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1 Introduction

The importance of student loans for the accumulation of human capital, economic growth

and welfare cannot be overestimated. In the United States, the total amount of outstand-

ing student debt has reached $1 trillion at the end of 2011. In Great Britain, the rise of

tuition fees seems to have caused a sharp increase in average student debt1. With the re-

cent economic downturn, it became clear that an increasing number of students experience

di¢ culties to repay their loans2. Student loans pose interesting �nancial engineering and

regulation problems. There are many discussions on the optimal design of these loans: for

instance, the UK and Australia have a form a income-contingent repayment system, since

loan repayments are based on the graduate�s monthly earnings, just like income tax, and

interest rates are subsidized3. In some continental European countries, student loans play a

negligible role but, given the severe shortage of public funds, they could go hand in hand with

a substantial raise in tuition fees, and become a new source of funds for universities4. There

is an important econometric literature on the impact of credit constraints on university or

college attendance5. For recent quantitative studies of alternative student-loan policies in

the US, see, e.g., Ionescu (2009), Lochner and Monge-Naranjo (2010).

These questions are hotly debated, yet, to the best of our knowledge, the micro-

economic theory of student loans is still underdeveloped6. In particular, we need a normative

foundation for the intuition that income-contingent loans are the appropriate solution, when

informational asymmetries between lenders and borrowers are involved in the allocation

and design of loans. In the following, we propose a simple model of student loans, under

the combined e¤ects of risk aversion, moral hazard and adverse selection. We explore the

structure of the set of second-best optimal (or interim incentive-e¢ cient) allocations of credit

1The average student debt is predicted to be around 50,000 pounds, on leaving the university, for those
starting in 2012. for details, see http://www.slc.co.uk/statistics.

2See, for instance, The Economist, October 29th, 2011, p17 and P 73. In the US and in 2009, the default
rate on student loans has reached 8.8%.

3See, e.g., Barr and Johnston (2010).
4See, e.g., Jacobs and Van der Ploeg (2006).
5See, for instance, Carneiro and Heckman (2002), Keane and Wolpin (2001), Stinebrickner and Stine-

brickner (2008). For a survey, see Lochner and Monge-Naranjo (2011).
6See our discussion of the literature below.
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to risk-averse students in an economy in which individual talents and e¤orts are not observed

by the lender, and future earnings are subject to risk.

Our main results are the following. We consider an economy with two unobservable

types of students, the talented (or low-risk) and the less-talented (high-risk) students, where

risk a¤ects earnings. On the labour market, the hard-working (high-e¤ort) talented types

earn a high wage with a higher probability than the low-e¤ort or the less-talented types. We

describe the set of second-best Pareto-optima by letting the social weight of types vary in

the social welfare function (i.e., a standard weighted average of utilities).

There are two broad categories of second-best optima, namely, the separating and

equal treatment optima. When the social weight of types is in the neighborhood of their

frequencies in the population of students, and therefore, in the vicinity of the standard

utilitarian case, the second-best optimal menu of contracts exhibits a form of pooling, called

equal treatment : the students�ex post payo¤s, net of loan repayments, are the same as a

function of the random individual outcome. In other words, net earnings as a function of

individual �success" or �failure" on the labour market should be independent of the student�s

type. But of course, in spite of being treated equally in this particular sense, students are ex

ante unequal, since the talented types have a greater probability of success. This �rst type of

solution is also characterized by bunching in the sense that it remains constant as a function

of social weights on an interval. This is not the allocation described in textbook treatments of

models of insurance under adverse selection à la Rothschild-Stiglitz7. To obtain the familiar

separating menu of loan contracts as a second-best optimum, we need to increase the weight

of the talented type relative to its natural frequency in the population. Hence, in the vicinity

of the standard utilitarian case, equal treatment (as de�ned above) is incentive compatible

and second-best optimal.

The optimal menu of contracts exhibits incomplete insurance: this is mainly due to

moral hazard. In the case of a separating optimum, both types are incompletely insured

but the talented types bear more risk than the less-talented. The less-talented obtain the

maximal amount of income smoothing compatible with incentives to exert high e¤ort. The

same incomplete insurance property also emerges in the pure adverse-selection case, when

7See Rothschild and Stiglitz (1976).
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repayments on loans are constrained to be non-negative.

As a by-product, we �nd that second-best optimal contracts are always income-

contingent. Finally, the budget is by construction balanced (we did not explore interest-rate

subsidies that would be �nanced by means of external sources of funds) but the second-best

optima typically exhibit cross-subsidies between types: the talented repay more and subsidise

the less-talented. If interpreted as a graduate tax, the second-best solution is progressive.

It is well-known that microeconomic models of insurance and models of banking are

formally close. Rothschild and Stiglitz�s approach to screening in insurance markets has

been applied to banking, albeit with adaptations (see, e.g., Bester (1985)). Classic theories

of credit contracts typically treat adverse selection and moral hazard separately (see Freixas

and Rochet (1998)). A contribution of the present paper is to propose a study of the structure

of second-best optima in a screening model à la Rothschild-Stiglitz, but with the added

complication of moral hazard, since outcome probabilities also depend on hidden actions8.

Student loans are a very natural application for the theory of incentives or Mechanism Design

under hidden actions and hidden types. The general theory of optimum (or equilibrium)

contracts under moral hazard, adverse selection and risk aversion is known to be a very hard

problem (see Arnott (1991) for comments and further references to unpublished essays on

this question9). Solutions can be exhibited when principal and agent are both risk-neutral

(see, e.g., Picard (1987) and Caillaud, Guesnerie and Rey (1992), see also the discussion

in La¤ont and Martimort (2002, chapter 7)). In the �eld of optimal regulation theory, a

few contributions have dealt with special cases (see, e.g., McAfee and McMillan (1986),

Baron and Besanko (1987), La¤ont and Rochet (1998)). An extension of Rothschild and

Stiglitz�s insurance market model to moral hazard, and hence the study of equilibria in

such an extended model, is proposed in the often quoted, but unpublished manuscript of

Chassagon and Chiappori (1997). Our model is very close to that of the latter contribution,

but Chassagnon and Chiappori did not study cross-subsidies between types and the set

of Pareto optima. Recent work on the Principal-Agent model in the case at hand required

advanced mathematical optimisation techniques (see Faynzilberg and Kumar (2000)) or used

8The structure of second-best optima in insurance markets with pure adverse selection has been studied
by Crocker and Snow (1985) and Henriet and Rochet (1990).

9For an early attempt, see Dionne and Lasserre (1985).
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stochastic calculus, as in the asset-pricing, continuous-time �nance literature (see, e.g., Sung

Jaeyoung (2005)). These intimidating technicalities mainly explain why we study a simple

textbook model here, but it conveys, we think, the essential intuitions and ideas (and yet,

some of the proofs are not straightforward). Finally, Chatterjee and Ionescu (2011) propose a

quantitative analysis of a model of student loans with moral hazard, exploring the feasibility

of o¤ering insurance against college-failure risk. But they do not treat adverse selection as

in the present paper, (i.e., in contrast to our approach, which is standard in the Mechanism

Design literature, Chatterjee and Ionescu (2011) rely neither on menus of contracts nor on

the revelation principle).

In the following, Section 2 describes the model, states basic assumptions, and studies

�rst-best optima. Section 3 is devoted to a preliminary analysis of the pure adverse selection

case. This is done �rst when cross-subsidies between student types are not permitted, yielding

a model à la Rothschild-Stiglitz. In this case, separating menus of loan contracts are optimal.

We then consider the pure adverse selection case with cross-subsidies, but under a non-

negative repayment constraint: the banker cannot also become an insurer. In this case,

we �nd the equal treatment and incomplete insurance result described above, even if moral

hazard plays no role. The result is due to the impossibility of negative loan repayments

in case of failure. Separating optima arise only if the social weight of talented types is

high enough. Finally, Section 4 presents the relatively more di¢ cult case in which adverse

selection and moral hazard are combined, and we �nd analogous results: the equal treatment

and incomplete insurance results are obtained when the social weights of types are close to

their respective population frequencies; separating menus of contracts are optimal only if the

social weight of the talented types is high enough.

2 A Simple Model

2.1 Basic Assumptions

We consider a population of students with the same von Neumann-Morgenstern utility u(:),

assumed di¤erentiable. There are two types of students, indexed by i = 1; 2. The types have
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di¤erent probabilities of success, denoted pi.

We assume that in case of "success", i.e., with probability pi, type i obtains a wage

w(q) on the labor market if he or she completed an education of quality q. In the case of

"failure", i.e., with probability 1� pi, the student gets the wage w0. We assume 0 < pi < 1;

the total cost of education is simply 
iq for quality q; the unit cost 
 is positive and depends

on type; w is a continuously di¤erentiable and strictly concave function of the nonnegative

real number q. In addition, we assume the following.

Assumption 1.

a) u(:) is strictly increasing and strictly concave.

b) w(q) � w0 for all q � 0.

c) p2 > p1.

d) 
1 � 
2

All students are risk-averse. The event of success on the labour market yields a wage always

greater than w0, and the type 2 are the "high types": they are at the same time more likely

to succeed and cheaper to educate.

A student loan is always covering the cost of education. So, the magnitude of a loan

to type i is 
iqi for an education of quality qi. Let (Ri; ri) denote the reimbursement pro�le.

Reimbursement is contingent on success. A type i student gets the income w(qi)� Ri with

probability pi and the income w0 � ri with probability 1� pi.

