a household chooses a plan, {ct, ht+1,~at+1},

where the notation ~a indicates that in each period the household chooses a vector of asset

holdings. Further, ct stands for the function mapping partial histories, st, into consumption

levels, ct(s
t), with similar notation used for the other choice variables. A budget-feasible

plan has to satisfy the sequential budget constraint

rhht + at(st) = ct + iht +
∑

st+1

at+1(st+1)qt(st+1) (3)

ht+1 = (1 − δh(st))ht + iht

0 ≤ ht +
∑

st+1

at+1(st+1)qt(st+1)

ct ≥ 0 , ht+1 ≥ 0 ,

where qt(st+1) is the price of a financial contract in period t that pays off if st+1 oc-

curs in t + 1. Note that in general prices depend on history and initial state, qt(st+1) =
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qt(st+1; s
t, a0, h0, s0), though in our Markov setting the prices can be written as q(st+1; st)

(see below). In (3) iht is investment in human capital and δh(st) is the age- and shock-

dependent depreciation rate of human capital. The term δh(st) captures all types of human

capital risk as well as ex-ante heterogeneity in human capital returns (see Sections 5 and 6).

Note that (3) has to hold in realization, that is, it has to hold for all t and all sequences {st}.

Note also that the first inequality in (3) represents a debt constraint, which in our setting is

equivalent to a no-Ponzi-scheme condition.

In addition to the standard budget constraint, each household has to satisfy a sequential

enforcement (participation) constraint, which ensures that at no point in time individual

households have an incentive to default on their financial obligations. More precisely, indi-

vidual consumption plans have to satisfy

∞
∑

n=0

∑

st+n|st

βnν(st+n) ln(ct+n(s
t+n))π(st+n|st) ≥ Vd(ht, st) , (4)

where Vd is the value function of a household who defaults. Note that (4) also has to hold

in realization. Note further that the constraint set defined by (4) may not be convex since

both the left-hand side and the right-hand side are concave functions of h.

The default value function, Vd, is defined by the following utility maximization problem.

The consequences of default are designed to mimic Chapter 7 of the US bankruptcy code.

Upon default, all debts of the household are cancelled and all financial assets seized so that

at(st) = 0. Following default, a household is excluded from participation in financial markets

for a period of time. For tractability, we assume exclusion continues until a stochastically

determined future date that occurs with probability (1 − p) in each period; that is, the

probability of remaining in (financial) autarky is p. Following a default, households retain

their human capital and continue to earn the wage rate (1− τh)rh per unit of human capital,

where τh denotes the fraction of labor income that is garnished from households in default.

In our baseline calibration, τh is set to zero as no wages are garnished under Chapter 7;

later we analyze the effect of a reform of the bankruptcy code that allows for wages to be
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garnished (an increase in τh). After regaining access to financial markets, the households

expected continuation value is V e(h, a, s), where (h, a, s) is the individual state at the time

of regaining access. For the individual household the function V e is taken as given, but we

will close the model and determine this function endogenously by requiring that V e = V ,

where V is the equilibrium value function associated with the maximization problem of a

household who participates in financial markets.7 In summary, a household who defaults in

period t chooses a continuation plan, {ct+n, ht+n}, so as to maximize

∞
∑

n=0

∑

st+n|st

pnβnν(st+n) ln(ct+n(s
t+n))π(st+n|st)+ (1−p)

∞
∑

n=1

∑

st+n|st

pn−1βn V e(ht+n, st+n)π(st+n|st) ,

(5)

where {ct+n, ht+n} has to solve the sequential budget constraint (2) with at = 0.

3.3 Equilibrium

In this paper, we confine attention to equilibria in which financial contracts are priced in a

risk-neutral manner:

q(st+1; st) =
π(st+1|st)

1 + rk − δk

. (6)

The pricing equation (6) can be interpreted as a zero-profit condition for financial interme-

diaries that can invest in physical capital at the risk-free rate of return rk − δk and can fully

diversify idiosyncratic risk for each insurance contract st+1.

Below we show that the optimal plan for individual households is recursive, that is, the

optimal plan is generated by a policy function, g. This household policy function in conjunc-

tion with the transition probabilities, π, define a transition function over states, (h, a, s), in

the canonical way. The transition function over individual states (h, a, s) conjunction with

7In other words, we assume rational expectations. The previous literature has usually assumed p = 1
(permanent autarky), and therefore did not have to deal with this issue. See, however, Krueger and Uhlig
(2006) for a model with p < 1 following a similar approach to ours. Note also that the credit (default)
history of an individual household is not a state variable affecting the expected value function, V e. Thus,
we assume that the credit (default) history of households is information that cannot be used for contracting
purposes.
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the initial distribution, µ0, and sequence of distributions, {µt,new}, induce a sequence of

equilibrium distributions, {µt}, of households over individual states, (h, a, s). Assuming a

law of large numbers, aggregate variables can be found by taken the expectations with re-

spect to the induced equilibrium distribution. For example, the aggregate stock of human

capital held by all households in period t is given by Ht = E[ht] =
∫

hdµt(h). A similar

expression holds for the aggregate value of financial wealth. In equilibrium, human capital

demanded by the firm must be equal to the corresponding aggregate stock of human capital

supplied by households. Similarly, the physical capital demanded by the firm must equal the

aggregate net financial wealth supplied by households. Because of the constant-returns-to-

scale assumption, only the ratio of physical to human capital is pinned down by this market

clearing condition. That is, in equilibrium we must have for all t

K̃ =
E[

∑

st+1
q(st+1; st)at+1(st+1)]

E[ht]
, (7)

where K̃ is the capital-to-labor ratio chosen by the firm.

To sum up, we have the following equilibrium definition:

Definition A stationary recursive equilibrium is a collection of rental rates (rk, rh), an

aggregate capital-to-labor ratio, K̃, a household value function, V , an expected household

value function, V e, a household policy function, g, and a sequence of distributions, {µt}, of

households over individual states, (h, a, s), so that

i) Utility maximization of households: for each initial state, (h0, a0, s0), and given prices,

the household policy function, g, generates a plan, {ct, ht+1,~at+1}, that maximizes expected

lifetime utility (2) subject to the sequential budget constraint (3) and the sequential partic-

ipation constraint (4).

ii) Profit maximization of firms: aggregate capital-to-labor ratio and rental rates satisfy the

first-order conditions (1).

iii) Financial intermediation: financial contracts are priced according to (6)

iv) Aggregate law of motion: the sequence of distributions, {µt}, is generated by g, π, µ0,
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and {µt,new}.

v) Market clearing: equations (7) holds for all t when the expectation is taken with respect

to the distribution µt.

vi) Rational expectations: V e = V .

3.4 Discussion

The budget constraint (3) follows Jones and Manuelli (1990) and Rebelo (1991) by assuming

that human capital and physical capital are produced using the same technology and that

there are no diminishing returns to investment at the household level (competitive markets).

In contrast, Lucas (1988) and Ben-Porath (1967) consider models with asymmetric produc-

tion structures and diminishing returns at the household level. There are also differences

with respect to the cost of human capital investment, where the former literature emphasizes

direct costs and the latter indirect costs that arise when households have to allocate a fixed

amount of time between work and human capital investment. To see the relationship of

our approach to Ben-Porath (1967), note that a general formulation of the law of motion

of human capital of a household would be ht+1 = G(ht, xt, lt, st), where lt is time spent

investing in human capital. Ben-Porath uses G(h, l) = h + a(hl)α and Huggett et al. (2011)

add human capital (depreciation) shocks: G(h, l, s) = es (h + a(hl)α), where s is normally

distributed. Our formulation (3) assumes G(h, x, s) = (1 − δh(s))h + x, but it is easy to see

that our general equilibrium characterization result (propositions 1 and 2) goes through if

G(h, x, l, s) = g1(l, s)h + g2(l, s)x, where g1 and g2 can be non-linear functions.8

We have chosen the specification (3) for two reasons. First, it keeps the model highly

tractable, though a more general formulation of the type G(h, x, l, s) = g1(l, s)h + g2(l, s)x

would also deliver a tractability result. Second, it treats the production of physical and

human capital fully symmetricly, which seems a useful abstraction given that our focus is

on three properties of human capital that are per se unrelated to the production process,

8Formulation (3) makes another assumption that is very common in the literature, namely it lumps
together general human capital (education, health) and specific human capital (on-the-job training).
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namely that human capital is an asset that i) is risky, ii) has heterogeneous ex-ante returns,

and iii) cannot be seized upon default.

The budget constraint (3) introduces risk and ex-ante heterogeneity in returns by assum-

ing that the human capital depreciation rate depends on the exogenous state: δh = δh(s). It

is important to keep in mind that there is a formally equivalent formulation of the household

problem in which risk and ex-ante heterogeneity of human capital returns arises because the

productivity of human capital investment depends on s. More precisely, suppose that human

capital evolves according to ht+1 = (1 − δ̄h) + z(st)xt, where z measures the productivity of

human capital investment, that is, the number of goods needed to produce one more unit of

human capital. It is straightforward to see that this formulation and formulation (3) lead to

the same budget constraint if we set z(st) =
[

(1 − δ̄h)z(st−1)
]

[rh(1 − z(st−1) + (1 − δh(st))].
9

Thus, our assumption in Section 6 that expected human capital returns are age-dependent

does not literally mean that depreciation rates are age-dependent. Moreover, our choice of

not imposing non-negativity constraint on human capital investment, which is essential for

our tractability result, is much less severe than suggested by formulation (3). To see the

last point, note that a non-negativity constraint on human capital investment in (3) means

ht+1/ht ≥ 1 − δh(st), whereas in the equivalent formulation with productivity differences it

reads ht+1/ht ≥ 1 − δ̄h. Hence, if s has finite support, then for any solution to the house-

hold problem with budget constraint (3) we can find an equivalent formulation with δ̄h large

enough so that the solution automatically satisfies the non-negativity constraint on human

capital investment.

