One-sided Commitment and College Enrollment

B. Ravikumar, Yaping Shan and Yuzhe Zhang

St Louis Fed, University of Iowa and Texas A\&M
June 2012

- Financing college education
- Student loan has been steadily rising, is more than credit card debt now.

Sources: U.S. Department of Education, Office of Postsecondary Education and FY2009 President's Budget.

Total Debt Outstanding

-Credit Card Debt -Student Loan Debt

- Financing college education
- Student loan has been steadily rising, is more than credit card debt now.
- Financial resources of the family have become more important in the college enrollment decision.
- Skills and future earnings serve as poor collateral.
- Financing college education
- Student loan has been steadily rising, is more than credit card debt now.
- Financial resources of the family have become more important in the college enrollment decision.
- Skills and future earnings serve as poor collateral.
- Endogenous borrowing constraints
- Ability-enrollment correlation.
- Part 1: Principal-agent relationship
- Borrowing over the life cycle.
- One-sided commitment.
- Part 2: College enrollment
- Role of life-cycle consumption smoothing.
- Role of one-sided commitment.

Part 1: One-sided commitment: Life-cycle basics

- An agent (or a consumer, or a student) lives for T periods. Preferences are

$$
\sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right)
$$

- His initial wealth is W.
- Earnings profile w_{t} has a hump shape, that is, there is a T^{*} such that w_{t} increases with t before T^{*} and decreases after T^{*}.
- There is a risk-neutral principal whose discount factor is also β.
- At time 0 , the agent can sign a contract with the principal. The principal takes the wealth and income of the agent, and in exchange, the agent receives a consumption path $\left\{c_{t} ; t=0, \ldots, T\right\}$.
- The agent can choose to leave the contract.
- Default implies
- Autarky
- Fraction γ of his labor income seized every period.
- Participation constraint

$$
\sum_{s=t}^{T} \beta^{s} u\left(c_{s}\right) \geq \sum_{s=t}^{T} \beta^{s} u\left((1-\gamma) w_{s}\right), \forall t
$$

Constrained efficient allocation

$$
\begin{aligned}
\max _{\left\{c_{t} ; t \geq 0\right\}} & \sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right) \\
\text { subject to } & \sum_{t=0}^{T} \beta^{t} c_{t}=\sum_{t=0}^{T} \beta^{t} w_{t}+W \\
& \sum_{s=t}^{T} \beta^{s} u\left(c_{s}\right) \geq \sum_{s=t}^{T} \beta^{s} u\left((1-\gamma) w_{s}\right), \forall t
\end{aligned}
$$

Normalized outside option

- It is useful to view the participation constraints in terms of flows.
- Normalized outside option

$$
\underline{V}_{t}=\frac{\sum_{s=t}^{T} \beta^{s} u\left((1-\gamma) w_{s}\right)}{\sum_{s=t}^{T} \beta^{s}}
$$

Normalized outside option $\underline{V}(\cdot)$

First-order condition

$$
\left(1+\beta^{-t} \lambda_{0}+\beta^{1-t} \lambda_{1}+\ldots+\lambda_{t}\right) u^{\prime}\left(c_{t}\right)=\Phi
$$

where Φ is the multiplier for the budget constraint and λ_{t} is for the participation constraint (PC) in period t.

$$
c_{t} \begin{cases}=c_{t-1}, & \text { if } \mathrm{PC} \text { is slack at } t \\ >c_{t-1}, & \text { if } \mathrm{PC} \text { is binding at } t\end{cases}
$$

Minimum consumption \underline{c}_{t}

- Let \underline{c}_{t} be the agent's consumption if the participation constraint binds.
- It is the minimum consumption required to prevent default.
- Efficient allocation:

$$
c_{t}=\max \left\{c_{t-1}, \underline{c}_{t}\right\}
$$

Minimum consumption \underline{c}_{t}

The minimum consumption is $(1-\gamma) w_{t}$ until period T_{1} and $u^{-1}\left(\underline{V}_{t}\right)$ afterward.

Minimum consumption \underline{c}_{t}

The participation constraint is initially slack, then binds and finally becomes slack for $t \geq T_{1}$.

Minimum consumption before T_{1}

If the participation constraint binds at both t and $t+1$, then $\underline{c}_{t}=(1-\gamma) w_{t}$.

$$
\begin{aligned}
\sum_{s=t}^{T} \beta^{s} u\left(c_{s}\right) & =\sum_{s=t}^{T} \beta^{s} u\left((1-\gamma) w_{s}\right) \\
\sum_{s=t+1}^{T} \beta^{s} u\left(c_{s}\right) & =\sum_{s=t+1}^{T} \beta^{s} u\left((1-\gamma) w_{s}\right)
\end{aligned}
$$

imply that

$$
u\left(c_{t}\right)=u\left((1-\gamma) w_{t}\right)
$$

Implementation with endogenous borrowing constraint

- How to decentralize the constrained efficient allocation?
- Let the agent optimally borrow and save at the interest rate $r=\frac{1}{\beta}-1$
- Subject to a sequence of borrowing constraints.

Implementation with endogenous borrowing constraint

- Problem P:

$$
\begin{aligned}
\max _{c_{t} ; t \geq 0} & \sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right), \\
\text { subject to } & c_{t}+\beta B_{t+1}=B_{t}+w_{t} \\
& B_{t} \geq \underline{B}_{t}, \forall t, \\
& B_{0}=W
\end{aligned}
$$

where \underline{B}_{t} is the endogenous borrowing constraint.