We will study cross-subsidies between student types. Let �i denote the frequency

of type i in the student population (we have �1 + �2 = 1). Assume that a public lending

authority distributes all loans; this public banker�s per capita resource constraint imposes,

�i�i(piRi + (1� pi)ri) � �i�i
iqi: (1)

Let ti denote the per capita subsidy of type i. By de�nition, we have,

ti = piRi + (1� pi)ri � 
iqi (2)

This variable must be interpreted as a tax if ti > 0 and as a proper subsidy if ti < 0. The

resource constraint is equivalent to �i�iti � 0. By de�nition, in this economy, an allocation,

(or a menu of contracts) is an array f(qi; Ri; ri)gi=1;2.
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2.2 First-Best Optimality

Denote Vi = piUi + (1� pi)ui, the expected utility of type i, where, by de�nition

Ui = u(w(qi)�Ri) and ui = u(w0 � ri): (3)

Let �1 and �2 be the weights of type 1 and type 2 in the welfare function. A �rst-best

optimum can be obtained as a solution of the following problem,

Maximize �1V1 + �2V2 (4)

subject to,

�i�i[piRi + (1� pi)ri � 
iqi] � 0: (5)

De�ne z(x) = u�1(x), the inverse utility function. We get

z(Ui) = w(qi)�Ri and z(ui) = w0 � ri: (6)

We these de�nitions, the �rst-best optimality problem can be rewritten as follows. Elimi-

nating Ri and ri from the problem and the above resource constraint, we obtain

Maximize
X
i

�i(piUi + (1� pi)ui) (7)

with respect to (qi; Ui; ui)i=1;2 subject to the resource constraint,X
i

�iBi(qi) �
X
i

�i(piz(Ui) + (1� pi)z(ui)); (RC)

where, by de�nition,

Bi(qi) = piw(qi) + (1� pi)w0 � 
iqi: (8)

The function Bi(qi) is the expected surplus of higher education for type i.

It is now easy to show that the e¢ cient choice of qi must maximize Bi(qi) for all

i = 1; 2. We necessarily have qi = q�i , where

piw
0(q�i ) = 
i; (9)

and where w0 denotes the derivative of w. This condition is necessary and su¢ cient since w

is concave, an it is also easy to check that B2(q�2) > B1(q
�
1), since p2 > p1 and 
1 � 
2. We

7



assume that the �rst-best education is interior and that the e¢ cient amount of education is

pro�table, on average, for both types. More precisely, we assume the following.

Assumption 2. q�i > 0, i = 1; 2; and B1(q
�
1) > w0.

The �rst-best problem is a convex problem, since z(:) is a convex function and the objective

is a linear function of utility levels Ui, ui. To write the �rst-order necessary conditions

for optimality, let � denote the Lagrange multiplier of the resource constraint. Standard

computations yield,

��iB
0
i(qi) = 0 (10)

�ipi = ��ipiz
0(Ui) (11)

�i(1� pi) = ��i(1� pi)z
0(ui) (12)

for all i and

B =
X
i

�i(piz(Ui) + (1� pi)z(ui)); (13)

where, to shorten notation, we de�ne B = �i�iBi(qi).

These equations together imply,

piw
0(q�i ) = 
i (14)

z0(U�i ) =
�i
��i

= z0(u�i ); (15)

z0(U�1 )

z0(U�2 )
=

�1=�1
�2=�2

: (16)

It follows that �rst-best optimality implies full insurance, that is, for all i,

U�i = u�i ; (17)

and if �i = �i for all i, in addition, we get full equality, i.e., U�1 = U�2 . These results are

standard consequences of risk aversion.

The above results describe an extremely idealized situation in which any degree of

redistribution is possible, and politically acceptable. Note that full insurance implies w(q�i )�

R�i = w0�r�i . Under Assumption 2, this impliesR�i�r�i = w(q�i )�w0 > 0, or w(q�i )�R�i�w0 =
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�r�i . So, if we require w(q�i ) � R�i � w0, i.e., if we want individuals to receive weakly more

in case of success than if they were not educated, this implies r�i � 0.

Note that there doesn�t exist an unconstrained optimum with r�i � 0 for all i. If

such an optimum did exist, then, because of full insurance, we would have w(q�i ) � R�i =

w0 � r�i � w0 or, equivalently, U�i � u(w0). But we would also have u�i � u(w0) and

�i�i(piz(U
�
i ) + (1 � pi)z(u

�
i )) � w0 < B�, a contradiction, since resources would then be

wasted.

If we do not permit negative repayments (i.e., if the banker is not an insurer), opti-

mality implies r�i = 0: we �nd a contingent reimbursement loan, in the ordinary sense that

no repayment is required in case of "failure".

The logic of political acceptability of the loan and transfer schemes should also lead

to consideration of individual rationality constraints for each type. We take these constraints

to be interim participation constraints, that is, for all i,

piu(w(qi)�Ri) + (1� pi)u(w0 � ri) � u0 = u(w0): (IRi)

IRi means that type i prefers to participate in the loan scheme with education over getting

the basic wage w0 for sure. We will also restrict the discussion of Pareto optima to allocations

satisfying IRi for all i. Note that if the solution satis�es IRi, by concavity of u, we have

u[pi(w(q
�
i )�R�i ) + (1� pi)(w0 � r�i )] � u(w0) and therefore

pi(w(q
�
i )�R�i ) + (1� pi)(w0 � r�i ) � w0: (18)

Now, reintroducing cross-subsidies, optimality also requires piR�i + (1 � pi)r
�
i = 
iq

�
i + t�i .

Substituting these relations in the above inequality yields Bi(q�i ) � w0 > t�i . This puts an

upper bound on the exploitation of type i by means of taxes. The IR constraints imply that

type i�s higher-education surplus cannot be fully extracted by the transfer system. The IR

constraints will typically hold strictly if the ratios �i=�i are not too di¤erent from 1.

If we now combine IRi with r�i = 0, then we obtain piu(w(q
�
i ) � R�i ) � piu0 or

equivalently, w(q�i ) � R�i � w0. Conversely, w(q�i ) � R�i � w0 and r�i = 0 imply IRi. We

conclude that if ri = 0, IRi holds if and only if Ri � w(q�i )� w0.
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2.3 First-best optimality when negative repayments are not per-

mitted

The �rst-best optimality problem under the nonnegative repayment constraints can be for-

mulated as follows. Maximize �i�i(piUi + (1� pi)ui) with respect to (qi; Ui; ui)i=1;2, subject

to the resource constraint RC, and the nonnegative repayment constraints

ui � u0; (NRi)

and

Ui � ui; (NRi)

where, by de�nition, u0 = u(w0) and ui = u(w(qi)). If we assume that the solution satis�es

Ui < ui, introducing the multipliers �i for the constraints ui � u0, i = 1; 2, and � for the

resource contraint RC, we easily get the following necessary conditions (i.e., Kuhn-Tucker

conditions). The problem being convex, these conditions are also su¢ cient.

z0(U�1 )

z0(U�2 )
=

�1=�1
�2=�2

;

0 = �i � �i�z
0(U�i );

�i = (1� pi)[�i � �i�z
0(u�i )]; (19)

� � 0; �i � 0; and �i(u
�
i � u0) = 0:

The resource constraint, holding as an equality, should be added to the above list. The

solution is the same as before, except that the full insurance property does not hold: we

have u�i = u0 instead. We must also have U�i > u0, for otherwise, available resources would

not be exhausted (and IR constraints would be binding). Remark now that since z0(:) > 0,

we must have � > 0, and

�z0(u0) < �z0(U�i ) =
�i
�i
:

We must check that all multipliers, and therefore ��i , are nonnegative. Using (19), we get

��i > 0. This con�rms that u
�
i = u0 is the right solution here.

Using the resource constraint and the relations z(u0) = w0 and z(U�i ) = w(q�i )� R�i ,

it is easy to check that RC boils down toX
i

�i
iq
�
i =

X
i

�ipiR
�
i ; (20)
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that is, total education costs are covered by the total sum of expected reimbursements10.

Again, we get full equality (without full insurance) in the particular case in which

�i = �i, since in this case, the �rst necessary condition above implies U�1 = U�2 . Full equality

is driven by risk aversion, since in this utilitarian framework, risk aversion determines a

certain degree of social aversion for inequality. A benevolent utilitarian planner would like

to insure each type of agent against the consequences of failure, but would also insure every

individual, ex ante, against the risk of being less talented: hence the equalization property.

Since there are no repayments in case of failure, the resource constraint imposes

R�i > 0 for at least one i. We neglect possible corner solutions in which R
�
i = 0 for some i.

These corner solutions may appear11 for values of �1 that are small enough (or large enough).

So, we in fact assume that in an open neighborhood of �1, the values of �1 generate solutions

that are interior in the sense that R�i > 0 for all i.

3 Asymmetric Information and Second-Best Optima

Let us now study the case in which types are not observed by public authorities, the banker

and the higher education institutions. By de�nition, second-best optimal (or interim e¢ -

cient) allocations maximize a weighted sum of the student�s expected utilities, subject to

resource-feasibility and incentive-compatibility (hereafter, the IC constraints). Students self-

select in a menu of contracts proposed by the public authorities. The allocation determines

utility values (Ui; ui) a quality qi and a subsidy ti for each type i.