4. Equilibrium Characterization

In this section, we show that recursive equilibria can be found without knowledge of the

9For this equivalence result to hold, we have to change the definition of returns and total wealth ac-
cordingly, and the portfolio choices in the denominator of the market clearing condition (13) have to be
multiplied by z.
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endogenous wealth distribution and provide a convenient characterization of recursive equi-

libria as the solution to a finite-dimensional fixed-point problem. This characterization of

recursive equilibria is then used for the subsequent analysis.

4.1. Household Problem

Denote total wealth (human plus financial) of a household at the beginning of the pe-

riod by xt = ht +
∑

s at(s)q(s). Further, denote the portfolio shares by θht = ht/xt and

θat(st) = at(st)/xt, and the total investment return by 1 + rt = (1 + rh − δh(st))θht + θat(st).

Using this notation, the budget constraint (3) becomes

xt+1 = (1 + r(θt, st))xt − ct

1 = θh,t+1 +
∑

st+1

q(st+1|st)θa,t+1(st+1) (8)

ct ≥ 0 , xt+1 ≥ 0 , θh,t+1 ≥ 0 .

Clearly, (8) is the budget constraint corresponding to an inter-temporal portfolio choice

problem with linear investment opportunities and no exogenous source of income. It also

suggest that (x, θ, s) is the relevant state variable for the recursive formulation of the utility

maximization problem. More specifically, the Bellman equation associated with the utility

maximization problem of a household facing the budget constraint (8) and the sequential

enforcement constraint (4) reads:

V (x, θ, s) = max
c,x′,θ′

{

ln c + β
∑

s′

ν(s′)V (x′, θ′, s′) π(s′|s)

}

(9)

s.t. x′ = (1 + r(θ, s))x − c

1 = θ′h +
∑

s′

q(s′|s)θ′a(s
′)

c ≥ 0 , x′ ≥ 0 , θ′h ≥ 0

V (x′, θ, s′) ≥ Vd(x
′, θ, s′) ,

In contrast to the standard case without participation constraint, the Bellman equation (9)

may have multiple solutions. However, in the Appendix we show that there is a maximal
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solution to (9), and this solution is also the value function of the corresponding utility

maximization problem.

In the applications in Sections 5 and 6, we consider cases in which the exogenous state

has several components, st = (s1t, . . . , snt), and only the first component, s1t (age, abil-

ity), exhibits serial correlation (predictive power), whereas the remaining components are

independently distributed over time. With this application in mind, let us assume that

π(st+1|st) = π(st+1|s1t). We further assume that the expected value function is logarithmic.

In this case, it is well-known that the default consumption policy function is linear in total

wealth and that the default value function is logarithmic (see Appendix for details), that is,

the optimal policy function is

c(x, θ, s) = (1 − β)(1 + r(θ, s))x (10)

θ′(x, θ, s) = θ′(s1)

x′(x, θ, s) = β(1 + r(θ, s))x .

and the corresponding value function is given by

V (x, θ, s) = Ṽ (s1) +
1

1 − β
[ln x + ln (1 + r(θ, s))] , (11)

The intensive-form value function, Ṽ , and the optimal portfolio choices, θ′, are the solution

to

Ṽ (s1) = ln(1 − β) +
β

1 − β
lnβ +

β

1 − β

∑

s′

ln(1 + r(θ′(s1), s
′))π(s′|s1) + β

∑

s′
1

Ṽ (s′1)π(s′1|s1)

and

θ′(s1) = arg max
θ′∈Γ(s1)

∑

s′

ln(1 + r(θ′, s′))π(s′|s1) (12)

Γ(s1)
.
=

{

θ′
∣

∣

∣

∣

∣

θ′h +
∑

s′

θ′a(s
′)π(s′|s1)

1 + rk − δk

= 1 , θ′h ≥ 0 ,

Ṽ (s1) +
1

1 − β
ln(1 + r(θ′h, θ

′
a(s

′), s′)) ≥ Ṽd(s1) +
1

1 − β
ln(1 + rd(θ

′
h, s

′))

}

.
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Note that the intensive-form value function, Ṽ , and optimal portfolio choices, θ, only depend

on the component of s that has predictive power (serial correlation), that is, Ṽ and θ are

independent of any i.i.d. component.

Proposition 1. Suppose that the expected value function, V e, is logarithmic. Then the

default value function, Vd, is logarithmic. Further, the value function, V , is logarithmic, that

is, it has the functional form (11) and the optimal policy function is given by (10), where

optimal portfolio choices and intensive-form value function are determined by the solution

to (12).

Proof : See Appendix.

Remark 1 The participation constraint in the maximization problem (12) is linear since the

investment return, r, is linear in the portfolio choice, θ. Thus, the choice set in the maxi-

mization problem in is convex, and the non-convexity problem alluded to in the introduction

has been solved in the context of the current model.

4.2. Intensive-form equilibrium

Define the share of aggregate total wealth of households of age s1 as

Ω(s1t)
.
=

E [(1 + rt)xt|s1t] π(s1t)

E[xt]

Note that (1+rt)xt is total wealth of an individual household after assets have paid off (after

production and depreciation has been taken into account). Note also that
∑

s1t
Ω(s1t) =

1. Further, Ω is finite-dimensional, whereas the set of distributions over (x, s) is infinite-

dimensional. Using the definition of wealth shares and the property that portfolio choices

are wealth-independent, in the Appendix we show that the market clearing condition (7) is

equivalent to the intensive-form market clearing condition

K̃ =

∑

s1
(1 − θh(s1))Ω(s1)

∑

s1
θh(s1)Ω(s1)

. (13)
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Further, in the Appendix we also show that the stationarity condition for Ω is given by

Ω(s′1) =

∑

s1
(1 + r̄(s1, s

′
1))Ω(s1)

∑

s1,s′
1
(1 + r̄(s1, s

′
1))Ω(s1)

, (14)

where we defined the expected investment return conditional on current and future age, s1

and s′1, as r̄(s1, s
′
1) =

∑

s′
−1

r(θ(s1), s
′)π(s′|s1) with s−1 = (s2, . . . , sn). Note that π(s′|s1) =

π(s′|s′1)π(s′1|s1), which is the expression used in most applications.

In sum, we have

Proposition 2. Suppose that (θ, Ṽ , K̃, Ω) is a stationary intensive-form equilibrium, that

is, the portfolio choice θ together with the intensive-form value function Ṽ are the solution to

(12), the intensive-form market clearing condition (13) holds, and Ω satisfies the stationarity

condition (14). Then (g, Ṽ , K̃, {µt}) is a stationary recursive (balanced growth) equilibrium,

where g is the individual policy function defined by (10) and {µt} is the sequence of measures

recursively defined by µ0, g, and π.

Proof . See the Appendix.

Remark 2 Proposition 2 shows that the equilibrium can be found without knowledge of the

infinite-dimensional wealth distribution – only the lower dimensional distribution Ω matters.

Proposition 2 in conjunction with the characterization of the household problem stated in

proposition 1 show that the model is highly tractable.

5. Example

5.1 Set-Up

In this section, we confine attention to an economy with exogenous state st = (s1t, s2t, s3t),

where the first component denotes the type of the household (age, ability), the second compo-

nent represents human capital risk (health risk, labor market risk), and the third component

determines whether the household is alive. Note that the type of mortality risk analyzed in

Section 6, namely that a member of a multi-person household dies but the household con-
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tinues to exist, amounts to a shock to the human capital stock of a household and therefore

enters the household decision problem through the second component, s2t. We assume that

the first component can take on two values, s1t ∈ {l, h} (low and high human capital returns),

and is fully persistent: π(s1,t+1|s1t) = 1 if s1,t+1 = s1t and π(s1,t+1|s1t) = 0 otherwise. We

further assume that human capital risk is an i.i.d. random variable, π(s2,t+1|s2t) = π(s2,t+1),

with two-state support, s2t ∈ {b, g} (bad and good shock). The human capital depreciation

rate of a household of type s1 with shock s2 is given by δh(s1, s2) = δ̄h(s1) + η(s2). We

assume that the mean depreciation rate for the low-return household is high, δ̄h(l) > δ̄h(h),

and that human capital shocks have mean 0: η(b) > 0 and η(g) = −η(b)π(b)/π(g) < 0.

The third component takes on two values, s3t ∈ {n, d}, corresponding to death, s3t = d, or

no-death, s3t = n, of the household. We assume that death of the household is an absorbing

state, π(s3,t+1 = d|s3t = d) = 1, and denote the probability of death of a household by

pd = π(s3,t+1 = d|s3t = n), and normalize the utility in the death state to zero: ν(d) = 0. Fi-

nally, we assume that defaulting households are not excluded form financial markets: p = 1,

which rules out short positions in financial assets (see Appendix).

5.2 Consumption and Insurance

Using the policy function (10) of our equilibrium characterization result, we find that con-

sumption growth is given by:

ct+1

ct

= β̃(1 + r(θ(s1), s2,t+1)) (15)

= β̃
(

θh(s1)
(

1 + rh − δ̄h(s1) − η(s2,t+1)
)

+ θa(s1, s2,t+1)
)

with an effective discount factor β̃ = β(1 − pd). Consumption growth depends on human

capital choice, θh(s1), ex-ante human capital returns, rh − δ̄h(s1), ex-post shocks, η(s2,t+1),

and asset payoffs (insurance), θa(s1, s2,t+1).

