Models of Directed Search - Labor Market Dynamics, Optimal UI, and Student Credit

Florian Hoffmann, UBC

June 4-6, 2012 Markets Workshop, Chicago Fed

Why Equilibrium Search Theory of Labor Market?

► Theory of

- Unemployment
- worker mobility, wage dynamics and residual inequality
- Econometric framework to
 - quantify search frictions
 - quantify importance of skill vs. human capital vs. luck
- Framework to study optimal UI and taxation

- Random search well known
- Endogenizes search frictions (to some extent ...)
- Overcomes some inefficiencies in random search economies
- Some empirical evidence that workers "direct" their search
- ► Random search models cannot generate much residual inequality → can directed search models?
- Computational tractability
 - block recursivity
 - non-stationarity
 - worker and firm heterogeneity.

- 1. Game-theoretic foundations of directed search (very brief)
- 2. Axiomatic approach to directed search ("competitive search")
- 3. Worker Heterogeneity
- 4. Optimal UI
- 5. On-the-job-search, dynamics and human capital
- 6. Incorporating education and student credit: A proposal

- N workers and M firms, both risk-neutral&homog., with N, M < ∞, try to match to produce output y</p>
- Each firm m can employ one worker
 - more than 1 worker may contact firm $m \Rightarrow \text{job}$ is allocated randomly
- 2—stage game:
 - 1^{st} stage: each seller *m* posts wage w_m
 - $\blacktriangleright\ 2^{nd}$ stage: each buyer n chooses probabilities ρ_{nm} of visiting each seller m
- Utility of buyer: w_m if matched with seller m and 0 otherwise
- Profit of seller: $y w_m$ if matched and 0 otherwise

Pure strategy equilibria require lots of coordination

- $ightarrow \Rightarrow$ focus on symmetric mixed-strategy equilibria
- ▶ **Def:** A symmetric mixed-strategy equilibrium is a wage-fct. $w_m(M, N)$ and an application strategy $\rho_{nm}(M, N)$ s.t., given strategies of all other players:
 - $\rho_{nm}(M, N)$ max. expected utility of each n
 - $w_m(M, N)$ max. expected profits of each m
 - $\rho_{nm}(M, N) = \rho_m(M, N)$ for all n
 - $w_m(M, N) = w(M, N)$ for all m.

Prop: (Burdett, Shi, Wright, 2001): There is a unique symmetric mixed-strategy eqm. with the following properties:

1.
$$\rho_m(M, N) = \frac{1}{M}$$

2. $w(M, N)$ has $w_1(M, N) > 0$ and $w_2(M, N) < 0$
3. The endog. matching fct. $\theta(M, N)$ has DRS.
4. Fix $\gamma = \frac{N}{M}$ and let $M, N \to \infty$. Then $\theta(M, N) \to \theta^*(M, N)$
and $\theta^*(.)$ is CRS.

- Endogenous ("search") frictions due to lack of coordination
 - some vacancies left unfilled, some workers left unemployed.

Property 4 motivates axiomatic approach

- e.g. Montgomery (1991), Moen (1997), Acemoglu&Shimer (1999), Shi (2009), Menzio&Shi (2011a,b)
- Specifies a CRS matching technology θ*(.) as model primitive.
- Economy partitioned into submarkets indexed by w, associated with queue length q(w)
- Some advantages of axiomatic approach:
 - generally more tractable
 - dynamics
 - on-the-job-search.

Axiomatic Approach: Model Description

Submarkets indexed by w :

- $q(w) = \frac{n(w)}{m(w)}$, where n(w): # of workers; m(w): # of vacancies
- workers applying to w match with prob.

$$\frac{\theta^*(m(w), n(w))}{n(w)} = \theta^*\left(\frac{1}{q(w)}\right) \equiv \mu\left(q(w)\right)$$

 firms posting *w* match with prob. *η*(*q*(*w*)) = *q*(*w*) * μ(*q*(*w*))
 μ' < 0 and η' > 0.
 1. Worker's optimal application:

$$U^{*} = \max_{w} \mu\left(q(w)\right) * w + \left[1 - \mu\left(q(w)\right)\right] * 0$$

2. Firm's profit maximization and free entry:

$$\eta(q(w)) * (y - w) \le \kappa \text{ and } q(w) \ge 0.$$

with complementary slackness.