10Note that u�i = u0 and U�i = ui for all i is impossible since this would imply �i�i(piz(U�i ) + (1 �
pi)z(u

�
i )) = �i�i(piS(q

�
i ) + (1� pi)w0) > B�, and as soon as q�i > 0 (something we assume here), the latter

inequality shows that the resource constraint would then be violated.
11There are also corner solutions in which either IR1 or IR2 are binding, when the welfare weights �i take

extreme values. We do not decribe these solutions in details here. Note �rst that IR constraints cannot bind
simultaneously (this would contradict the resource-exhaustion property). If �2 is su¢ ciently larger than �2,
(or equivalently, �1 is su¢ ciently smaller than �1) we �nd an optimal �rst-best solution in which IR1 is
binding (type 1 is fully exploited). We then obtain u�1 = U

�
1 = u0 = u

�
2 and U

�
2 is determined by the resource

constraint. The same type of corner solution holds, mutatis mutandis, if �2 is su¢ ciently smaller than �2,
and IR2 is then binding.
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3.1 Incentive compatibility constraints

An allocation is incentive compatible if it satis�es the following constraint, for all i and all

j 6= i, i; j = 1; 2.

piUi + (1� pi)ui � piUj + (1� pi)uj; (ICi)

This formulation is standard. Adding up the IC constraints immediately yields

(p2 � p1)(U2 � U1) � (p2 � p1)(u2 � u1)

and p2 > p1 implies the property

U2 � u2 � U1 � u1: (D)

This property has important consequences. If type 1 is fully insured, i.e., U1 = u1, then type

2 gets more in the good state, i.e., U2 � u2. But if type 2 is fully insured, i.e., U2 = u2,

then, type 1 gets more in the bad state, i.e., u1 � U1.

Another consequence of the IC constraints is the following. Since ICi can be rewritten

pi(Ui � Uj) � (1� pi)(uj � ui), we get the string of inequalities,

p2
1� p2

(U2 � U1) � u1 � u2 �
p1

1� p1
(U2 � U1): (IC)

An immediate consequence is the following.

Result 1.

IC constraints imply

U2 � U1; (21)

and,

u1 � u2: (22)

Proof : Since p2 > p1, if U1 was strictly greater than U2 we would get a contradiction. IC

above shows that U2 � U1 implies u1 � u2 � 0.

Q.E.D.
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Result 2.

a) If IC1 and IC2 are simultaneously binding, then U2 = U1 and u1 = u2: we get

equal treatment (but not necessarily full insurance).

b) If equal treatment doesn�t hold, then, either IC1 or IC2 is binding or none of them

(but not both).

c) Under IC1 and IC2, then u1 = u2 if and only if U2 = U1.

Proof : The proofs of Results 2a and 2b are trivial, since p2 > p1. Result 2c follows from the

fact that u1 = u2 and IC imply U2 � U1 � 0 � U2 � U1 and therefore U2 = U1. But we also

have that IC and U2 = U1 imply u1 = u2.

Q.E.D.

3.2 Second-best optimality when cross-subsidies are not allowed

We start with the simplest case in which cross-subsidies between types are not allowed.

This case is closest to a model of discrimination à la Rothschild-Stiglitz in which perfect

competition between lenders would forbid cross-subsidies12. In this special case, there are

two resource constraints (or two pro�tability constraints). For each type i, we must have

piRi + (1 � pi)ri � 
iqi. Using the inverse utility formulation, the latter constraint is

equivalent to

pi(w(qi)� z(Ui)) + (1� pi)(w0 � z(ui)) � 
iqi;

or equivalently,

Bi(qi) � piz(Ui) + (1� pi)z(ui): (RCi)

The second-best optimum problem (or interim incentive e¢ ciency problem) can be stated

as follows.

Maximize �i�i(piUi + (1� pi)ui), with respect to (qi; Ui; ui)i=1;2, subject to the con-

straints ICi, and RCi, for all i.

We assume that the solution satis�es IRi constraints as strict inequalities (which is

the typical case here). Note that � doesn�t play any role here, since there are no transfers of

12See Rothschild and Stiglitz (1976), Wilson (1977).
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income between types. Note in addition that we ignore the nonnegative repayment constraint

too.

The �rst-order (i.e., Kuhn-Tucker) conditions of the second-best optimality problem

are the following:

�iB
0
i(qi) = 0 (FOC0)

�1p1 + �1p1 � �2p2 = �1p1z
0(U1); (FOC1)

�2p2 + �2p2 � �1p1 = �2p2z
0(U2); (FOC2)

�1(1� p1) + �1(1� p1)� �2(1� p2) = �1(1� p1)z
0(u1); (FOC3)

�2(1� p2) + �2(1� p2)� �1(1� p1) = �2(1� p2)z
0(u2); (FOC4)

where �i � 0 is the Lagrange multiplier of RCi and �i is the multiplier of ICi. To these

conditions we must add the original RC and IC constraints and the complementary slackness

equalities. Note that in the above conditions, all multipliers must be nonnegative. Using

familiar techniques, it is possible to prove directly that we must have qi = q�i in this second-

best problem13. The �rst result that we state shows which IC constraint is binding at the

optimum.

Lemma 1. If cross-subsidies are not permitted, and if nonnegative repayment constraints

are ignored, at a second-best optimum, IC1 is binding.

For proof, see the Appendix.

Using Lemma 1, we can now prove the following proposition.

Proposition 1. If cross-subsidies are not permitted, and if nonnegative repayment con-

straints are ignored, at a second-best optimum, IC1 is binding and IC2 is slack. The second-

best optimal solution is such that education levels are �rst-best e¢ cient, i.e., qi = q�i ; RCi

is binding for all i; we have,

U��2 > U��1 = u��1 > u��2 ;

13An alternative route is to prove that �i > 0, since B
0
i(q

�
i ) = 0 (for instance, see the Appendix, this is a

by-product of the proof of Proposition 1).
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where U��1 = u(B1(q
�
1)), and (U

��
2 ; u

��
2 ) is determined by the intersection of IC1 and RC2.

For proof, see the Appendix.

Note in passing that the second-best allocation of Proposition 1 is independent of � (but

Lagrange multipliers are functions of �). We state this result as a corollary.

Corollary 1. The second-best optimal solution of Proposition 1, obtained when cross-

subsidies are not permitted, and when the nonnegative repayment constraints are ignored,

is independent of �, that is,

@

@�2
(U��2 ; u

��
2 ; U

��
1 ; u

��
1 ) = 0:

Proof : The proof of Proposition 1 shows that the menu of contracts ((U��1 ; u
��
1 ); (U

��
2 ; u

��
2 )) is

fully determined by four equations: U��1 = u��1 (�rst equation); RC1 fully pins down (U
��
1 ; u

��
1 )

(second equation); while (U��2 ; u
��
2 ) is determined, knowing U

��
1 , by the intersection of RC2

(third equation) and IC1 (fourth equation). None of these equations involves parameter �.

Q.E.D.

This second-best optimum can be decentralized as a competitive equilibrium in the

sense of Rothschild-Stiglitz (1976), with the menu of contracts ((U��1 ; u
��
1 ); (U

��
2 ; u

��
2 )), under

the usual conditions. To check this, let ((bu; bU); (bu; bU)) denote a pooling contract. Strictly
speaking, this contract pools types in the utility space, but it does not necessarily pool types

in the contract space. Pooling in the usual sense, i.e., in the contract space, means q1 = q2,

r1 = r2, R1 = R2; pooling in the utility space does not imply pooling in the contract space

since U1 = U2 implies w(q�2) � w(q�1) = R2 � R1, and therefore R2 > R1. By de�nition, the

pooling allocation (bu; bU) is feasible if and only if,
p�z(bU) + (1� p�)z(bu) �X

i

�iBi(q
�
i ) = B�;

where by de�nition, p� = �1p1+�2p2. This contract has the desirable full-insurance property

if and only if bu = bU , and feasibility then implies z(bu) = P
i �iBi(q

�
i ) or bu = u(B�). By
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de�nition, u(B�
1) < bu, so that type 1 prefers the pooling contract to (u��1 ; u��1 ). Type 2 is not

attracted by this contract if and only if,

p2U
��
2 + (1� p2)u

��
2 > bu = u(B�);

or, equivalently,

z[p2U
��
2 + (1� p2)u

��
2 ] > B�: (NP )

But the convexity of z and RC2 imply,

z[p2U
��
2 + (1� p2)u

��
2 ] < p2z(U

��
2 ) + (1� p2)z(u

��
2 ) = B2(q

�
2):

Clearly, the no-pooling inequality (i.e., NP ) will be violated if �1, the frequency of type 1,

is low enough, for in this case, B� would be very close to B2(q�2). We can therefore state the

following result.

Proposition 2. If the frequency �1 of type 1 is high enough, so that NP holds, the second-

best optimum, ((U��1 ; u
��
1 ); (U

��
2 ; u

��
2 )), where U

��
1 = u��1 = u(B1(q

�
1)), and where (U

��
2 ; u

��
2 ) is

determined by the intersection of IC1 and RC2, is a competitive equilibrium of the lending

market in the sense of Rothschild-Stiglitz.