Consider now a bad human capital shock of size η(b). Note that η(b) is the percentage of

human capital lost, which equals the percentage drop in permanent income. We define the

consumption drop associated with this drop in permanent income as the difference between
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the percentage decline in consumption and the mean consumption growth rate (conditional

on type). Using (15), we find

consumption drop = β̃ (η(b) θh(s1) − (θa(s1, b) −E[θa|s1])) , (16)

where E[θa|s1] = π(b)θa(s1, b) + π(g)θa(s1, g) is the mean holding of financial assets of a

household of type s1. Note that η(b)θh is the human capital loss as a fraction of total

wealth, x, and θa(s1, b) − E[θa|s1] is the insurance pay-out as a fraction of total wealth.

When these two terms are equal, we have full insurance and the consumption drop is nil.

When there is no insurance pay-out, the consumption drop is β̃η(b)θh(s1), which is less than

the original drop in permanent income, η(b)θh(s1), as long as β̃ < 1. In this sense, there is

self-insurance in the model.

In this paper, we consider two measures of insurance. Both capture the degree to which

households insure against human capital risk by purchasing insurance contracts.10 Our

first insurance measure is defined as the fraction of the income loss that is insured. More

precisely, we define it as the ratio of the insurance pay-out in the case of a bad shock,

(θa(s1, b) − E[θa|s1])x, to the associated human capital loss, η(b) θh(s1)x:

I1(s1)
.
=

θa(s1, b)− E[θa|s1]

η(b) θh(s1)
.

The insurance measure I1 varies between 0 if θa(s1, b) = E[θa|s1], in which case we have no

insurance, and 1 if θa(s1, b) −E[θa|s1] = η θh(s1).

Our second measure of insurance is based on the idea that insurance reduces consumption

volatility, where volatility is measured by the standard deviation of consumption growth.

More precisely, we define

I2(s1)
.
= 1 −

σ [ct+1/ct|s1]

σ [ca,t+1/ca,t|s1]
,

10Blundell et al (2008) introduce an insurance coefficient that measures the extent to which consumption
responds to income shocks. Clearly, their measure captures consumption insurance through self-insurance
and the explicit purchase of insurance contracts, whereas our approach confines attention to the latter
channel.
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where σ [ct+1/ct|s1] is the standard deviation of equilibrium consumption growth and σ [ca,t+1/ca,t|s1]

is the standard deviation of consumption growth in financial autarky. Note that consump-

tion growth in financial autarky is simply given by (15) with θs(s1, s2,t+1) = 0. If we assume

a symmetric shock distribution, π(b) = π(g) = 1/2, we can show that the insurance measure

I2 varies between 0 and 1.

Proposition 3. Consider the simple economy described above. In equilibrium, household

with high ex-ante human capital returns, s1 = h, invest more in human capital and have less

insurance than low-return households, s1 = l:

θh(h) ≥ θh(l)

I1(h) ≤ I1(l)

I2(h) ≤ I2(l)

where the last inequality, I2(h) ≤ I2(l), holds under the additional assumption of a symmetric

shock distribution. The inequalities are strict if in equilibrium there is some insurance, but

not full insurance.

6. Quantitative Analysis

Section 6.1 lays out the framework used for the quantitative analysis and Section 6.2

discusses the data. In Section 6.3 we outline our calibration strategy and provide a survey of

the relevant empirical literature. Section 6.4 briefly discusses our computational approach of

equilibria, with most of the details are relegated to the Appendix. In Section 6.5 we present

the main equilibrium implications, in particular the model’s implications for the life-cycle

profile of human capital investment and insurance. Section 6.6 considers an extension of the

model with risk heterogeneity and Section 6.7 analyzes a version of the model without the life-

cycle. Section 6.8 presents our policy experiment, namely a reform of the bankruptcy code.

We also conducted an extensive sensitivity analysis with respect to the main parameters

of the model, but do not report the results here because of space limitations – details are
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available on request.

6.1 Set-Up

In this section, we consider a version of the model with ex-ante heterogeneity in human

capital returns due to age-differences. We further focus on two types of human capital risk:

mortality risk and labor market risk. The mortality risk we have in mind is the risk that

an adult member of a multi-person household dies and the household continues to exists,

leading to a loss in human capital and labor income available to the household (measured

in equivalence units that adjust for the change in household-size). Labor market risk refers,

for example, to the loss of firm- or occupation-specific human capital in the case of job

displacement. Internal promotions and upward movement in the labor market provide two

examples of positive human capital “shocks” related to the labor market.

We let the length of a time period be one year and consider a version of the general

framework with exogenous state st = (s1t, s2t, s3t). The first component of st denotes

age, the second component represents mortality risk discussed above, and the third com-

ponent subsumes all of labor market risk. We assume that the second and third compo-

nent, s2 and s3, are independently distributed over time, but allow for an age-dependence

of the distribution: π(s2,t+1, s3,t+1|s2,t, s3,t) = π(s2,t+1, s3,t+1) and π(s2t, s3t|s1t) = π(s2t|s1t) ∗

π(s3t|s1t) 6= π(s2t)∗π(s3t). The age-component can take on the values s1t ∈ {23, . . . , 60, pre−

retirement, retirement, death}. From age 23 to 60, the household is working and the tran-

sition from one age-group to the next is deterministic: π(j + 1|j) = 1 for j = 23, . . . , 60.

Households in pre-retirement age also work, but the duration of this phase of life ends

stochastically with retirement. The retirement probability is chosen so that retirement oc-

curs on average at age 65. Finally, retired households die stochastically, in which case they

have reached the absorbing state s1t = death and are replaced by a new-born household of

age 23. For the preference shifter in (2) we assume ν(s1 = death) = 0 and ν(s1) = 1 for all

s1 6= death.
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We assume that the human capital depreciation rate can be decomposed as follows:

δh(s1t, s2t, s3t) = δ̄h(s1t) + η(s1, s2t) + ξ(s3t). The age-dependent mean, δ̄h(s1t), determines

the expected human capital return of a household of age s1 through rh − δ̄h(s1). We use

a parsimonious specification for the life-cycle schedule and assume that the function δ̄h(.)

is a fourth-order polynomial. We assume that the second term can take on two values,

s2t ∈ {b, g}, where s2t = b denotes the bad shock that a member of the household dies and

s2t = g denotes the good shock that the death-event does not occur. We assume that the

size of the human capital loss if s2t = b is independent of age: η(s1, b) = η(b). However, we

allow the death probabilities to be age-dependent, and choose the realizations η(s1, g) < 0

so that η is a random variable with mean zero.

Finally, ξ(s3) represents labor market risk. We assume that the human capital shocks due

to labor market risk are log-normally distributed, ln(1+rh−δ̄h(s1)+ξ) ∼ N(µ(s1)−σ2/2, σ2).

The assumption that human capital shocks are independently and log-normally distributed

is also made by Huggett et al. (2011). In our setting, it has the advantage that it leads to

a stochastic process of earnings that is consistent with the specification of a large number

of empirical papers on labor market risk (see below). Note that the mean of human capital

returns is increasing in µ and independent of σ, whereas the variance of human capital

returns is independent of µ and increasing in σ.11

Our choice to match the basic life-cycle facts only up to age 60 follows Huggett et al.

(2011) and is motivated by several considerations. First, the number of households for each

age-group in our SCF-sample drops rapidly after age 60. Second, labor force participation

falls near the traditional retirement age for reasons that are not modelled here. Third, the

closer we get to the traditional retirement age, the more important non-negativity constraints

on human capital investment become. By fitting the empirical life-cycle of earnings and

wealth only up to age 60 and introducing a transition-group of households with stochastic

11More specifically, we have 1 + rh − δ̄h(s1) = eµ(s1) and var[rh − δ̄h(s1) + ξ|s1] = var[ξ|s1] =

e2µ(s1)+σ2

(

eσ2

− 1
)

.
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retirement, we can ensure that for the calibrated model economy the optimal choice of human

capital investment is non-negative over the entire life-cycle.

We assume a Cobb-Douglas aggregate production function, f(k̃) = AK̃α. The computa-

tion of equilibria is based on the characterization results in proposition 1 and proposition 2.

See the Appendix for more details on our computational approach.

6.2 Data

Data on earnings, financial wealth, and life-insurance are drawn from the 6 surveys of the

Survey of Consumer Finance (SCF) conducted between 1992 and 2007. In the Appendix,

we discuss in more detail the data, definition of variables, and sample selection. Here we

only mention that the survey provides information about ”families” corresponding to our

concept of a household, and that we include single-person households as well as multi-person

households in our basic sample. However, we also considered the the sub-sample of multi-

person households, but the results for the empirical life-cycle profile of earnings, earnings

growth, and wealth-to-earnings ratio were almost unchanged. For the case of life-insurance,

we discuss below (Section 6.5.4) the effect of sample selection criteria on the empirical life-

cycle profile. Household age refers to the age of the household head. The model variable

”financial wealth” is associated with the variable ”net worth” in the SCF, which is the value

of all assets (excluding human capital) minus the value of all debt.

Our life-cycle profiles of earnings and earnings growth in Figures 1 and 2 are constructed

as follows. We first compute median household earnings for each age group and survey

(calendar time) using a centered 5-year age bin, and then remove possible time effects using

time dummies as in Huggett et al. (2011).12 This gives us a life-cycle profile of median

earnings, which we smooth using a third-order polynomial. Finally, we compute from this

smoothed life-cycle profile of median earnings a life-cycle profile of earnings growth rates.