- Def: An eqm. is a set of wages W and a queue length function q^{*}(w) s.t. (1) and (2) are jointly satisfied.
- ▶ Note: $q^*(w)$ is defined on \mathbb{R}_+ , not W.
- ▶ **Prop** (Moen; Acemoglu&Shimer): Any eqm. allocation solves

$$\max_{w,q} \mu(q) * w + [1 - \mu(q)] * 0$$

s.t. $\eta(q) * (y - w) = \kappa$

Proposition (Moen): The eqm. allocation attains the first-best allocation in the sense that it maximizes aggregate production net of vacancy creation costs. If there is more than one eqm., they are all equivalent in terms of welfare.

- The following holds in the model above (but not in random search models):
 - search frictions are endogenous
 - wage posting can implement the first best
 - even though firms post wages, they are generally above the monopsony wage
- However:
 - efficiency depends on risk neutrality of workers
 - In finite economies (M, N < ∞) the equilibria derived using the game-theoretic and axiomatic approach may not coincide.

- ► Adding worker het. in terms of ability surprisingly straightforward → can be used to introduce (stochastic) skill accumulation (Hoffmann&Shi, 2012)
- Let there be L worker types, where type I produces y₁ when matched
- Result: A submkt (w, q(w)) cannot be visited by different types of workers:

$$\eta\left(q\right)*\left(y_{l}-w\right)>\eta\left(q\right)*\left(y_{l-1}-w\right)=\kappa$$

violating free entry.

Instead, can construct an eqm. with L types as a collection of L autarkic equilibria {W_l; q^{*}_l(w)}^L_{l=1}. Modify the model above:

- homog., risk averse workers with utility u(c) and initial assets A
- match produces f(k), k: capital with price R = 1
- firm becomes active after making ex-ante investments k > 0
- unempl. benefits b financed by lump-sum tax au
- Definition of eqm. needs to be modified:
 - set of investment levels K
 - wage correspondences W(k)
 - budget balance: $b = (1 \mu(q^*(w))) * \tau$.

Prop: Any eqm. allocation solves

$$\max_{w,q,k} \mu(q) * u(A - \tau + w) + [1 - \mu(q)] * u(A - \tau + b)$$

s.t. $\eta(q) * (f(k) - w) - k = \kappa$

With CARA-preferences, eqm. is unaffected by A.

• Set
$$\kappa = 0$$
. We have:

$$\eta(q^*) * f'(k^*) = 1$$

$$\Rightarrow w^* = f(k^*) - k^* f'(k^*)$$

 \Rightarrow free entry condition generates upward sloping relationship in $\{q, w\}$ -space.

- Prop: If agents are risk-averse, eqm with b = 0 is not output maximizing. However, there is a moderate b > 0 that can implement the output maximizing allocation.
- ▶ Without sufficient insurance, workers apply to low-q submarkets ⇒ prob. that a vacancy gets filled is low ⇒ firms are not willing to make large ex-ante investments.
- Interpretations:
 - type of moral hazard
 - redistribution between successful and unsuccessful searchers important.

- Focus on different types of incentives: Search effort vs. "job quality"
- In random search, wage offers often taken as exogenous
 - Hopenhayn&Nicolini (1997); Shimer&Werning (2008)
- Relationship between ex-ante capital investments and labor mkt. tightness in directed search.

Dynamics, On the Job Search and Human Capital Accumulation

- Job-to-job transitions frequent in data
- Source of wage dynamics and residual inequality
- Introduces scope for wage taxation
- Need dynamics
- How to incorporate human capital accumulation?