3.3 Second-best optimality with cross-subsidies

We now study the more complicated case in which cross-subsidies are permitted, and the

nonnegative repayment constraints are imposed. To �x ideas, assume that a public lending

agency chooses the menu of loans proposed to students and implements the redistributive

taxes and subsidies. The public agency should try to maximize �i�i(piUi + (1� pi)ui) with

respect to (Ui; ui), i = 1; 2 subject to ICi, RC andNRi, i = 1; 2. We assume that the solution

satis�es the IR constraints and NR constraints to clarify the analysis. We expect that the

latter constraints will typically be satis�ed if the choice of weights � is not too extreme. In

addition, IC and NR1 together imply NR2, since we must have u2 � u1 � u0. It follows

that we can ignore NR2. Let then �, �i, i = 1; 2 and � be the Lagrange multipliers of RC,

ICi, and NR1 respectively. Kuhn and Tucker�s Theorem tells us that these multipliers must
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be nonnegative. The �rst-order conditions for a second-best optimum (or interim e¢ cient

allocation) can easily be derived, as follows,

��iB
0
i(qi) = 0 (FOC0)

�1p1 + �1p1 � �2p2 = ��1p1z
0(U1); (FOC1)

�2p2 + �2p2 � �1p1 = ��2p2z
0(U2); (FOC2)

�1(1� p1) + �1(1� p1)� �2(1� p2) = ��1(1� p1)z
0(u1) + �; (FOC3)

�2(1� p2) + �2(1� p2)� �1(1� p1) = ��2(1� p2)z
0(u2): (FOC4)

And we must add the complementary slackness conditions, that is, �(u1 � u0) = 0, �[B� �

�i�i(piz(Ui) + (1 � pi)z(ui))] = 0, etc. From these conditions, we can derive a number of

results. Note �rst that, adding FOC1 and FOC2, we easily derive

� =
�1p1 + �2p2
�i�ipiz0(Ui)

> 0:

Therefore RC is binding and from FOC0, education levels are again undistorted, i.e.,

B0
i(qi) = 0 and qi = q�i for all i. We then easily derive the following crucial Lemma.

Result 3. At a second-best optimal solution, if IC2 is binding then IC1 is also binding.

Proof. If IC2 is binding and IC1 is slack, we have �1 = 0. Since IC and IR1 constraints

hold, we know from Result 1 that

U2 > U1 > u0 � u1 > u2:

FOC2 and FOC4 yield,

�2 + �2 = ��2z
0(U2); (FOC4a)

�2 + �2 = ��2z
0(u2): (FOC2a)

Since � > 0, it immediately follows that z0(U2) = z0(u2), and therefore, u2 = U2. This is a

contradiction since this implies U2 = U1 = u0 = u1 = u2 under IC constraints. We conclude

that both IC constraints must be binding if IC2 is binding.

Q.E.D.
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In this new context, the solution varies with the social weights �. The next result gives us

one of the possible structures of the solution, with IC1 binding. This solution arises if the

talented are su¢ ciently overweighted, that is, if �2 is su¢ ciently higher than �2.

Proposition 3. (The talented bear more risk when favored). Suppose that a second-best

solution satis�es IR and NR constraints as strict inequalities, then, IC constraints are not

both binding, only if �2 > �2 (overweighting of the talented), and then

U��2 > U��1 > u0 = u��1 > u��2 : (23)

The solution, if it exists, is determined by the intersection of u��1 = u0, IC1, RC expressed

as equalities and the necessary condition

�2[�i�ipiz
0(U��i )]

�2[�1p1 + �2p2]
=
[p2(1� p1)z

0(U��2 )� p1(1� p2)z
0(u��2 )]

[p2 � p1]
: (C)

For proof, see the Appendix.

Remark that in the cases described by Proposition 3, that is, when �2 is large enough, the

second-best allocation depends on parameter �. Now, in contrast, if �2 is close to �2, or if �2

is smaller than �2, the second-best solution is egalitarian (in a certain sense) with maximal

insurance (i.e., we �nd an allocation with contingent reimbursement loans, not the same

thing as full insurance), and involves a form of bunching with respect to �.

Proposition 4. (Equal treatment as a second best). Suppose that a second-best solution

satis�es IR and NR constraints as strict inequalities, and that u��1 = u��2 = u0. Then, we

�nd a second-best optimum such that IC1 and IC2 are both binding, �i�ipiR��i = �i�i
iq
�
i

and U��1 = U��2 , if �2 is smaller than a threshold L2, with �2 < L2 < 1.

For proof, see the Appendix.

Again we can state a corollary on the local e¤ect of � on the second-best allocation.

Corollary 2. (Bunching with respect to �) The second-best optimal solution of Proposition

4, obtained when cross-subsidies are permitted, but when nonnegative repayment constraints

are imposed, is independent of �, when �2 < L2, we have,

@

@�2
(U��2 ; u

��
2 ; U

��
1 ; u

��
1 ) = 0:
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Proof : From the proof of Proposition 4, we see that the menu of contracts ((U��1 ; u
��
1 ),

(U��2 ; u
��
2 )) is fully determined by four equations: (i), u

��
1 = u0; (ii), u��2 = u0; (iii), IC

constraints then imply U��1 = U��2 = U��; (iv), given the values of (u��1 ; u
��
2 ), the remaining

value of U�� is pinned down by RC. None of these equations involves parameter �.

Q.E.D.

From Propositions 3 and 4 and from the fact that the FOCs are necessary and suf-

�cient in our model, we conclude that the second-best optimum�s structure depends on the

social welfare weight �2 in a simple way.

Corollary 3. (Optimality of contingent reimbursement loans) Among the second-best op-

tima satisfying IR andNR constraints as strict inequalities, there are two types of allocations.

First, if the weight of talented types is not too high, more precisely, if �2 � L2 where L2

is a threshold such that �2 < L2 < 1, the second-best optimum equalizes opportunities, in

the particular, but legitimate sense that u��1 = u��2 and U��1 = U��2 : we call this the equal

treatment property. In addition, the second-best provides maximal insurance under nonneg-

ative repayment constraints (i.e., in the bad state, there are no repayments). If �2 > L2,

the second-best optimum is such that U��2 > U��1 > u0 = u��1 > u��2 , that is, maximal insur-

ance is provided to the less talented in the form of a contingent repayment loan, with zero

repayment in the bad state, while, due to IC constraints, the talented types are less than

maximally insured: they face higher risks in the form of positive repayments in the bad state

and higher rewards in the good state.

Remark 1. (Equal treatment or pooling?) Note that the e¢ cient allocations of Proposition 4,

are not pooling contracts in the usual sense. This is because, according to usual terminology,

a pooling contract should be de�ned by the property r��1 = r��2 , R
��
1 = R��2 and q��1 = q��2 .

Here, we have r��1 = r��2 = 0 but U��1 = U��2 implies R��2 > R��1 since we have q��1 = q�1 <

q��2 = q�2, and R
��
2 � R��1 = w(q�2) � w(q�1) > 0. Hence, the talented reimburse more than

the less-talented, in case of success. The "egalitarian" solution of Proposition 4 would be a

pooling contract in the usual sense, i.e., as in a simple Rotschild-Stiglitz model of insurance

under adverse selection if we imposed q1 = q2 or if w(q) was a constant. But the di¤erent

student-types choose di¤erent levels of education and therefore, the two IC constraints can
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be simultaneously binding while the repayment pro�le of the types is not the same. In other

words, pooling takes place in the net income space, but not in the contract space14.

Remark 2. (Generic cross-subsidization) The incentive e¢ cient allocations obtained with

�2 � �2 may typically involve a cross-subsidy from the talented in favor of the less-talented.

There is a cross-subsidy between types if p2R��2 6= 
2q
�
2, or equivalently, if B

�
2 6= p2z(U

��
2 ) +

(1�p2)z(u0). In essence, when �2 � �2, optimality with cross-subsidies involves equalization

with U��2 = U��1 and u��2 = u��1 = u0, but, since B�
2 > B�

1 , given the resource constraint, the

talented will typically subsidize the less talented. When �2 > �2, the second-best solution

will typically also exhibit cross-subsidization. This is because e¢ ciency requires some degree

of insurance of the students against the ex ante risk of being less talented (and therefore, the

risk of receiving a smaller income, even in case of success). This type of insurance motive

exists for all values of �2 but of course, redistribution disappears in the extreme case �2 = 1

(in which IR1 is binding).

Remark 3. (First-best and second-best allocations are di¤erent) Note that, under nonegative

repayment constraints, the second-best doesn�t coincide with the �rst best. This is because

�rst-best optimality involves U�1 = U�2 only if �2 = �2 (see subsection 2.3. above). For values

of �2 strictly smaller than �2, full equality is not required by �rst-best optimality. Indeed,

we have checked that the multipliers of IC constraints ���1 and ���2 are strictly positive,

therefore, the �rst-best condition, i.e., ��iz0(U�i ) = �i for all i is violated, as can be checked

with a glance at FOC1 and FOC2. The equal treatment property is imposed as a way of

taking care of incentive compatibility constraints, and thus, when �2 6= �2, it is a source of

sub-optimality.

Corollary 4. (Generic suboptimality of second-best allocations)

The second-best and �rst-best allocations coincide only when �2 = �2. The second-best

allocation is however e¢ cient when �2 < L2, since U��2 = U��1 and u��2 = u��1 = u0 is one of

the �rst-best optima, obtained when �2 = �2, under nonegative repayment constraints

E¢ ciency doesn�t mean optimality here: this is because the choice of � picks a particular

e¢ cient allocation on the Pareto frontier. Corollary 4 says that the second best may be �rst-
14As usual if IC1 and IC2 are both binding, we assume that type i chooses qi = q�i , i = 1; 2 .
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best e¢ cient for �2 < L2, because the second-best allocation is on the Pareto frontier, but it

doesn�t pick the right optimum, given �. This is obvious because the appropriate optimum

is not egalitarian when �2 6= �2. We have found a case of "equalization as a second-best":

redistribution is not driven by the social planner�s objective function or the welfare weights,

it is just the best way of taking care of incentives for a range of welfare weights.