For the life-cycle of ratio variables plotted in Figure 3 (wealth-to-earnings ratio) and Figure

12We have also used cohort-dummies, with similar results.
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7 (ratio of insurance face value to income loss), we compute the median of the ratio variable,

but the results are very similar when computing the ratio of the median of the respective

variables.

6.3 Calibration

We now discuss the targets used to calibrate the model and the resulting parameter values.

6.3.1 Bankruptcy Code

We assume that bankruptcy leads to an exclusion from financial markets for 7 years, but

no loss of earnings, p = 1/7 and τh = 0. In comparison, Chatterjee et al. (2007) use

p = 1/10 and τh = 0, and Livshits et al. (2007) choose no exclusion period beyond the

period of default, but also introduce additional cost of bankruptcy. In all these papers,

there are no insurance markets, and therefore no cost of bankruptcy that relates to the

loss of access to insurance markets. In contrast, we assume that households in default are

excluded from participation in credit and insurance markets, and in this sense we assume a

harsher punishment of default than the previous literature. Krueger and Perri (2006) assume

p = +∞ for technical reasons, but also allow defaulting households to save.13

6.3.2 Mortality Risk

We calibrate the first component of human capital risk, η, as follows. We choose the proba-

bility that an adult member of the household dies so that we match the year-to-year average

survival rates for the period 1991-2000 for the US life-tables for the respective age-group.

The size of the negative human capital shock in the case of the death of a household member

is set to η(b) = 0.20, that is, 20 percent of the human capital of a household is lost.

A value of η(b) = 0.20 is in line with the evidence presented in Weaver (2010), who

13Our model abstracts from a number of aspects of consumer default, and calibration of the parameter
p is therefore subject to a fair amount of uncertainty. In this sense, one could argue that p, respectively
τh, should be treated as a free parameter that is chosen to match a particular dimension of the data, an
approach taken by Livshits et al. (2007).
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reports projections based on a micro-simulation model. More specifically, Weaver (2010)

reports that the median of the of the ratio of income of a widow to income of the couple

before widowhood is expected to be between 0.61 and 0.63 depending on the birth cohort,

where income includes social security payments but excludes any asset income (see table 6

in Weaver (2010)).14 Given that the current paper deals with insurance provided by private

markets, it seems reasonable to use as target the income loss after social security payments

(public transfer payments) have been taken into account. Based on the equivalence scale

used for the official US poverty threshold, a household of size n− 1 needs 78% of the income

of an n-person household independent of household size n. Thus, an income value of .62

translates into an equivalent income of 0.62/0.78 = 0.80 of the income before widowhood,

which amounts to an effective income drop of 20 percent.

There are two reasons why the value of 20 percent overstates the effective income loss for

the typical household. First, Weaver (2010) and related studies focus on a group of house-

holds for which the surviving adult satisfies the eligibility requirements for Social Security

widow benefits, a group that is more at risk than the typical US household. Second, by

using the Official US Equivalence Scale, we have used equivalence weights that lead to the

largest decline in living standard for the same drop in family income. For example, if we use

the OECD Equivalence Weights, the implied drop in effective income is significantly smaller

that 20 percent.

6.3.3 Labor Market Risk

In our baseline calibration, we choose the value of the variance parameter, σ2, of the second

component of human capital risk, ξ, based on the estimation results reported in Huggett

et al. (2011), who find σ2 = 0.0123 (a standard deviation of .11). To see how the model’s

earnings process with σ2 = 0.0123 relates to the empirical findings of the extensive literature

on labor market risk, note that labor income is given by yht = rhht. Thus, earnings growth

14Holden and Brand (2003) find an income drop of very similar magnitude based on a sample of widowed
women in the PSID data.
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rates are equal to human capital growth rates: yh,t+1/yh1 = ht+1/ht. Changes in human

capital, in turn, can be computed using the optimal policy (10) leading to

ht+1

ht

=
θh,t+1

θh,t

xt+1

xt

(17)

=
θh,t+1

θh,t

β(1 + r(θt, st))

If θh is close to one, which is the case for young households, then we can use the approx-

imation 1 + r(θ, s) ≈ 1 + rh − δh(s). In this case, we find:

ln yh,t+1 − lnyht = gt + ǫt (18)

Thus, log-labor income follows a random walk with age-dependent drift, gt = ln
θh,t+1

θh,t
+lnβ+

µt −
σ2

2
, and stochastic innovation term ǫt ∼ N(0, σ2).15 The random walk specification is

often used by the empirical literature to model the permanent component of labor income risk

with the additional assumption that the innovation term is normally distributed. Estimates

of the variance of this innovation term, σ2, usually range from .0225 (Carroll and Samwick

(1997)) to .0361 (Meghir and Pistaferri (2004)) up to .0625 (Storesletten et al. (2004)), where

we averaged over age-groups and, if applicable, over business cycle conditions. However,

these values will overstate the true value of σ2 if there is earnings profile heterogeneity in

addition to stochastic shocks with a permanent component, which is the reason why we

follow Huggett et al. (2011) and use the smaller value of σ2 = 0.0123.16

Inference about the parameters governing labor market risk crucially depends on the

15We have ǫt instead of ǫt+1 in equation (18), and the latter is the common specification for a random
walk. However, this is not a problem if the econometrician observes the idiosyncratic depreciation shocks
with a one-period lag. In this case, (18) is the correct equation from the household’s point of view, but a
modified version of (18) with ǫt+1 replacing ǫt is the specification estimated by the econometrician.

16There are also reasons why the model might understate the true amount of human capital risk. For
example, if we use ln(1+r(θ, s)) instead of ln(1+rh−δht) in (18), we would need to choose a higher value for
σ2 to match the same variance of labor income changes (see also Krebs, 2003). Further, the assumption that
earnings innovations are (log)-normally distributed is likely to understate the true amount of human capital
risk if, as the evidence indicates (Geweke and Keane, 2000), the actual distribution of earnings innovations
has a fat lower tail.
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degree to which life-cycle profiles of earnings are heterogeneous. More specifcally, the em-

pirical literature on labor income risk can be broadly divided into two strands: one that,

after controlling for observable characteristics, assumes that income profiles are homoge-

neous (MacCurdy (1982)) and one that assumes heterogeneity of income profiles (Lillard

and Weiss (1979)). The first strand usually finds a large random walk component or at least

a highly persistent component close to a random walk, whereas the second strand often finds

that the estimated persistence parameter significantly differs from the random walk speci-

fication. For example, Guvenen (2007) finds that the estimated auto-correlation coefficient

drops from 0.988 to 0.821 after income heterogeneity has been taken into account. However,

based on Monte Carlo simulations, Hryshko (2009) finds that the random walk hypothesis

cannot be rejected. Meghir and Pistaferri (2010) suggest that these two theories might not

be mutually exclusive: when Baker and Solon (2003) estimate the parameters of a general-

ized earnings process that allows for profile heterogeneity, a random walk component, and a

transitory component modeled as an AR(1), they find that the variance of the random walk

component is precisely estimated and substantial, though smaller than the estimate when

no earnings profile heterogeneity is allowed.

6.3.4 Expected Returns

We use an annual risk-free rate of rf = 3%. In comparison, Kaplan and Violante (2010)

choose the same value and Huggett et al. (2011) and Krueger and Perri (2006) choose an

annual risk-free rate of four percent, but also allow for capital income taxation.17 We use the

observed life-cycle profile of mean earnings to infer the life-cycle profile of expected human

capital returns as follows.

Taking the conditional expectations in (17), we find

E

[

ht+1

ht

|s1t, s1,t−1

]

=
θh(s1t)

θh(s1,t−1)
β

(

1 + θh(s1,t−1)(rh − δ̄h(s1,t−1)) + (1 − θh(s1,t−1))rf

)

(19)

17Using real financial returns as a proxy for physical capital returns, anything between 1% (T-bills) and
7 % (stocks) seems defensible and has been used in the literature.
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For given portfolio choice, (19) shows that an increase in expected human capital return,

rh − δ̄h(s1), increases the earnings growth rate. For our calibrated model economy, this

relationship still holds once we take into account the endogenous response of the portfolio

choice. Thus, we can use (19) in conjunction with the life-cycle profile of earnings growth

to identify the life-cycle profile of expected human capital returns, which is the approach

taken here. More precisely, we choose the coefficients of the fourth-order polynomial δ̄h(.) in

order to minimize the distance (L2-norm) between the empirical life-cycle of median earnings

growth from age 23 to age 60 and the corresponding model prediction.18 Figures 1 and 2

show the life-cycle profile of median earnings and median earnings growth in the data and

according to the model, where the match between data and model is almost perfect even

though we restricted the depreciation schedule to a fourth-order polynomial. Note that our

life-cycle profile of median earnings is very similar to the life-cycle reported in Huggett et

al. (2011), who use individual earnings data drawn from the PSID.

By drawing inference about human capital returns from the life-cycle profile of median

earnings, we follow a long tradition in human capital theory. In most of the previous work,

for example Porath (1967) and more recently Huggett et al. (2011), human capital returns

decline with age because there are diminishing returns at the micro-level and the level of

human capital is increasing with age. In contrast, in our approach human capital returns are

decreasing with age because human capital investment is less productive for older households.

In either approach, however, young households have a very strong incentive to invest in

human capital since the expected returns to this investment are high.