- infinite horizon, discrete time
- risk neutral workers, discount factor β
- exogenous job breakups at rate
- employed can send applications with prob. λ_e in each period
- unemployed can send applications with prob. $\lambda_u = 1$
- match produces output y
- Timing: production \rightarrow separations \rightarrow search

- Submkts characterized by promised expected life-cycle earnings x and tightness q (x)
- Firm can deliver this value in a lot of different ways
- Follow Hoffmann&Shi (2012) and assume firms pay in terms of output shares ω.

Search problem of worker with status-quo value V:

$$R(V) = \max_{x} \mu(q(x)) * (x - V)$$

with policy fct. s(V).

- ▶ $s'(V) > 0 \Rightarrow$ endogenous worker separations ("wage ladder").
- This is what separates directed from random search.

Unemployed:

$$V^{u} = \beta * [b + V^{u} + R(V^{u})]$$

Employed:

$$V(\omega) = \beta * [\omega * y + \delta * V^{u} + (1 - \delta) (V(\omega) + \lambda^{e} * R(V(\omega)))]$$

• This generates a relationship $\omega(V)$.

Filled vacancy in submarket x:

$$\frac{J(x)}{\beta} = (1 - \omega(x)) * y$$

$$+ (1 - \delta) * (1 - \lambda^e * \mu (q(s(x))) * J(x))$$

Note: Promise keeping constraint of firm embedded in ω(x)
 Free Entry:

$$\eta(q(x)) * J(x) \leq \kappa;$$

 $q(x) \geq 0 \ w.c.s$

- Defn of eqm. analogues to Moen (1997) and Acemoglu&Shimer (1999)
- wage contracts inefficient!
- Endogenous wage ladder and worker separation: given V and ω(V), workers apply to unique submkt.
- Different firms play different strategies:
 - $\blacktriangleright \Rightarrow frictional (residual) wage inequality.$

- In contrast to e.g. Moen (1997), eqm. characterization using a dual problem not possible
- However: There exists a block recursive eqm.
- This is already embedded in the value fcts above: do not depend on endog. value distribution G(x)
- ► G(x) can be simulated using policy functions and some initialization.

- Block recursivity has computational advantages.
- It is fairly straightforward to introduce:
 - worker heterogeneity
 - match heterogeneity
 - human capital accumulation
 - non-stationary productivity process
 - multiple sectors (Hoffmann&Shi, 2012)'
- Model can be solved along transition paths.

Stochastic Human Capital Accumulation (Hoffmann&Shi)

- Worker het. $\alpha \in {\alpha_1, ..., \alpha_L}$
- Output $y_l = \alpha_l * y_l$.
- Learning by doing:
 - while empl., $\alpha' \sim \Gamma(\alpha', \alpha)$
 - for simplicity, assume $\alpha = \alpha_1$ if unempl.
- Timing: update α after separation, before search.

Stochastic Human Capital Accumulation (Hoffmann&Shi)

Value Functions of Workers:

$$R(V, \alpha) = \max_{x} \mu(q(x, \alpha)) * (x - V)$$
$$V^{u} = \beta * \left[b + V^{u} + \sum_{\alpha'} \Gamma(\alpha', \alpha) * R(V^{u}, \alpha') \right]$$

$$\frac{V(\omega, \alpha)}{\beta} = \omega * \alpha * y + \delta * V^{u} + (1 - \delta) *$$
$$\sum_{\alpha'} \Gamma(\alpha', \alpha) * (V(\omega, \alpha') + \lambda^{e} * R(V(\omega, \alpha')))$$
$$\Rightarrow w(V, \alpha)$$

Stochastic Human Capital Accumulation (Hoffmann&Shi)

Value Functions of Firms:

$$\frac{J(x,\alpha)}{\beta} = (1 - \omega(x,\alpha)) * \alpha * y + (1 - \delta) *$$
$$\sum_{\alpha'} \Gamma(\alpha',\alpha) * (1 - \lambda^e * \mu(q(s(x,\alpha')))) * J(x,\alpha'))$$
$$V(\omega(x,\alpha),\alpha) = x$$

$$\eta(q(x, \alpha)) * J(x, \alpha) \leq \kappa;$$

 $q(x, \alpha) \geq 0 \ w.c.s.$

- Random search models with on-the-job-search not block-recursive.
- Workers draw randomly from G(x) → even conditional on contacting a vacancy, match forms with prob. G(V) ≤ 1 → G(x) enters all value fct.s
- Imposes restrictions on econometric modeling of eqm. search that do not exist in directed search.
- What about empirical properties?
 - to be explored.