Remark 4. Equal treatment in the above sense is neither the ex post nor the ex ante equality

of types. The equality result of Proposition 4 is not an equality of outcomes, neither between,

nor within types. An independent, random chance draw determines the ex post result for

each student, so, there will be successful and unsuccessful persons in the population of

each type. Ex post, under the second-best optimal policy, all "losers" will be equal and all

"winners" will be equal in utility or net income terms, whichever their type. But the types

do not face the same repayment in case of success. Of course, there are more unsuccessful

people in the population of type-1 students, since p1 < p2. It follows from this that, ex ante,

type-2 students have a higher expected utility than type-1 students. It is in this sense that

the second-best solution doesn�t implement a full equality of outcomes.

Remark 5. (Decentralization and cream-skimming) It is not possible to �nd a simple equiv-

alent of the second welfare theorem in this context. When the weight of talented types is

close to their frequency in the population, or when �2 < L2, the incentive e¢ cient allocation

exhibits equalization (or pooling in the utility space). If supplied by commercial banks under

competition, the second-best optimal menu of contrats would just break even and yield zero

pro�ts. The cross-subsidization of high risks by low risks, which is typical of this situation,

opens the possibility of competitive cream-skimming by an entering company. Suppose that

a banker o¤ers exactly the second-best optimal menu of contracts obtained when �2 = 1.

This allocation is separating, it is also the best possible for the low-risk, talented types and

necessarily, the individual rationality constraint IR1 of the less-talented and IC1 are bind-

ing. In addition, it is not di¢ cult to see that this allocation entails maximal insurance for

the less-talented, because it is the cheapest way of ensuring their participation. If such a

menu is o¤ered, (i), the talented will obviously desert the pooling allocation, because they

are exploited in favor of the less talented, and choose the new contract; (ii), the old pooling

menu of contracts will be rendered unpro�table and will be withdrawn from the market;
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�nally (iii), the less-talented will choose the maximal insurance contract in the new menu,

and the entrant breaks even. Competition will then favor the talented types, as already

noted by Miyazaki15 (1977). The competitive equilibrium in this market is called a Wilson-

Miyazaki equilibrium (cf. Wilson (1977), Crocker and Snow (1985)). An equilibrium in the

sense of Wilson-Miyazaki is a pro�table menu of contracts such that no other menu can

enter the market, attract customers, and earn a nonnegative pro�t, even after the menus

rendered unpro�table by the new entry have been withdrawn16. The separating allocation

which maximizes the utility of the talented under IC, IR, RC and nonnegative repayment

constraints is a Wilson-Miyazaki equilibrium because any separating, second-best allocation

which doesn�t maximize the utility of the talented can be driven out of the market by the

former menu. This means that, in general, incentive e¢ cient allocations with cross-subsidies

cannot be decentralized as market equilibria, even as Wilson-Miyazaki equilibria. Public

intervention is needed to implement the second-best optimum with equal opportunities.

4 Moral Hazard and Adverse Selection Combined

Until now, we have studied a pure adverse selection problem in which individual e¤ort

doesn�t play a rôle. But of course, moral hazard, that is, problems posed to lenders by the

unobservable actions of borrowers, should be introduced into the picture. We endeavor to

do just this with a simple representation of the student�s hidden e¤ort. The e¤ort variable

of type i, denoted ei, can take two values only: 0 or 1. The cost of e¤ort is type-dependent

and de�ned as ciei where ci > 0 is a parameter; it is additively separable. E¤ort ei is strictly

individual in the sense that it a¤ects the probability of a good outcome for the individual

who exerted it, without any in�uence on the outcomes of other individuals. The probability

of success is a function of e¤ort, i.e., p = pi(ei). To simplify notation, denote Pi = pi(1) and

15Miyazaki (1977) was one of the �rst to study competition by means of menus of contracts with cross-
subsidies. See also Spence (1978).
16For a discussion of this equilibrium concept, and variants, see Hellwig (1987), Henriet and Rochet (1990),

Dionne et al. (2000).
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pi = pi(0).

Assumption 3. We assume that e¤ort raises the probability of success for each type, that

is Pi > pi, i = 1; 2, and P2 > P1; p2 > p1.

We now have a generalized Principal-Agent problem in the sense of Myerson (1982)

and we apply the extended revelation principle (see also La¤ont and Martimort (2002)). The

constraints are now revelation and obedience constraints: the students should simultaneously

self-select by choosing the right contract in the menu and exert the right amount of e¤ort.

Assuming that high e¤ort is e¢ cient (the only interesting case here), we can now write the

incentive constraints as follows:

PiUi + (1� Pi)ui � PiUj + (1� Pi)uj; (ICi)

PiUi + (1� Pi)ui � ci � piUi + (1� pi)ui; (MHi)

PiUi + (1� Pi)ui � ci � piUj + (1� pi)uj; (ICi)

for all i = 1; 2 and j 6= i. Constraint ICi says that type i should not be tempted to pose

as type j while exerting high e¤ort. Constraint MHi says that type i should prefer to exert

high e¤ort over low e¤ort and honestly revealing her (his) type. Constraint ICi says that

type i prefers high e¤ort to low e¤ort and posing as type j. Constraints ICi being essentially

the same as before, Results 1 and 2, properties D and IC still hold here, with Pi instead of

pi. It is not di¢ cult to see that MHi can be rewritten as, (Pi � pi)(Ui � ui) � ci, or

Ui � ui � Ki (MHi)

where by de�nition,

Ki =
ci

Pi � pi
: (24)

Moral hazard will thus force a minimal gap between the reward of success and that of

failure. It is natural to assume that type 2 is more e¢ cient than type 1 while exerting e¤ort.

Formally, we assume the following.

Assumption 4. K1 � K2 � 0.

We then easily �nd the following results.
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Result 4. Under Assumption 4, if IC1, IC2 and MH1 hold, then MH2 is satis�ed.

Proof : From ICi, i = 1; 2, we derive condition D and we obtain the following string of

inequalities:

U2 � u2 � U1 � u1 � K1 � K2;

so MH2 holds true.

Q.E.D.

The ICi constraints are an added di¢ culty, but we can in fact ignore them, as shown

by Result 5.

Result 5. Under Assumption 4,

a) if ICi, i = 1; 2 and MH1 hold, then IC1 is satis�ed.

b) if IC2 is satis�ed, and if, in addition, IC1 and MH1 are binding, then, IC2 is

satis�ed.

Proof : (a) If IC1 holds, then,

(1� P1)(u1 � u2) � P1(U2 � U1);

and since under IC, U2�U1 � 0, and we assumed P1 > p1, we also have (1� p1)(u1� u2) �

p1(U2 � U1). But MH1 implies c1 � (P1 � p1)(U1 � u1) � 0. This trivially implies

(1� p1)(u1 � u2) � p1(U2 � U1) + c1 � (P1 � p1)(U1 � u1); (25)

and rearranging terms we get the equivalent inequality,

P1U1 + (1� P1)u1 � c1 � p1U2 + (1� p1)u2;

but this is exactly IC1.

(b) Given that MH1 is binding, IC2 can be expressed as follows,

P2U2 + (1� P2)u2 � c2 � p2(u1 +K1) + (1� p2)u1 = u1 + p2K1: (IC2 +MH1)

Combining IC1 and MH1, holding as equalities, we easily obtain,

u1 + P1K1 = P1U2 + (1� P1)u2: (IC1 +MH1)
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Substituting the value of u1 derived from (IC1 +MH1) in (IC2 +MH1) yields, after some

rearrangement of terms,

(P2 � P1)(U2 � u2) � c2 + (p2 � P1)K1:

Dividing both sides by (P2 � p2) > 0 and rearranging terms, we obtain,

(U2 � u2)

�
P2 � P1
P2 � p2

�
� K2 +

p2 � P1
P2 � p2

K1:

From condition D and MH1 we know that U2 � u2 � U1 � u1 = K1. In addition, (P2 �

P1)=(P2 � p2) = 1 + (p2 � P1)=(P2 � p2) > 0. Hence, the following string of inequalities:

(U2 � u2)

�
P2 � P1
P2 � p2

�
� K1

�
1 +

p2 � P1
P2 � p2

�
� K2 +

p2 � P1
P2 � p2

K1;

since, by Assumption 4, K1 � K2. This shows that IC2 is satis�ed when IC2 holds and

when IC1 and MH1 are equalities.

Q.E.D.

The second-best optimality problem can now be de�ned. The benevolent public

banker should maximize �i�i(PiUi+(1�Pi)ui� ci) with respect to (Ui; ui), i = 1; 2 subject

to RC, ICi, i = 1; 2, MH1 and IC2. (We assume again that IRi constraints are satis�ed by

the solution.) To study this problem, we will also temporarily ignore (i.e., relax) constraint

IC2 and check at the end the conditions under which it is satis�ed. Let �, �, �1 and �2 be the

nonnegative Lagrange multipliers of, respectively, constraints RC, MH1, IC1 and IC2. The

�rst-order conditions (i.e., Kuhn-Tucker conditions) for the second-best optimality problem

are the following.

��iB
0
i(qi) = 0 (FOC0c)

�1P1 + �1P1 � �2P2 + � = ��1P1z
0(U1); (FOC1c)

�2P2 + �2P2 � �1P1 = ��2P2z
0(U2); (FOC2c)

�1(1� P1) + �1(1� P1)� �2(1� P2)� � = ��1(1� P1)z
0(u1); (FOC3c)

�2(1� P2) + �2(1� P2)� �1(1� P1) = ��2(1� P2)z
0(u2); (FOC4c)

with the complementary slackness conditions, i.e., �(U1�u1�K1) = 0, �[B���i�i(Piz(Ui)+

(1 � Pi)z(ui))] = 0, (in the expression of B�, Pi should now be used instead of pi), etc.
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These conditions are necessary and su¢ cient for an optimum, because as noted above, the

problem is convex. It follows from this that if we �nd a solution in which all multipliers are

nonnegative, we have found the solution.