6.4.5 Preferences and Production

We follow Huggett et al. (2011) and assume a capital share in output, α, of .32. We

choose the remaining parameters β (annual discount factor), A (productivity), δk (capital

depreciation rate), and pd (probability of death of retired household) so that we match given

18The depreciation rate for households in the transition period, δ̄h(pre−retirement), is chosen to be equal
to the implied depreciation rate for a households age 62.5.
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values of i) the aggregate capital-to-output ratio, ii) the real interest rate, iii) the life-cycle

average of the median of the ratio of financial wealth to labor income for the age-group

23 − 60, and iv) the average human capital return for the age group 23 − 60. For the

aggregate capital-to-output ratio, we follow Huggett et al. (2011) and use a value of 2.95.

The average of the median of the ratio of financial wealth to labor income in the data is

equal to 2.5 for the age-group 23 − 60. For the real interest rate we use 3 percent and for

the average human capital return a value of 6 percent.

6.4 Computation

The computation of equilibria is based on proposition 2, that is, we compute intensive-form

stationary recursive equilibria. To do this, we start with an aggregate capital-to-labor ratio,

K̃, which defines the rental rates rk and rh, and solve the intensive-form household problem

(12). Given the solution to the household problem, we compute a stationary relative wealth

distribution, Ω, using (14). We use this Ω to compute a new K̃ and iterate over K̃ until

the market clearing condition (13) holds. A detailed description of our solution method for

solving the household problem (12) can be found in the Appendix.

6.5 Results: Life-Cycle Implications

6.5.1 Portfolio Choice

The portfolio mix between human and financial capital is measured by θh, the fraction of

total wealth invested in human capital. Empirically, we can measure (net) financial wealth

and the payoff to human capital holdings, namely labor income. Thus, we use the ratio

of financial wealth to labor income, which in the model is given by 1−θh

rhθh
, as our empirical

measure of the portfolio choice of a households. Figure 3 shows the life-cycle profile of this

ratio in the SCF data and according to the model. Clearly, the model provides a very good

account of the this dimension of the data. In particular, the model matches well the observed

increase in financial wealth relative to human wealth over the life-cycle, even though it has

not been calibrated to match this target. In other words, one basic prediction of the theory,
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namely that households with high expected human capital returns should be heavily invested

in human capital, is qualitatively and quantitatively supported by the empirical evidence.

6.5.2 Consumption Insurance

We first consider the model’s implication for the life-cycle variation of consumption insur-

ance based on the insurance measure I2 = 1 − σc/σc,a (see our definition in Section 5). The

figure shows that insurance increases substantially with age. For example, the value of this

insurance measure begins at 0.24 for households age 23 and increases to 0.81 for households

age 60. Further, the lack of consumption insurance for young households is significant in

welfare terms. To see this, we plot in Figure 5 the welfare consequences of this lack of insur-

ance. More precisely, for each age group we compute the welfare gain of removing/insuring

all risk assuming that the mean level of consumption remains the same, that is, we keep

the portfolio choices fixed. The welfare gains shown in Figure 5 are expressed in percentage

of lifetime consumption (consumption equivalent variation). Clearly, these gains are sub-

stantial. For example, for a household age 23 the welfare gain from perfect consumption

insurance is about 4% of lifetime consumption. In comparison, Lucas (2003) finds, for the

same preferences, welfare cost of aggregate consumption fluctuations that are less than 0.1

percent of lifetime consumption. In other words, the welfare cost of under-insurance of id-

iosyncratic human capital risk in our current heterogeneous-agent model are much larger

than the cost of business cycle fluctuations in a corresponding representative-agent model.

6.5.3 Consumption Inequality

Here we compare the model’s implication for consumption dispersion over the life-cycle

with the pattern found in the US data. Figure 6 plots the variance of log adult-equivalent

consumption in the US data (Consumer Expenditure Survey) from three studies, Aguiar

and Hurst (2008), Deaton and Paxson (1994), and Primciceri and van Rens (2009), and the

corresponding variance implied by the model. The figure shows that the model captures

the increase in consumption dispersion observed in the data. Indeed, the model matches
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quite well the estimates of consumption dispersion reported by Aguiar and Hurst (2008), in

particular the concave shape of the life-cycle profile of consumption dispersion. Note that

these estimates are very similar to the one found in Heathcote et al. (2010).

The theoretical life-cycle profile of consumption dispersion depicted in Figure 6 is very

similar to the life-cycle profile implied by the incomplete-market model analyzed in Huggett

et al. (2010). In other words, the two human capital models, one with exogenous incomplete

markets and one with complete markets and endogenous borrowing constraints, make very

similar prediction with respect to this particular dimension of the data. We now turn to the

analysis of another dimension of the data that is more informative for distinguishing between

these two approaches, namely the purchase of life insurance contracts. By construction,the

standard incomplete market model is silent about this dimension of the data, whereas the

limited enforcement model makes a sharp prediction about the relationship between risk

exposure and purchase of insurance contracts.

6.5.4 Life Insurance

Consider the event ”death of a household member”. As in the example of Section 5, we

define a measure of insurance as the ratio of insurance pay-out to income loss, I1. How-

ever, in the current version of the model, we also have labor market risk, and we there-

fore average over human capital shocks due to labor market risk by using E[θa|s1, s2 =

b] − E[θa|s1] in the numerator of I1. In order to construct an empirical proxy for I1, note

that (E[θa|s1, s2 = b] − E[θa|s1])x is the value of insurance pay-outs in the case of death,

and η(b)θh(s1)x is the value of the human capital loss. In the SCF data, we have detailed

information about the size of the life insurance holdings and the corresponding insurance

pay-out in the case of death (the face value of the contract), which provides us with an esti-

mate of (E[θa|s1, s2 = b] − E[θa|s1])x. For the human capital loss, η(b)θh(s1)x , we compute

a measure of the present value of labor income lost as the product of current labor income,

times a present value factor, times our value for η(b). The present value factor, in turn,

is defined as the present value of one dollar that grows according to the life-cycle profile
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of median earnings depicted in Figure 1, where we use the inter-temporal marginal rate of

substitution, β̃ (ct+1/ct)
−1, of the relevant age-group to discount future earnings.

In Figure 7 we show the life-cycle variation of the insurance measure I1 in the data

and according to the model. For the data, we show the insurance measure for two different

samples: one sample including all households and one sample that is restricted to households

that have purchased some life insurance. Clearly, in the data this insurance measure increases

with age, where the increase in much more pronounced for the sample of all households.

The model also generates a substantial increase of insurance with age and fits the data

almost perfectly when we restrict ourselves to the sample of households with some life-

insurance. However, for the sample of all households, the slope is much steeper than the slope

predicted by the model. In other words, insurance purchase has an extensive margin and an

intensive margin, and the data indicate that both margins are important for understanding

life insurance. The model predicts very well the intensive margin, but it misses the extensive

margin since in the equilibrium of the model all households purchase a positive amount of

life insurance.

We have considered various changes in our sample selection criteria to analyze the ro-

bustness of our empirical result. For example, we restricted the sample to multi-person

households and multi-person households with children, and also conditioned on education.

Figure 8 shows the results and reveals the robustness of two important features of the data:

insurance increases with age and this increase is much stronger if we do not condition on

participation in the insurance market. Further, the slopes of the life-cycle plots are surpris-

ingly similar for the sample of all households, the sample of multi-person households, and the

sample of multi-person households with children. In other words, multi-person households

with children are better insured than single-person households, but the increase of insurance

with age is not so different from the increase observed for single-person households. The

results for education are very similar and not shown here. Finally, we used different ways of

computing the present value of lost earnings. For example, we used different values of η(b)
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and also the risk-free rate to discount future earnings. The former had mainly the effect of

shifting the age-insurance profile and the ladder of making the profile steeper.

To better understand the extensive margin in the data, we plot in Figure 9 the life-

cycle pattern of the participation rate in the life-insurance market, that is, the fraction of

households who have purchased some life-insurance. Figure 9 shows that participation rates

increase until around age 45 and and remain roughly constant. Further, the initial increase

in the participation rate is substantial. In the next section, we consider an extension of

the model that incorporates this extensive margin and replicates the pattern of insurance for

both the sample of all households and the sample of households that hold some life-insurance.

6.6 Extension: Heterogeneity in Mortality Risk

Our previous analysis of mortality risk allows for age-dependent death probabilities, but

assumes that the size of the income loss, η(b), is the same for all households independent of

age or other characteristics. In this section, we introduce heterogeneity in these income losses.

For example, effective income losses in the event “death of a household member” depend on

family structure, and that family structure may change. More formally, we assume that that

of all the households with a head aged 23, a fraction (1 − π(23)) have a value η(b) = 0 and

the remaining π(23) households have a value η(b) that is drawn from a uniform distribution

with support [η1, η2], where η1 > 0. Households with η(b) > 0 buy life-insurance, and π(23)

is therefore the participation rate of households age 23. This age-dependent participation

rate, π(age), increases with age for the following reason. Households who have η(b) > 0 will

keep their value until retirement, but for households with η(b) = 0, there is a positive (and

generally age-dependent) probability in each period that they draw a new value η(b) > 0

from the uniform distribution with support [η1, η2], and then keep that new value forever.

The heterogeneity in mortality risk introduces an additional source of heterogeneity in

household choice. More precisely, the current portfolio choice of an individual household,

θ, now depends on current age and the current value of η(b). Keeping in mind that there
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are now two components of the exogenous state that have predictive power, the definition

of stationary recursive equilibrium of Section 4 can be applied without modification.19

We calibrate the underlying parameters of the distribution of mortality risk as follows.

The median value of η(b) for the sample of households who participate in the insurance

market is simply the median value of the given uniform distribution: ηm,p = .5∗(η2−η1)+η1.