Borrowing constraint

- How to find the sequence \underline{B}_{t} ?
- Construct \underline{B}_{t} such that an agent with wealth \underline{B}_{t} in problem P achieves the same utility as in autarky.
- This construction satisfies the participation constraint in every period.

Proposition

The borrowing constraint is initially slack, then binds and finally becomes slack for $t \geq T_{1}$.

Borrowing constraint

- If $t<T_{1}$ and $B_{t}=\underline{B}_{t}$, then the agent's participation constraint binds.
- His consumption path is

$$
(1-\gamma) w_{t},(1-\gamma) w_{t+1}, \ldots,(1-\gamma) w_{T_{1}-1},(1-\gamma) w_{T_{1}},(1-\gamma) w_{T_{1}}, \ldots .
$$

$$
\begin{aligned}
-\underline{B}_{t} & =\sum_{s=t}^{T} \beta^{s-t}\left(w_{s}-c_{s}\right) \\
& =\sum_{s=t}^{T} \beta^{s-t} \gamma w_{t}+\sum_{s=T_{1}}^{T} \beta^{s-t}(1-\gamma)\left(w_{s}-w_{T_{1}}\right)
\end{aligned}
$$

Borrowing constraint

$$
\begin{aligned}
-\underline{B}_{t} & =\sum_{s=t}^{T} \beta^{s-t}\left(w_{s}-c_{s}\right) \\
& =\sum_{s=t}^{T} \beta^{s-t} \gamma w_{t}+\sum_{s=T_{1}}^{T} \beta^{s-t}(1-\gamma)\left(w_{s}-w_{T_{1}}\right)
\end{aligned}
$$

There are two components of income to be borrowed against:
(1) penalty that can be collected after default
(2) cost savings from consumption smoothing in $\left[T_{1}, T\right]$.

Remarks on Borrowing constraint

- If income path is higher, the amount of borrowing is also higher.
- When $\gamma=1$, the agent can borrow against all income. Autarky is undesirable. This is equivalent to full commitment.
- Even if $\gamma=0$, the agent can still borrow, due to the cost savings from consumption smoothing in $\left[T_{1}, T\right]$.

Earnings Uncertainty

- Participation constraint depends on the realization of the income shock.
- Constrained efficient consumption depends on the history of shocks.
- The optimal contract provides insurance.

Endogenous Earnings

- Constrained efficient allocation could include human capital capital accumulation.
- Allocation in the optimal contract affects outside option.

Part 2: College enrollment under one-sided commitment

- Agents are heterogeneous in ability a and initial wealth W.
- Income depends on ability, education level and age:
- High school income: $w_{t}(H)$ a.
- College income: $w_{t}(C) f(a)$.
- College tuition is τ.
- An agent spends one period in college.
- Agent's income is zero during college.

Assumption

$\frac{f(a)}{a}$ increases in a.

- The agent compares two paths (one for college and one for high school) and chooses the one with a higher utility.
- The agent's initial wealth is $W-\tau$ if he chooses college, and W if he does not.

Full commitment

- The agent's utility relies only on the sum of discounted earnings and initial wealth.
- The agent compares the total discounted earnings under college path and high school path.
- He chooses college if and only if

$$
\sum_{t=0}^{T} \beta^{t} w_{t}(H) a \leq \sum_{t=1}^{T} \beta^{t} w_{t}(C) f(a)-\tau
$$

Full commitment enrollment decision

PROPOSITION

There exists a threshold $\tilde{a}_{f c}$ such that agent with ability $a \geq \tilde{a}_{f c}$ enrolls in college and agent with ability $a<\tilde{a}_{f c}$ chooses to enter the labor market as a high school graduate.

- Wealth does not enter the comparison.

One-sided commitment

Benefit and cost of college

- +: discounted income is higher
- +: college graduate may borrow more.
- -: tuition payment.
- -: consumption path is more distorted.

Unlike full commitment, comparison of discounted income alone is not sufficient.

One-sided commitment

- Wealth enters the comparison under one-sided commitment.
- Rich agents are more likely to attend college.

Proposition

If an agent with wealth W is indifferent between college and high school, then an agent with wealth $W_{1}>W$ strictly prefers college.

- High ability students are more likely to attend college, analogous to the full-commitment allocation.

Proposition

If $W \leq \tau$, then there exists a threshold $\tilde{a}(W)$ such that agent with ability $a \geq \tilde{a}(W)$ enrolls in college and agent with ability $a<\tilde{a}(W)$ chooses to enter the labor market as a high school graduate.

- Commitment friction distorts the college-enrollment decision.

Proposition

College enrollment under full commitment is greater than that under one-sided commitment, i.e., $\tilde{a}(W)>\tilde{a}_{f c}$.

Earnings Uncertainty

- It is efficient to have the repayment of student loan contingent upon the history of earnings shocks.
- The optimal contract provides insurance.
- Default might be an element of the optimal contract.

National Student Loan Cohort Default Rates

Dropouts

- Negative signal in the first two years regarding future earnings.
- Dropout as a result of accumulated debt.

Adverse Selection - unobservable ability

- Information problems in addition to commitment problems.
- Low-ability agents could mimic high-ability agents, borrow resources for college and enroll in college.
- The optimal contract has to screen out the low-ability student by asking the agent with a low-income realization to repay the loan as well.
- Although the payment reduces insurance, it deters the low-ability agents from enrolling in college.