We now prove two useful preliminary results, the proof of which relies on �rst-order

conditions.

Result 6. If IC1 and IC2 are binding, then, MH1 must be binding at the second-best

optimum.

Proof : If IC1 and IC2 are binding, then U1 = U2 = U and u1 = u2 = u. Suppose that MH1

is slack, i.e., U1 > u1 + K1, at the second-best optimum, then � = 0. Adding equations

FOC1c to FOC4c, we easily �nd,

� =
1

P�z0(U) + (1� P�)z0(u)
> 0;

where P� = P1�1 + P2�2. With � = 0, FOC1c and FOC3c form a linear system in (�1; �2);

that is,

�1P1 � �2P2 = P1[��1z
0(U)� �1];

�1(1� P1)� �2(1� P2) = (1� P1)[��1z
0(u)� �1];

This system has a nonzero determinant, equal to P2 � P1 > 0, and a unique solution

(��1; �
�
2). It is easy to check that,

��2 =
P1(1� P1)

P2 � P1
��1 (z

0(u)� z0(U)) :

But, now, MH1 implies U > u, hence z0(u) � z0(U) < 0 and ��2 < 0. This is a violation

of Kuhn-Tucker conditions, since all multipliers must be non-negative. We have found a

contradiction.

Q.E.D.

We then �nd that if a single IC constraint is binding at the optimum, it must be IC1.

Result 7. At the second-best optimum, if IC2 is binding, then, IC1 must be binding too.
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Proof : If IC2 is binding, and IC1 is slack, then �1 = 0. Adding the four FOC conditions

together, we easily check that � > 0. Using FOC2c and FOC4c, we almost immediately

obtain,

��2z
0(u2) = �2 + �2 = ��2z

0(U2);

and therefore, u2 = U2. This contradicts the fact that IC1 is slack.

Q.E.D.

A further study of FOCs yields the following proposition.

Proposition 5. (Equal treatment as a second best under moral hazard and adverse selection)

Consider the second-best solutions satisfying IR constraints as strict inequalities. There

exists a nonempty open interval (L2; L2), including �2, such that if �2 2 (L2; L2), then,

under moral hazard and adverse selection, the second-best optimal solution has the following

properties: eU1 = eU2 = eU; eu1 = eu2 = eu (equal treatment);

eU = eu+K1 (incomplete insurance);

RC, MH1, IC1 and IC2 are all binding. If, in addition, K1 > K2, then MH2, IC1 and IC2

hold as strict inequalities.

Proof : The FOCs can be rewritten,

�1P1 � �2P2 + � = P1[��1z
0(U1)� �1]; (FOC1d)

�2P2 � �1P1 = P2[��2z
0(U2)� �2]; (FOC2d)

�1(1� P1)� �2(1� P2)� � = (1� P1)[��1z
0(u1)� �1]; (FOC3d)

�2(1� P2)� �1(1� P1) = (1� P2)[��2z
0(u2)� �2]: (FOC4d)

Our optimum candidate exhibits equal treatment, eU1 = eU2 = eU , eu1 = eu2 = eu, since both
IC constraints are binding. By Result 6 above, MH1 must be binding too. This imposeseU = eu+K1. Adding the four FOCd equations easily yields,

e� = 1

P�z0(eU) + (1� P�)z0(eu) > 0; (26)
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where P� = P1�1 + P2�2. It follows that RC is binding and that (eU; eu) is fully determined
by the intersection of RC andMH1. We also �nd that FOC0c implies qi = q�i , since e��i > 0.
Adding FOC1d and FOC2d, we derive an expression for �. Adding FOC3d and FOC4d, we

derive another expression for �. The two expressions must be equal, hence,

e� = P�e�z0(eU)� P� = (1� P�)� (1� P�)e�z0(eu); (27)

and since e� � 0, we must have,
P�e�z0(eU) � P� and (1� P�) � (1� P�)e�z0(eu): (28)

Substituting the value of e� obtained above, it is easy to check that these two inequalities are
equivalent and that we must have,

P�
P�
� z0(eU)
P�z0(eU) + (1� P�)z0(eu) : (29)

Now, since eU > eu, we see that the above inequality yields an upper bound for �2. The latter
parameter may be greater than �2, since the right-hand-side ratio in (29) is greater than

one.

Finally, we must check that the associated multipliers e�i are nonnegative. FOC2d
and FOC4d provide us with a linear system of equations for (�1; �2). The determinant of

this system is P2 � P1 > 0, so that there is a unique solution (e�1; e�2). We easily derive,
e�1 =

�2P2(1� P2)e�
P2 � P1

[z0(eU)� z0(eu)] > 0: (30)

e�2 =
1

P2 � P1

he��2[P2(1� P1)z
0(eU)� P1(1� P2)z

0(eu)]� �2[P2 � P1]
i
: (31)

Note that if �2 = �2, then e�2 > 0. To see this, remark that when �2 = �2, the conditions

on e� above imply e�z0(eU) > 1 and �e�z0(eu) > �1. We use these inequalities to show that 0
is a lower bound for e�2, as follows,

e�2 > �2
P2 � P1

[[P2(1� P1)� P1(1� P2)]� [P2 � P1]] = 0:

By continuity, there exists an interval [L2; L2] of values of �2, including �2, such that all

multipliers are nonnegative. By Result 5, we know that both ICi constraints are satis�ed.

By Result 4, we know that MH2 is also satis�ed.
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Q.E.D.

Note that in the statement of Proposition 5, we cannot let �2 go to zero because we

consider only optima such that IR2 is satis�ed as a strict inequality. In this context, we

again �nd a bunching property.

Corollary 5. (Bunching with respect to �) The second-best optimal solution of Proposition

5, obtained when cross-subsidies are permitted, under moral hazard and adverse selection,

is independent of �, when �2 is small enough, i.e., if �2 < L2, we have,

@

@�2
(eU2; eu2; eU1; eu1) = 0:

Proof: The second-best allocation is the solution of a system of four equations with four

unknowns: (i), eU1 = eU2; (ii), eu1 = eu2; (iii), eU = eu +K1; and (iv), given these constraints,

RC pins down eu. None of these equations involve �.
Q.E.D.

The remaining question is to �nd the second-best optimal solution when �2 > L2. We look

for a second-best allocation in which a single IC constraint is binding. Then, by Result 7,

we know that IC1 is the binding constraint, and this can happen only if �2 > �2.

Proposition 6. Suppose that a second-best solution satis�es IR constraints as strict in-

equalities. If this second-best optimum has only one binding IC constraint, then, IC1 is

binding, IC2 is slack, MH1 and RC are binding; we have U2 > U1 > u1 > u2 and necessar-

ily, �2 > �2. The second-best solution is fully determined by the following 4 equations: IC1,

MH1 and RC, expressed as equalities, and the condition,

�2
�1�2

[P2(1� P�)z
0(U2)� P�(1� P2)z

0(u2)]

(P2 � P1)
= P1z

0(U1) + (1� P1)z
0(u1) (F)

Proof: If a second-best optimum has only one binding IC constraint, then, by Result 7, IC1

must be binding and IC2 is slack. Hence, e�2 = 0. By Results 4 and 5, we can neglect MH2

and ICi constraints. Adding the four FOCc equations, we easily obtain,

1=e� = �i�i(Piz0(eUi) + (1� Pi)z
0(eui));
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and therefore, e� > 0. Hence, RC is binding. Suppose now that MH1 is slack. Then, � = 0.

From FOC1c and FOC3c, we easily derive,

e��1z0(eu1) = �1 + e�1 = e��1z0(eU1):
This immediately implies u1 = U1, a contradiction, since MH1 imposes u1 < U1. Thus,

MH1 is binding and eU1 = eu1 +K1. From FOC2c, and e�1 � 0, we derive
e�1 = P2

P1

h
�2 � e��2z0(eU2)i � 0: (A6)

From FOC1c, we derive,

e�1 + e�
P1
= e��1z0(eU1)� �1 � 0: (B6)

ICi constraints and MH1 impose eU2 > eU1 > eu1 > eu2 and therefore, combining A6 and B6,
we obtain,

�2
�2
� e�z0(eU2) > e�z0(eU1) � �1

�1
:

It follows that we must have �2(1� �2) > (1� �2)�2, or �2 > �2.

Combining A6 and B6 again, assuming that e� > 0 for a while, we obtain
e� = �1P1[e�z0(eU1)� (�1=�1)] + P2�2[e�z0(eU2)� (�2=�2)] > 0;

or equivalently,

�1P1z
0(eU1) + �2P2z

0(eU2) > P�e� : (C6)

The allocation is determined by a system of four equations, the �rst three are obvi-

ously IC1, MH1 and RC, expressed as equalities. To �nd the fourth equation, we eliminate

Lagrange multipliers from FOC1c, FOC3c and FOC4c. More precisely, adding FOC1c and

FOC3c yields e�1 = �1e�[P1z0(eu1 +K1) + (1� P1)z
0(eu1)]� 1 + �2; (D6)

so that e�1 � 0 if �2 is large enough given the allocation. On the other hand, substituting

A6 yields,

P2
P1

h
�2 � e��2z0(eU2)i = �1e�[P1z0(eu1 +K1) + (1� P1)z

0(eu1)]� (1� �2);
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or
P�e� = �2P2z

0(eU2) + �1P1[P1z
0(eu1 +K1) + (1� P1)z

0(eu1)]: (E6)

Note that if E6 holds, since z0(eU1) > z0(eu1), then, necessarily, C6 holds, and we conclude
that e� > 0. Substituting the expression for e� derived above, and rearranging terms yields
the fourth equation that we need to solve the problem,

�2
�1�2

[P2(1� P�)z
0(eU2)� P�(1� P2)z

0(eu2)]
(P2 � P1)

= P1z
0(eu1 +K1) + (1� P1)z

0(eu1) (F)

The second-best optimum ((eU1; eu1); (eU2; eu2)) is fully determined by RC,MH1; IC1 expressed

as equalities and condition F . The condition e�1 � 0 yields, with the expression for e�, a
lower bound on the values of �2 that can be derived from A6, that is, equivalently, from

�2 � �2e�z0(eU2).
Q.E.D.