We require this median value to be 0.2 as in the previous calibration. The median value

of η(b) for the entire sample of all households is given by ηm,all(age) = (π(age) − 0.5) ∗

(η2 − η1) + η1. Note that the former median value is independent of age, whereas the

latter increases with age. The function π = π(age) can be estimated from our data on

participation rates in the life-insurance market (see Figure 9). Using this function and the

restriction .5∗(η2−η1)+η1 = 0.2, we find the following formula: ηm,all(age) = .4∗π(age)+ η̄,

where η̄ is a constant that depends on the underlying distributional parameters. We choose

η̄ to match the life insurance of households age 25 in the data. All other calibration targets

are chosen as in the previous analysis.

The results can be summarized as follows. The choices of individual households with

respect to their portfolio holdings and insurance of labor market risk are only mildly affected

by differences in η(b). As a result, the implications of the calibrated model economy with

additional heterogeneity in mortality risk for the main macroeconomic variables and the

life-cycle profile of human capital investment and consumption insurance (Figures 3-6) are

almost identical to the implications of the benchmark model discussed before. However,

the implications for the life insurance market differ substantially. More specifically, the

extended model implies the same age-insurance relationship for households participating in

the life insurance market, but makes a very different prediction for the entire sample of all

households.

Figure 10 plots the life-cycle profile of the median of life-insurance coverage according

19Formally, we can think of s1 = (s11, s12) in our general formulation of Section 4, with s11 denoting age
and s12 indexing mortality risk.
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to the model and in the data for the two samples of households. It shows that the model

is successful in matching the data for both sets of households, those who participate and

those who do not. Put differently, the extended model matches both the intensive and the

extensive margin of observed choices. Note that our insurance measure has the shock size,

η(b), in the denominator, and that for the one plot (data and model) we use ηm,all(b) = .2

and for the other plot (again data and model) we use ηm,p(age).

6.7 The Importance of the Life-Cycle

Here we present the equilibrium implications of a model without life-cycle variations in

expected human capital returns: δ̄h(s1) = δ̄h. We keep all other assumptions unchanged and

choose the calibration targets as follows. We choose the human capitals shocks, η and ξ, as

before. We choose the parameter value δ̄h to be equal to the mean of δ̄h(s1) in our previous

calibration, which ensures that we have “on average” the same technology for producing

human capital. We choose the remaining parameters β, A, and δk to match i) a real interest

rate of 3%, ii) an aggregate capital-to-labor ratio of 2.95, and iii) an earnings growth rate

that equals the average growth rate of households age 23 to 60 implied by our previous

analysis.

For the calibrated model economy without age-dependent human capital returns, we find

that consumption insurance is close to perfect: I1 = .96 and I2 = .78. Moreover, the

welfare gain from removing all risk, mortality risk and labor market risk, is 0.4 percent of

lifetime consumption. This result underscores the importance of ex-ante heterogeneity for

our analysis. Without this heterogeneity, the consumption and welfare effects of limited

contract enforcement are substantially smaller.

6.8 Reform of Consumer Bankruptcy Regulation

In this section, we analyze the consequences of a policy reform that makes bankruptcy more

costly. Specifically, we consider an experiment in which the bankruptcy code is changed

to make the consequences for a consumer of declaring bankruptcy similar to those for de-
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faults on student loans, which allow for the garnishment of up to 15% of labor income.

That is, as a result of the policy change, τh is increased from zero to 0.15. Other authors

have conducted related policy experiments in models of consumer bankrupcty where access

to insurance markets has been exogenously prohibited and hence where bankrupcty is the

only form of insurance available (for example, Chatterjee et al. 2007 and Livshits et al.

2007). In these worlds, tougher sanctions against consumers declaring bankrupcty restricts

insurance possibilities. By contrast, our focus is on the extent to which access to insurance

will endogenously increase following the imposition of tougher sanctions on consumers in

bankrupcty.

Garnishment of wages in default allows households to borrow more to invest in human

capital, and to buy more insurance against human capital risk. As a result of allowing

garnishment of 15 percent in labor income, there is an increases in aggregate human capital

investment resulting in a very small decline in the returns to human capital investment and

a forty basis point increase in the risk free rate. Everything else equal, this rise in the risk

free rate benefits older households at the expense of the highly leveraged young households.

The growth rate of the economy increases slightly from 1.1 to 1.2 per-cent per year.

Despite the modest aggregate effects of allowing a relatively modest level of wage garnish-

ing, the microeconomic effects of the policy change are often large. Prior to the reform, the

average level of debt to income in our economy averaged 34% for households aged between

23 and 60, which is somewhat larger than the corresponding value of unsecured consumer

debt in the US data, but less than the ratio of consumer debt to income once durable goods

and housing are included. After the policy reform, debt to income levels more than double,

with particularly large increases observed for the youngest households.

The consequences of the policy reform for insurance against human capital risk also vary

significantly across households. As shown in Figure 4, prior to the reform, our measure

of consumption insurance varied from roughly 25% for households with a head aged 23 to

more than 80% for households with heads aged 60. Averaging across these households, our
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consumption insurance measure was 51.3%. Following the policy reform this number rises by

more than ten percent to 57%. Households with a head aged 61 and above were already highly

insured against consumption fluctuations, and so looking at the average across the entire

population aged 23 and above the policy reform produced a rise in the level of consumption

insurance of just under ten per-cent. Similar effects are observed for life insurance.

As a measure of welfare, we compute the equivalent variation of the policy reform mea-

sured in units of lifetime consumption. An unweighted average of these estimates across all

households aged 23 to 60 reveals that welfare increased by 0.63% of lifetime consumption.

Almost the exact same number is found if we compute the (common) change in all house-

holds lifetimes consumption required to generate an equivalent level of population weighted

utilitarian social welfare to that generated under the policy change. Almost all of this gain

in welfare is due to the direct insurance effect, that is, the increases in the growth rate

experiences by most households is so small that its impact on welfare is relatively small.

7. Conclusion

In this paper, we developed a tractable macroeconomic model in which households accumu-

late human capital that is both idiosyncratically risky and non-pledgeable against consumer

debt. We used the framework to analyze the possible causes and consequences of under-

insurance. The results of this paper suggest three lines of future research.

The first concerns the measurement of the extent of insurance against the various forms

of human capital risk. In the paper, we restricted the attention to insurance against one

form of human capital risk – the death of a family member – for three reasons. First, it is

one of the most important – in the sense of a large shock size – forms of human capital risk.

Second, it is a readily quantifiable risk for which other market imperfections, such as adverse

selection, are likely to be less important. Third and finally, it is a type of human capital risk

for which an insurance market exists that has a relatively simple structure. Future research

on the observed lack of insurance against human capital risk needs to quantify the extent of
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under-insurance coming from different sources.

A second line of research concerns the extent of unobserved heterogeneity in returns to

human capital across the population. Heterogeneity of human capital returns due to ability

differences has been central to the work by, among others, Guvenen et al. (2011), Hugget

et al (2011), and Cunha, Heckman, and Navarro (2005). In the current paper, we restricted

attention to differences in returns by age, and argued that this dimension of heterogeneity

can go a long way towards explaining a number of empirical facts about human capital choice

and under-insurance. An important task for future research is to determine the extent to

which additional heterogeneity is important in explaining additional empirical facts about

human capital choice, borrowing, and insurance.

Finally, a third line of research would broaden the the set of assets available to households.

The most important alternative asset is housing, which is also risky and which is, to varying

degrees, partially collateralizable. All else equal, the perceived (utility) rates of return to

housing investment are large, so that access to this asset will further strengthen the results

of this paper: households would like to borrow to invest in housing and human capital, and

these investment opportunities will compete with the need to purchase insurance. To what

extent this effect is offset by the fact that some housing wealth can be used as collateral

against borrowing remains an open quantitative question.
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Figure 1: Life-cycle profile of log labor income
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Notes: Life-cycle profile of median of log labor income for
households age 23-60 from the SCF, surveys 1992-2007. The
red points show the data and the red dashed line a polynomial
fit of the data points.

Figure 3: Life-cycle profile of portfolio choice
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Notes: Life-cycle profile of the median of the ratio of financial
wealth (value of all assets minus value of all debt) relative to
labor income for households age 23-60. The red points show
the data and the blue solid line the model prediction.

Figure 2: Life-cycle profile of labor income growth
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Notes: Life-cycle profile of the growth rate of labor income for
households age 23-60. The red dashed line shows the smoothed
data profile derived from figure 1 and the solid blue line the
model fit.

Figure 4: Life-cycle profile of consumption insur-
ance
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Notes: Life-cycle profile of consumption insurance in the
model. The insurance measure is one minus the ratio of the
standard deviation of consumption in equilibrium relative to
the standard deviation of consumption in financial autarky.



Figure 5: Life-cycle profile of welfare cost of
under-insurance
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Notes: Welfare cost of under-insurance expressed in percent-
age of life-time consumption.

Figure 7: Life-cycle profile of life insurance
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Notes: Life-cycle profile of the ratio of the median value of
life insurance (insurance pay-out) to the median value of the
permanent income loss. The median permanent income loss
in the data is the product of median current income times
present value factor times the fraction of income lost by the
median household, which is assumed to be constant at 20%.
The pink crosses show the data for the entire sample and
the red points for the subsample of households that have
purchased life insurance. The solid blue line is the model
prediction.

Figure 6: Life-cycle profile of consumption in-
equality
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Notes: Life-cycle profile of the cross-sectional variance of con-
sumption. The blue solid line shows the model prediction. The
red points show the profile estimated by Deaton and Paxson
(1994), the green circles are the estimates of Aguiar and Hurst
(2008), and the crosses are the estimates of Primiceri and van
Rens (2009). The data have been normalized to 0 at age 25.