Optimal UI and private student credit

- How do UI benefits affect the market for private student credits?
- ► Go back to quasi-static Acemoglu&Shimer model.
- UI affects workers' search for risky jobs:
 - may \uparrow output and hence may \uparrow student credit in eqm.
 - particularly plausible if effect of UI particularly strong for high types
- Eqm interactions between student credit and UI may be complicated: Creditors care about µ * w
 - ▶ however, \uparrow in UI leads to $\mu \downarrow$ and $w \uparrow \Rightarrow$ optimal (w, μ) ?
- What if unemployment benefits cannot be used to repay debt (e.g. food stamps)?

Adding Student Credit to Acemoglu&Shimer

- Adopt limited commitment and imcomplete mkt assumption as in Lochner&Monge-Naranjo
- Some challenges
 - discrete types, but preferably continuous education variable
 - discrete wage distribution in eqm
 - decisions depend on asset holdings and its distribution
 - how to model education stage?
- Acemoglu&Shimer: with CARA-utility, decisions do not depend on assets, even in dynamic economy
 - \blacktriangleright \rightarrow With limited commitment, this is not true anymore.

- L types of workers, producing $y_l = \alpha_l * f(k)$ when matched
- Assume α_l are grid points on a uniform grid $[\alpha_1, \alpha_L]$ with $\Delta = \alpha_l \alpha_{l-1}$
- \blacktriangleright Can invest into education $e \in \mathbb{R}_+$ at some cost
 - ▶ student credit $Q(D, \alpha, e)$, D : amount to be repaid
 - default cost $\phi * (income)$
- ► Returns to education: with prob. h(e), ind. has prod.gain of $\Delta = \alpha_I \alpha_{I-1}$
 - $h(e) \in [0,1]$ with $h'(e) \ge 0$
 - ▶ initial discrete distribution over types $p_0(\alpha)$ with $p_0(\alpha_L) = 0$

- Divide labor mkt. into L directed search economies
- Assume firms post output shares
- Search Problem:

$$V(\alpha, D) = \max_{w} \left\{ \begin{array}{l} \mu(q(w, \alpha)) * V^{e}(w, \alpha, D) \\ + (1 - \mu(q(\omega, \alpha))) * V^{u}(D) \end{array} \right\}$$
$$V^{e}(w, \alpha, D) = \max \left\{ \begin{array}{l} (u(\omega * \alpha * f(k) - D - \tau)); \\ u(\phi * \omega * \alpha * f(k)) \end{array} \right\}$$
$$V^{u}(D) = \max \left\{ (u(b - D - \tau)); u(\phi * b) \right\}$$

▶ Free entry and profit maximization:

$$\eta (q(w, \alpha)) * (1 - w) * \alpha * f(k) \leq k$$

$$q(w, \alpha) \geq w.c.s.$$

- On the search stage, worker provides one unit of labor or is unemployed
- Furthermore, labor market has frictions
- What about education stage?
- ▶ Continuation value of type−*I* worker with (*e*, *D*) is

$$V_{+1}(e, \alpha_{l}, D) = h(e) * V(\alpha_{l+1}, D) + (1 - h(e)) * V(\alpha_{l}, D)$$

 One option (in the spirit of Lagos-Wright): Assume labor mkt on education stage is frictionless. Follow Lochner&Monge-Naranjo:

$$\max_{e,Q} u(\alpha_{I} * w_{0} * (1 - e) + Q) + V_{+1}(e, \alpha_{I}, D)$$

s.t.Q = D - E [loss].

 Here, E [loss] is determined by default decision on the matching stage.