The second-best optimal solutions that we get in the case of moral hazard and adverse

selection combined are analogous to solutions derived in the case of nonnegative repayment

constraints. If the social weights of types are close to their true frequency in the population,

the solution exhibits equal treatment and incomplete insurance. Both types obtain the same

payment in the event of "success" as well as in the event of "failure" and incomplete insurance

takes care of e¤ort incentives. The second-best optimum is a separating allocation à la

Rothschild-Stiglitz only when the weight of the talented types is su¢ ciently higher than their

frequency in the population. In other words, to get a separating optimum, the social planner

must be willing to markedly favor the highly productive types. These allocations are trivially

not �rst-best e¢ cient since, in the absence of nonnegative repayment constraints, �rst-best

e¢ ciency requires full insurance. In a certain sense, the e¤ort incentive constraints MH, by

imposing incomplete insurance, play the same rôle as nonnegative repayment constraints in

Section 3 above. In fact, it may happen that the negative repayment constraint also plays the

rôle of an e¤ort incentive constraint: if the di¤erence between the payo¤s in the two states

is su¢ ciently large, the agents will prefer to exert the high level of e¤ort. It follows that if

we combine nonnegative repayment constraints with moral hazard, in many typical cases,

one of the MH or the NR constraints will be redundant. Our study of the moral hazard case
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con�rms the intuition that the second-best optimal solution exhibits equal treatment, when

the social weights are su¢ ciently close to the empirical frequencies of types, that is, in the

neighborhood of the standard utilitarian optimum. The solutions entail a form of exploitation

of the talented, by means of cross-subsidies between types, since the less talented are also

producing less surplus per capita. This subsidy from the talented survives as a price paid to

solve the incentive problem, even if the social weight of the talented is increased. It is only

when the social welfare function su¢ ciently favors the talented that the incentive problem

is solved by means of screening, imposing a higher level of risk (and return) on the most

productive agents.

5 Conclusion

We have studied optimal student-loan contracts in a simple economy with private informa-

tion. There are two unobservable types of students with di¤erent probability distributions

of individual labour-market outcomes (adverse selection). In addition, students choose an ef-

fort variable, a¤ecting the probabilities of success, that is not observed by the lender (moral

hazard). Students are also risk-averse, leading to an optimal insurance problem. We have

described the set of second-best optimal (or interim e¢ cient) incentive-compatible menus of

loan contracts. There are two types of optima: the separating and equal treatment alloca-

tions. Equal treatment arises when the social weights of types are in the neighborhood of their

frequencies in the student population. In this case, the ex post student payo¤s are the same

for all types as a function of individual outcomes. Students are ex ante unequal since they

di¤er in their probability of success on the labour market. This type of allocation is di¤erent

form the familiar menus of separating contracts in a screening model à la Rothschild-Stiglitz.

The separating menus, in which the talented students bear more risk than the less-talented

ones, appear only if the social weight of talented types is su¢ ciently greater than the latter

type�s frequency. In both cases, the optimal menus of contracts exhibit incomplete insur-

ance, as a consequence of moral hazard; they typically involve cross-subsidies in favour of the

less-talented. The less-talented obtain the maximal amount of insurance, compatible with

e¤ort incentives. Optimal student loans are always income-contingent. If the student-loan
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contracts are interpreted as a form of graduate tax, this tax is progressive.
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7 Appendix: Proofs

Proof of Lemma 1 : Assume, by way of contradiction, that IC1 holds strictly and that IC2

is binding. Then �1 = 0. From FOC2 and �2 � 0, we get

�2 = �2z
0(U2)� �2 � 0;

and since �2z
0(U2) � �2 > 0 we �nd �2 > 0: that is, RC2 is binding.

From FOC2 and FOC4, we easily derive,

�2z
0(u2) = �2 + �2 = �2z

0(U2);

and therefore, U2 = u2. IC constraints then imply

u1 > U2 = u2 > U1:

Adding FOC1 and FOC3, we obtain

�1 [p1z
0(U1) + (1� p1)z

0(u1)] = �1 � �2:

But from FOC1 we derive �2 = (p1=p2)(�1 � �1z
0(U1)). Substituting this expression for �2

in the above equality, we obtain,

�1

��
p1 �

p1
p2

�
z0(U1) + (1� p1)z

0(u1)

�
= �1

�
1� p1

p2

�
> 0:

Now, since u1 > U1, we have�
p1 �

p1
p2

�
z0(U1) + (1� p1)z

0(u1) >

�
p1 �

p1
p2
+ 1� p1

�
z0(U1) =

�
1� p1

p2

�
z0(U1) > 0;

since p2 > p1. This proves that �1 > 0 and therefore, RC1 is binding. From RC2, using the

fact that U2 = u2, we get,

B2(q
�
2) = z(u2); (32)

and from RC1 we get

p1z(U1) + (1� p1)z(u1) = B1(q
�
1): (33)

It now follows from B2(q
�
2) > B1(q

�
1) that

p1z(U1) + (1� p1)z(u1) < z(u2): (A1)

36



Now, since z(:) is convex,

p1z(U1) + (1� p1)z(u1) > z(p1U1 + (1� p1)u1);

and since z(:) is increasing, u1 > U1 and p2 > p1,

z(p1U1 + (1� p1)u1) > z(p2U1 + (1� p2)u1):

By assumption, IC2 is binding and since U2 = u2, we have p2U1+ (1� p2)u1 = u2. from this

and the above inequalities we derive

p1z(U1) + (1� p1)z(u1) > z(u2); (B1)

a contradiction, since inequality A1 directly contradicts B1. Q.E.D.

Proof of Proposition 1 : By Lemma 1, we know that IC1 is binding. There are two possible

cases : either IC2 is slack, or IC2 is binding too, at the second-best optimum.

Step 1 : Assume �rst that IC1 is binding and IC2 holds as a strict inequality. This implies

�2 = 0, and by FOC1,

�1 = �1z
0(U1)� �1 � 0:

As a consequence, we �nd that �1 > 0 and that RC1 is binding. Now, FOC 1 and FOC3

combined yield

�1z
0(u1) = �1z

0(U1); (34)

and therefore U��1 = u��1 . The IC constraints then imply

U��2 > U��1 = u��1 > u��2 : (35)

Since RC1 is binding, we have z(U��1 ) = B1(q
�
1) which is equivalent to U

��
1 = u(B1(q

�
1)), so

that the allocation is �rst-best optimal for type 1. Adding FOC1 and FOC2 on the one

hand, and FOC3 and FOC4 on the other, yields the linear system,

p� = �1p1z
0(U��1 ) + �2p2z

0(U��2 )

1� p� = �1(1� p1)z
0(U��1 ) + �2(1� p2)z

0(u��2 ); (36)
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where by de�nition, p� = �1p1 + �2p2. Given that �1 + �2 = 1, we have p1 < p� < p2.

The above system has a non-zero determinant and a unique solution (���1 ; �
��
2 ). It is easy to

check that,

���1 =
(1� p�)p2z

0(U��2 )� p�(1� p2)z
0(u��2 )

z0(U��1 )[(1� p1)p2z0(U��2 )� p1(1� p2)z0(u��2 )]
; (37)

���2 =
p� � p1

[(1� p1)p2z0(U��2 )� p1(1� p2)z0(u��2 )]
: (38)

Since p1 < p� < p2 and z0(U��2 ) > z0(u��2 ) both the numerators and the denominators of the

above expressions are positive. We conclude that ���2 > 0 and that RC2 is binding. The

utility levels (U��2 ; u
��
2 ) are fully determined by the intersection of RC2 and IC1. Using the

expression for ���1 , we �nd the optimal value of �
��
1 = ���1 z

0(U��1 )� �1, that is,

���1 =
(1� p�)p2z

0(U��2 )� p�(1� p2)z
0(u��2 )

(1� p1)p2z0(U��2 )� p1(1� p2)z0(u��2 )
� �1: (39)

Now, we can check that this multiplier is always positive as follows. Rearranging terms, we

easily �nd that ���1 � 0 if and only if

[(1� p�)p2 � �1(1� p1)p2] z
0(U��2 ) � [p�(1� p2)� �1p1(1� p2)] z

0(u��2 );

but this is always true, since z0(U��2 ) > z0(u��2 ) and (1� p�)p2 � �1(1� p1)p2 = p�(1� p2)�

�1p1(1� p2). The Kuhn and Tucker conditions being necessary and su¢ cient conditions for

optimality here, we have found the second-best optimum.