Figure 8: Life-cycle profile of life insurance for
different sample selections
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Notes: Life-cycle profile of the ratio of the median value of life
insurance (insurance pay-out) to the median value of the per-
manent income loss. The median permanent income loss is the
product of median current income times present value factor
times the fraction of income lost by the median household. The
red crosses show all households and the red points show the
subsample of households that have purchased life insurance.
The blue squares and diamonds show the same statistics for
the subsample of households that are married or living with a
partner. The pink circles and dots show the same statistics for
the subsample of households that are married or living with a
partner and have kids living in the household. The fraction of
income lost by the median household is constant at 20%.



Figure 9: Participation rate in life-insurance mar-
ket
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Notes: Life-cycle profile of the participation rate in the life-
insurance market for households age 23-60. For each age the
red star shows the share of households in the SCF that have
positive holdings of life-insurance. The red solid line shows a
polynomial fit to the data.

Figure 10: Life-cycle profile of life insurance (ex-
tended model)
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Notes: Life-cycle profile of the ratio of the median value of
life insurance (insurance pay-out) to the median value of the
permanent income loss. The median permanent income loss
is the product of median current income times present value
factor times the fraction of income lost by the median house-
hold. The red crosses show the data for the entire sample
and the red points for the subsample of households that have
purchased life insurance. The blue dashed dotted line is the
model prediction for the entire sample. The blue solid line
is the model prediction for the subsample of households that
have purchased life insurance. The median fraction of income
lost is different for the profiles. For the red points and the blue
solid line the fraction is constant at 20%. For the red crosses
and the blue dashed dotted line the fraction is increasing in
age as described in the main text.



Appendix

A.1 Default value function

Denote by rd(θh, s) = (1+(1−τh)rh−δh(s))θh the investment return of a defaulting household,

which is simply the human capital return times the fraction of wealth invested in human

capital. After the default period, we have θh = 1, but in the period of default we have in

general θh 6= 1. The budget constraint of a household in default is x′ = (1 + rd(s
′))x− c. In

the period of re-gaining access to financial market, a household in default has no financial

assets, and we still have θh = 1. Suppose that the expected value function has the functional

form

V e(x, s) = Ṽ e(s1) +
1

1 − β
[ln x + ln(1 + rd(1, s))] . (1)

Given (20), it is straightforward to show that the autarky consumption policy function is

linear in wealth, cd = (1 − β)(1 + rd(θh, s))x, and that the autarky value function has the

functional form:

Vd(x, θh, s) = Ṽd(s1) +
1

1 − β
[lnx + ln(1 + rd(θh, s))] . (2)

The intensive-form default value function, Ṽd, is defined by the recursion

Ṽd(s1) = ln(1 − β) +
β

1 − β
lnβ +

β

1 − β

∑

s′

ln(1 + rd(1, s
′))π(s′|s1) (3)

+βp
∑

s′
1

Ṽd(s
′
1)π(s′1|s1) + β(1 − p)

∑

s′
1

Ṽ e(s′1)π(s′1|s1)

For given Ṽ e, equation (22) determines uniquely the function Ṽd, which in turn pins down

the default value function through (21).

A2. Proof of proposition 1.

Let T be the operator associated with the Bellman equation (9). Adapting the argument

made in Rusticchini (1998), the following result can be shown to hold in our setting:

Lemma Suppose that Vd and V e are continuous functions. Suppose further that there is

a unique continuous solution, V0, to the Bellman equation without participation constraint.

Let T stand for the operator associated with the Bellman equation. Consider the set of con-

tinuous functions BW that are bounded in the weighted sup-norm ||V ||
.
= supx|V (x)|/W (x),

where the weighting function W is given by W (x) = |L(x)|+ |U(x)| with U an upper bound

and L a lower bound, and endow this function space with the corresponding metric.∗ Then

∗Thus, BW is the set of all functions, V , with L(x) ≤ V (x) ≤ U(x) for all x ∈ X. For each particular

1



i) limn→∞ T nV0 = V∞ exists and is the maximal solution to the Bellman equation (9)

ii) V∞ is the value function, V , of the sequential household maximization problem.

Suppose now that V e has the functional form (20), which implies that Vd has the func-

tional form (21). Clearly, both functions are continuous. Further, it is straightforward to

show that in this case the Bellman equation without participation constraint has a unique

continuous solution, V0, and that this solution has the functional form (11). We now show

that if Vn = T nV0 has the functional form, then the same is true for Vn+1 = TVn. To see

this, note that Vn+1 is defined as

Vn+1(x, θ, s) = TVn(x, θ, s) (4)

= max
c,x′,θ′







lnc + β
∑

s′
1

Ṽn(s′1)π(s′1|s1) +
β

1 − β

[

∑

s′

ln(1 + r(θ′, s′))π(s′|s1) + ln x′

]







s.t. x′ = (1 + r(θ, s))x− c

1 = θ′h +
∑

s′

θ′a(s
′)π(s′|s1)

1 + rf

∑

s′

π(s′|s1)θ
′
a(s

′)

1 + rf

≥ −D

x′ ≥ 0 , c ≥ 0 , θ′h ≥ 0

Ṽn(s1) +
1

1 − β
ln(1 + r(θ′h, θ

′
a(s

′), s′)) ≥ Ṽd(s1) +
1

1 − β
ln(1 + rd(θ

′
h, s

′))

Clearly, the solution to the maximization problem defined by the right-hand-side of (23) has

the form

x′
n+1 = β(1 + r(θn+1, s))x (5)

cn+1 = (1 − β)(1 + r(θn+1, s))x ,

where the subscript n + 1 indicates step n + 1 in the iteration. Substituting this policy

function into the right-hand-side of (23) shows that Vn+1 has the desired property.

From the lemma we know that V∞ = limn→∞ T nV0 exists and that it is the maximal

solution to the Bellman equation (9) as well as the value function of the corresponding

sequential maximization problem. Since the set of functions with this functional form is a

application of the lemma, it has to be shown that this definition of the set of candidate value functions is
without loss of generality for certain lower bound, L, and upper bound, U . In our case, the construction of
the lower and upper bound is straightforward.
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closed subset of the set of continuous functions, we know that V∞ has the functional form.

This proves proposition 1.

A.3 Proof of Proposition 2

From proposition 1 we know that individual households maximize utility subject to the

budget constraint and participation constraint. Thus, it remains to show that the intensive-

from market clearing condition (13) is equivalent to the market clearing conditions (7) and

the stationary version of the law of motion for Ω is (14).

Let x̃t = (1 + rt)xt be the aggregate total wealth in period t after production and depre-

ciation has taken place. The aggregate stock of human capital in period t + 1 is

Ht+1 = E[θh,t+1xt+1] (6)

= βE[θh,t+1(1 + rt)xt]

= β
∑

s1t

E[θh,t+1x̃t|s1t]π(s1t)

= β
∑

s1t

θh(s1t)E[x̃t|s1t]π(s1t)

= βE[x̃t]
∑

s1t

θh(s1t)Ω(s1t) .

The second line in (26) uses the equilibrium law of motion for the individual state variable

x, the third line is simply the law of iterated expectations, the fourth line follows from the

fact that the portfolio choices only depend on s1, and the last line is a direct implication of

the definition of Ω. A similar expression holds for the aggregate stock of physical capital,

Kt+1. Dividing the two expressions proves the equivalence between (7) and (13).

Define the expected investment return conditional on age, r̄(s1t, s1,t+1), as in (14). The

law of motion for Ω can be found as:

Ωt+1(s1,t+1) =
E[x̃t+1|s1,t+1]π(s1,t+1)

E[x̃t+1]
(7)

=
E[(1 + rt+1)x̃t|s1,t+1]π(s1,t+1)

E[(1 + rt+1)x̃t]

=

∑

s1t
E[(1 + rt+1)x̃t|s1t, s1,t+1]π(s1t|s1,t+1)π(s1,t+1)

∑

s1t ,s1,t+1
E[(1 + rt+1)x̃t|s1t, s1,t+1]π(s1t, s1,t+1)

=

∑

s1
(1 + r̄(s1t, s1,t+1))E[x̃t|s1t]π(s1t)

∑

s1t ,s1,t+1
(1 + r̄(s1t, s1,t+1))E[x̃t|s1t]π(s1t)

=

∑

s1t
(1 + r̄(s1t, s1,t+1))Ω(s1t)

∑

s1t ,s1,t+1
(1 + r̄(s1t, s1,t+1))Ω(s1t)
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where the second line uses the equilibrium law of motion for the individual state variable x,

the third line is simply the law of iterated expectations, the fourth line follows from the fact

that portfolio choices only depend on s1 in conjunction with the definition of r̄, and the last

line is a direct implication of the definition of Ω. Imposing stationarity, Ωt+1 = Ωt, yields

equation (14). This completes the proof of proposition 2 .

A.4. Proof of proposition 3

For each household type s1 ∈ {l, h}, the solution of the household maximization problem (12)

determines the optimal portfolio choice θ(s1) = (θh(s1), θa(s1, .)). Without loss of generality,

assume that both households have some insurance in equilibrium, but not full insurance:

θa(s1, b) 6= θa(s1, g) and η(b) θh(s1) 6= (θa(s1, b)− E[θa|s1]). In this case, for both types s1

the participation constraint binds if s2 = g and does not bind if s2 = b. If the participation

does not bind, the consumption growth rate must be equal to 1 + rf with log-utility, which

given the consumption rule (10) implies that the portfolio return in the bad state is equal to

the risk-free rate. Adding the budget constraint, we find that the optimal portfolio choice,

(θh(s1), θa(s1, .)), is determined by the following three equations:

θh(s1)
(

1 + rh − δ̄h(s1) − η(b)
)

+ θa(s1, b) = 1 + rf (8)

θh(s1)
(

1 + rh − δ̄h(s1) − η(g)
)

+ θa(s1, g) = e−(1−β)(Ṽ−Ṽd)θh(s1)
(

1 + rhδ̄h(s1) − η(g)
)

θh(s1) +
π(b)θa(s1, b)

1 + rf

+
π(g)θa(s1, g)

1 + rf

= 1 .

Suppose now that defaulting households keep access to financial markets: p = 0. In this

case, we have Ṽ = Ṽd, and from the third equation in (27) it follows that θa(s1, g) = 0.

Further, solving for θh using θa(s1, g) = 0 yields:

θh(s1) =
π(g)

1 − π(b)
1+rf

(1 + rh − δ̄h(s1) − η(b))
(9)

Clearly, equation (28) shows that θh(h) > θh(l) if δ̄h(h) < δ̄h(l). It further follows from

equation (27) that the insurance pay-out is given by:

θa(s1, b) − E[θa|s1] = π(g)
(

1 + rf − θh(s1)(1 + rh − δ̄h(s1) − η(b))
)

. (10)

Using θh(h) > θh(l), it follows from (28) that θa(h, b)−E[θa|s1 = h] < θa(l, b)−E[θa|s1 = l].

This proves the first part of the proposition. A similar argument proves the second part of

proposition 3.
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A.5. Computation

Here we discuss the solution to the household decision problem. With a slight abuse of

notation, denote the age by s1 = j = 23, . . . , 61, r and human capital risk by (s2, s3) = s,

where we interpret the age 61 as the transition period before retirement and the age r as

retirement. In this case, the equation system (12) determining the intensive-form value

function and the optimal portfolio choice becomes

Ṽj = ln(1 − β) +
β

1 − β
lnβ +

β

1 − β

∑

s′

ln(1 + rj+1(θj+1, s
′))πj+1(s

′) + βṼj+1 (11)

for j = 23, . . . , 60 and for j = 61:

Ṽ61 = ln(1 − β) +
β

1 − β
lnβ +

β

1 − β
(1 − pr)

∑

s′

ln(1 + r61(θ61, s
′))π(s′) + pr

∑

s′

ln(1 + rr(θ61, s
′))πr(s

′)

+β(1− pr)Ṽ61 + βprṼr

with

θj+1 = arg max
θ′∈Γj+1

∑

s′

ln(1 + rj+1(θ
′, s′))πj+1(s

′)

Γj+1
.
=

{

θ′
∣

∣

∣

∣

∣

θ′h +
∑

s′

θ′a(s
′)πj+1(s

′)

1 + rf

= 1 , θ′h ≥ 0 ,

Ṽj+1 − Ṽd,j+1 ≥
1

1 − β
[ln(1 + rd,j+1(θ

′
h, s

′)) − ln(1 + rj+1(θ
′
h, θ

′
a(s

′), s′))]

}

.

for j = 23, . . . , 60 and for j = 61

θ61 = arg max
θ′∈Γ61

[

(1 − pr)
∑

s′

ln(1 + r61(θ
′, s′))π61(s

′) + pr

∑

s′

ln(1 + rr(θ
′, s′))πr(s

′)

]

Γ61
.
=

{

θ′
∣

∣

∣

∣

∣

θ′h +
∑

s′

θ′a1(s
′)π(s′)

1 + rk − δk

+
∑

s′

θ′a2(s
′)π(s′)

1 + rk − δk

= 1 , θ′h ≥ 0 ,

Ṽ61 − Ṽd,61 ≥
1

1 − β
[ln(1 + rd,61(θ

′
h, s

′)) − ln(1 + r61(θ
′
h, θ

′
a1(s

′), s′))]

}

.

Ṽr − Ṽd,r ≥
1

1 − β
[ln(1 + rd,r(θ

′
h, s

′)) − ln(1 + rr(θ
′
h, θ

′
a2(s

′), s′))]

}

.

The default intensive-form value function is given by

Ṽd,j = ln(1−β) +
β

1 − β
lnβ +

β

1 − β

∑

s′

ln(1+ rd,j+1(s
′))πj+1(s

′)+ βpṼd,j+1 + β(1− p)Ṽj+1

(12)
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for j = 23, . . . , 60 and for j = 61:

Ṽd,61 = ln(1 − β) +
β

1 − β
lnβ +

β

1 − β

∑

s′

ln(1 + rd,61(s
′))π61(s

′)

+ (1 − pr)
(

βpṼd,61 + β(1 − p)Ṽ61

)

+ pr

(

βpṼd,r + β(1 − p)Ṽr

)

,

where we imposed rational expectations: Ṽ e = Ṽ . Finally, since retired households only hold

physical capital and die with a constant probability, pr, the intensive-form value function for

them is

Ṽr =
1

1 − β(1 − pr)

(

ln(1 − (1 − pr)β) +
β(1 − pr)

1 − β(1− pr)
lnβ(1− pr) +

β(1 − pr)

1 − β(1 − pr)
ln(1 + rf )

)

(13)

For j = 61, the Bellman equation (30) in conjunction with (31) define a fixed point

problem, which we solve by iterating over Ṽ61 and Ṽd,61 until convergence. For all ages

j = 23, . . . , 60, we solve the Bellman equation backwards starting at j = 60. The portfolio

choice problem for given Ṽj and Ṽd,j is solved in two steps. In a first step, we order the set

of possible shocks, s′, according to shocks size: S = {s1, . . . , s̄}, where s̄ is the shock for

which the human capital shock is largest. We then fix the number of shocks for which the

participation constraint is binding, that is, we conjecture that the participation constraint

is binding for the first k shocks and not binding for the remaining N − k + 1 shocks. Given

this conjecture, the portfolio choice, θj, is the solution to a linear equation system that is

defined by the following equalities

i) participation constraint holds with equality ∀s′ ∈ S1 (14)

ii) human capital return equals rf ∀s′ ∈ S2

iii) budget constraint holds

where S1 is the set of shocks for which the participation constraint is binding and S2 the

set of shocks for which it is not binding. Note that equations i)-iii) are always necessary

conditions for an optimum. They are also sufficient if two additional conditions, namely that

a) the solution to (33) satisfies the participation constraint for all shock realizations and b)

the set S2 has maximal size. We find the solution to (33) satisfying these two additional

requirements as follows.

We begin with S2 = S and checks if the solution to (33) satisfies condition a), that is,

satisfies the participation constraint for all s′ ∈ S. If not, we choose S2 = S \ {s̄}, where s̄

is the maximal element of the ordered set S, and check if the new solution to (33) satisfies

6



the participation constraint for all s′. We continue this process of eliminating states from

the set S until we reached a point at which the solution to (33) satisfies the participation

constraint for all shocks s′ ∈ S.

A.5. Data

The data are for the years 1992, 1995, 1998, 2001, 2004, and 2007 drawn from the Survey

of Consumer Finances (SCF) provided by the Federal Reserve Board. The Survey collects

information on a number of economic and financial variables of individual families through

triennial interviews, where the definition of a ”family” in the SCF comes close to the concept

of a ”household” used by the U.S. Census Bureau. See Kennickell and Starr-McCluer (1994)

for details about the SCF.

For the sample selection, we follow as closely as possible Heathcote et al. (2010)†. We

restrict the sample to households where the household head is between 23 and 60 years

of age. We drop the wealthiest 1.46% and the poorest 0.5% of households in each year.

Heathcote et al. (2010) show that this step makes the sample more comparable to the PSID

or CEX data. We drop all households that report negative labor income or that report

positive hours worked but have missing labor income or that report positive labor income

but zero or negative hours worked. We compute the average wage by dividing labor income

by total hours worked, and drop in each year households with a wage that is below half the

minimum wage of the respective year. For the data on life-insurance, we restrict the sample

further to households that are married or live with a partner.

For the definition of variables we follow Kennickell and Starr-McCluer (1994). We only

depart from their variable definitions when considering labor income, where we follow Heath-

cote et al.(2010) and add two-thirds of the farm and business income as additional labor

income. As common in the literature, we associate financial wealth in the model with net

worth in the SCF. Households’ net worth includes the cash value of life-insurance as in

Kennickell and Starr-McCluer (1994), but does not include the face value of insurance con-

tracts. We associate life-insurance in the model with the face value of life-insurance from the

data. All data has been deflated using the BLS consumer price index for urban consumers

(CPI-U-RS). A detailed description of the relevant variables is as follows:

• Assets are the sum of financial and non-financial assets. The main categories of

non-financial assets are cars, housing, real estate, and the net value of businesses

†We use their Sample B for our analysis.
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where the household holds an active interest. Except for businesses all values are

gross positions, i.e. before outstanding debt. The main categories of financial assets

are liquid assets, CD, mutual funds, stocks, bonds, cash value of life-insurance, other

managed investment, and assets in retirement accounts (e.g. IRAs, thrift accounts,

and pensions accumulated in accounts.)

• Debt is the sum of housing debt (e.g. mortgages, home equity loans, home equity

lines of credit), credit card debt, installment loans (e.g. cars, education, others), other

residential debt, and other debt (e.g. pension loans).

• Net-worth is the sum of all assets minus all debt.

• Labor income is wages and salaries plus 2/3 of business and farm income.

• Life-insurance is the face value of all term life policies and the face value of all policies

that build up a cash value. The cash value is not part of the life-insurance, but is part

of the financial assets of an household.
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