Step 2 : We now check that the allocation in which both IC constraints are binding is not

an optimum. If IC1 and IC2 are simultaneously binding, then by Result 2a, u1 = u2 = bu
and U1 = U2 = bU . Adding FOC1 and FOC2 on the one hand, and FOC3 and FOC4 on the
other hand, we �nd �1 and �2 as a function of (U; u). It is easy to check that,

�1 =
(1� p�)p2z

0(bU)� (1� p2)p�z
0(bu)

z0(bu)z0(bU)(p2 � p1)
;

�2 =
(1� p1)p�z

0(bu)� (1� p�)p1z
0(bU)

z0(bu)z0(bU)(p2 � p1)
:

If one of these multipliers is negative, (bU; bu) cannot be an optimal solution. Assume then
that these multipliers are both positive and that RC constraints are binding: (bU; bu) must
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solve the following system,

B�
1 = p1z(bU) + (1� p1)z(bu);

B�
2 = p2z(bU) + (1� p2)z(bu):

It is not di¢ cult to check that the solution is unique. The above system is linear in

(z(u); z(U)) and has a nonzero determinant. Since z is a monotonically increasing func-

tion, it follows that (bU; bu) is uniquely determined. The intersection of RC1 and RC2 is

non-empty. In addition, since p2 > p1 and B�
2 > B�

1 , it is easy to check that we must havebU > bu.
We now show that (bU; bu) is Pareto-dominated by the second-best solution derived in

Step 1 above, that is, the allocation (U�1 ; u
�
1) where U

�
1 = u�1 is identical to the �rst best for

type 1, the second-best allocation (U��2 ; u
��
2 ), with U

��
2 > u��2 , such that IC1 is binding, for

type 2.

Since it maximizes p1U1 + (1 � p1)u1 subject to RC1, it is obvious that (U�1 ; u
�
1)

dominates (bU; bu) for this type. Consider now type 2. De�ne the function,
'i(u) = u

�
B�
i � (1� pi)z(u)

pi

�
;

and remark that (U; u) satis�es RCi as an equality if and only if U = 'i(u). This function is

just RCi in the (u; U) plane; it is a monotonically decreasing and strictly concave function

of u, and (U�1 ; u
�
1) = (u

�
1; u

�
1) maximizes p1U +(1� p1)u subject to U = '1(u). By de�nition,

'2(bu) � '1(bu) = 0. Since '1 is decreasing and intersects the diagonal U = u only once at

point u�1, we also have bu < u�1. De�ne the indi¤erence curve,

U =  i(u) =
u�1 � (1� pi)u

pi
;

and remark that (U2; u2) satis�es IC1 as an equality if and only if U2 =  1(u2). Since '1

is a concave function, the locus of points (U; u) satisfying RC1 is entirely included in the

half-plane p1U + (1 � p1)u � u�1 or more precisely, U = '1(u) implies U �  1(u), with a

strict inequality if u 6= u�1. It follows that '2(bu) �  1(bu) = '1(bu) �  1(bu) < 0. Now, since
u�1 maximizes the utility of type 1 subject to RC1, we have  1(u

�
1) = '1(u

�
1) = U�1 = u�1 and

since type 2 is more productive, i.e., B�
2 > B�

1 and p2 > p1, we can write, '2(u
�
1)�  1(u�1) =
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'2(u
�
1)�'1(u�1) > 0. It is not di¢ cult to check that the mapping ('2(u)� 1(u)) is continuous

and strictly decreasing on the interval [bu; u�1]. By the Intermediate Value Theorem, there
exists a point u in the open interval (bu; u�1) such that '2(u) �  1(u) = 0, and this point is

unique. But we know that this point is precisely u��2 , since by de�nition (U
��
2 ; u

��
2 ) is the

intersection of RC2 and IC1, and thus we have '2(u
��
2 ) �  1(u

��
2 ) = 0. Now, the expected

utility of type 2, that is, p2'2(u) + (1 � p2)u, is a strictly concave and strictly increasing

function of u on the interval [bu; u�2], where u�2 is the �rst-best, full-insurance solution for
type 2. We conclude that p2 bU + (1 � p2)bu < p2U

��
2 + (1 � p2)u

��
2 : the allocation (bU; bu) is

dominated by (U��2 ; u
��
2 ) for type 2. The solution ((u

�
1; u

�
1); (U

��
2 ; u

��
2 )) de�ned above is the

only second-best optimum.

Q.E.D.

Proof of Proposition 3. From Result 3 we know that if IC2 is binding, then, both IC

constraints are binding. Therefore, we consider a solution such that IC1 is binding and IC2

is slack. If IC2 is slack, then �2 = 0. The �rst-order conditions become,

�1 + �1 = ��1z
0(U1); (FOC1b)

�2p2 � �1p1 = ��2p2z
0(U2); (FOC2b)

�1 + �1 = ��1z
0(u1) + �1; (FOC3b)

�2(1� p2)� �1(1� p1) = ��2(1� p2)z
0(u2); (FOC4b)

where �1 = �=(1 � p1) � 0. Equation FOC1b immediately implies ��� > 0 since z0 > 0,

�1 + �1 > 0, and we easily derive (using FOC1b and FOC2b),

��� =
�1p1 + �2p2
�i�ipiz0(U��i )

: (40)

Hence, RC is binding. FOC1b and FOC3b immediately show that �1 > 0 implies U��1 > u��1 ,

and, in addition, since �(u0�u1) = 0, we know that ��� > 0 implies u��1 = u0. But if U1 = u1

and � = 0, we must have U1 = u1 � u0 and therefore, IR1 cannot be satis�ed as a strict

inequality. Thus, ��� > 0, and since IC constraints hold, we know that, necessarily,

U��2 > U��1 > u0 = u��1 > u��2 :

40



Now, from FOC1b and FOC2b, since ���1 must be nonnegative, and since U��2 > U��1 , we

derive,
�2
�2
� ���z0(U��2 ) > ���z0(U��1 ) �

�1
�1
; (41)

and therefore, we must have �2=�2 > �1=�1. Given that �1 + �2 = 1 and �1 + �2 = 1, this

is equivalent to

�2 > �2: (42)

It follows that this type of allocation (or solution-candidate) is a second-best optimum only

if �2 > �2.

Adding FOC2b and FOC4b, we �nd the following condition,

�2
�2
= ���

[p2(1� p1)z
0(U��2 )� p1(1� p2)z

0(u��2 )]

[p2 � p1]
: (C)

The second-best optimality problem is convex, due to the assumed strict convexity of z. It

follows that the FOCs are necessary and su¢ cient. The optimal allocation (four unknowns

here) is thus obtained as a solution of conditions C, RC and IC1 and u��1 = u0 (four

equations).

Q.E.D.

Proof of Proposition 4. If u��1 = u��2 = u0, IC constraints are both binding and U��1 = U��2 =

U��. Adding FOC1 and FOC2 together then yields,

��� =
p�

p�z0(U��)
;

where by de�nition p� = p1�1+ p2�2 and p� = p1�1+ p2�2. It follows from ��� > 0 that RC

is binding. Adding then FOC3 and FOC4 yields

��� = (1� p�)� ���z0(u0)(1� p�);

or, substituting the value of ���, we obtain

��� = (1� p�)� (1� p�)
p�z

0(u0)

p�z0(U��)
: (43)

Thus, ��� > 0 (a required condition here) if and only if

(1� p�)p�
(1� p�)p�

>
z0(u0)

z0(U��)
: (44)
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We know that u0 < U�� and thus z0(u0) < z0(U��) for otherwise, IR constraints could not

be satis�ed as strict inequalities. On the other hand, since p1 < p2, we have p� � p� if and

only if �2 � �2. It follows that the above inequality will always be true if �2 � �2. The

inequality is true also if �2 greater than but close enough to �2.

The binding resource constraint yields,

B� = �i�i[piz(U
��
i ) + (1� pi)z(u0)] = p�z(U

��) + (1� p�)w0; (45)

since u0 = u(w0). From this expression, and from z(U��) = w(q�i ) � R��i for all i and the

de�nition of B�, we easily derive,

�i�ipiR
��
i = �i�i
iq

�
i ; (46)

and

w(q�1)�R��1 = w(q�2)�R��2 : (47)

These equations fully determine U��. (Note that there are conditions on w and 
i that would

ensure R��i � 0 here; otherwise, we would get a corner solution and NR1 would be binding.)

We �nally need to �nd the conditions under which the multipliers �1 and �2 are

nonnegative (this is required for a solution candidate to be admissible). Adding FOC2 and

FOC4 and rewriting FOC1 yields the linear system,

���1 p1 � ���2 p2 = ����1p1z
0(U��)� �1p1; (FOC1)

����1 + ���2 = ����2[p2z
0(U��) + (1� p2)z

0(u0)]� �2: (FOC4+2)

Recall that ���z0(U��) = p�=p�. This system has a nonzero determinant, p1 � p2, and a

unique solution (���1 ; �
��
2 ). More precisely, since u0 < U��, we �nd

���1 =
p��2p2(1� p2)

p�(p2 � p1)

�
1� z0(u0)

z0(U��)

�
> 0: (48)

It is not di¢ cult to check that ���1 is positive: this tells us that IC1 is always binding. We

compute the solution ���2 as follows.

���2 =
p1

(p2 � p1)p�

�
(p� � p�) + p��2(1� p2)

�
1� z0(u0)

z0(U��)

��
: (49)
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It is now easy to check that we have ���2 > 0 if p� � p�. But is is also true that ���2 > 0 for

a range of values of �2 that are greater than, but close enough to �2, since z0(u0) < z0(U��).

(We skip the derivation of the threshold value here). We conclude that the egalitarian,

maximal insurance solution is the second-best optimum for �2 � �2 and for values of �2 that

are greater than, but close enough to �2.

Q.E.D.
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