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Abstract

This paper develops and applies a method for decomposing cross section variability of

earnings into components that are forecastable at the time students decide to go to college

(heterogeneity) and components that are unforecastable. About 60% of variability in returns

to schooling is forecastable. This has important implications for using measured variability to

price risk and predict college attendance.
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1 Introduction

This lecture commemorates the 100th anniversary of the birth of Sir John Hicks. In most of his

work, Hicks relied on the Marshallian Þction of a representative agent and abstracted from hetero-

geneity and variability among people and Þrms. Economic theory now recognizes the importance of

accounting for heterogeneity among agents in explaining a variety of phenomena. See the survey in

Browning, Hansen, and Heckman (1999). A major discovery of microeconometrics is that diversity
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among agents is a central feature of economic life (see Heckman, 2001). While Hicks generally ig-

nored heterogeneity, he did discuss uncertainty. The distinction between ex ante and ex post income

played a central role in his analysis of economic dynamics (see Hicks, 1946, p. 178). It is featured

in our analysis.

This paper develops and implements a method for estimating the importance of uncertainty

about lifetime earnings facing agents at the stage of their life cycles when they make their college-

going decisions. We estimate what components of measured lifetime income variability among

persons are due to uncertainty realized after that stage and discuss what assumptions must be

maintained to identify the distributions of these components. In accomplishing this task, we dis-

tinguish unobservables from the point of view of the econometrician from unobservables from the

point of view of the agents being studied. We distinguish components of outcome variability that

are forecastable and acted on at a given stage of the life cycle from unpredictable components. If

agents act on (make choices based on) all forecastable information, under the conditions speciÞed

in this paper, we can estimate components of intrinsic uncertainty and distinguish them from com-

ponents of forecastable uncertainty. Using the tools presented here, analysts can determine how

much of lifetime earnings variability or inequality is forecastable at a given age and how much is

unforecastable �luck.� With concavity in utility and lack of full insurance, at the same level of mean

income, the greater the fraction of variability in lifetime incomes that is unforecastable, the lower

the welfare of agents. Like Hicks, we distinguish ex ante returns from ex post returns.

We build on, and extend, methods developed in Carneiro, Hansen, and Heckman (2003), who

separate earnings heterogeneity (deÞned here as information about future earnings known to agents

and acted on in their choices) from unforecastable (at the date choices are made) uncertainty.

They assume an environment of complete autarky. In this paper, we consider a complete markets

environment. A companion paper, Cunha, Heckman, and Navarro (2005), considers an environment

with partial insurance of the type analyzed by Aiyagari (1994) and Laitner (1992).

A major theoretical issue discussed in this paper is the difficulty in separating the effect on

outcomes of the market structure facing an agent from the effect of the agent�s information set.

We develop methods for distinguishing components of future outcomes that are both forecastable

and are acted on, from those components that are not acted on. What can be acted on and the
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magnitude of the effects of the actions, depends upon the market structure facing agents and their

preferences.

A major empirical Þnding reported in all three of our papers is that across a variety of market

environments and for different assumptions about, and estimates of, risk aversion, a substantial

part of the variability in the ex post returns to schooling is predictable and acted on by agents.

Variability cannot be equated with uncertainty and this has important empirical consequences.

The plan of the rest of this paper is as follows. Section 2 states the problem of distinguishing

between predictable earnings heterogeneity and unpredictable uncertainty for a speciÞed market

environment and presents the empirical strategy used in this paper. Section 3 motivates the econo-

metric method we use. This part of the paper is an intuitive summary of the methods formally

developed in Carneiro, Hansen, and Heckman (2003) and our extensions of it. Section 4 discusses

the fundamental problem of separating preferences from market structures and information. Sec-

tion 5 presents our empirical analysis and simulations of the model and discusses the implications of

the Þndings. Section 6 concludes. Two appendices describe our approach to identiÞcation and how

we pool data sets to create synthetic life cycles. A third appendix posted at the website describes

our data (see http://jenni.uchicago.edu/Hicks2004/).

2 Distinguishing between heterogeneity and uncertainty

In the literature on earnings dynamics (e.g. Lillard and Willis, 1978), it is common to estimate an

earnings equation of the sort

Yi,t =Xi,tβ + Siτ + vi,t, (1)

where Yi,t,X i,t, Si, vi,t denote (for person i at time t) the realized earnings, observable characteristics,

educational attainment, and unobservable characteristics, respectively, from the point of view of the

observing economist. We use bold characters to denote vectors and distinguish them from scalars.

The variables generating outcomes realized at time t may or may not have been known to the agents

at the time they made their schooling decisions.

Often the error term vi,t is decomposed into two or more components. For example, it is common
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to specify that

vi,t = φi + εi,t. (2)

The term φi is a person-speciÞc effect. The error term εi,t is generally assumed to follow an ARMA

(p, q) process (see, e.g. MaCurdy, 1982) such as εi,t = ρεi,t−1 + mi,t, where mi,t is a mean zero

innovation independent of Xi,t and the other error components. The components Xi,t, φi, and

εi,t all contribute to measured ex post variability across persons. However, the literature is silent

about the difference between heterogeneity and uncertainty, the unforecastable part of earnings

as measured from a given age�what Jencks, Smith, Acland, Bane, Cohen, Gintis, Heyns, and

Michelson (1972) call �luck.�

An alternative speciÞcation of the error process postulates a factor structure for earnings,

υi,t = θiαt + δi,t, (3)

where θi is a vector of skills (e.g. ability, initial human capital, motivation, and the like), αt is

a vector of skill prices, and the δi,t are mutually independent mean zero shocks independent of

θi. See Hause (1980) and Heckman and Scheinkman (1987) for analysis of such a model. Any

process in the form of equation (2) can be written in terms of (3). The latter speciÞcation is more

directly interpretable as a pricing equation than (2) and is a natural starting point for human capital

analyses. It is the one used in this paper.

Depending on the available market arrangements for coping with risk, the predictable compo-

nents of vi,t will have a different effect on choices and economic welfare than the unpredictable

components, if people are risk averse and cannot fully insure against uncertainty. Statistical de-

compositions based on (1), (2), and (3) or versions of them describe ex post variability but tell us

nothing about which components of (1) or (3) are forecastable by agents ex ante. Is φi unknown

to the agent? εi,t? Or φi + εi,t? Or mi,t? In representation (3), the entire vector θi, components of

the θi, the δi,t, or all of these may or may not be known to the agent at the time schooling choices

are made.

The methodology presented in this paper provides a framework with which it is possible to

identify components of life cycle outcomes that are forecastable and acted on at the time decisions
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are taken from ones that are not. The essential idea of the method can be illustrated in the case

of educational choice, the problem we study in our empirical work. In order to choose between

high school and college, say at age 19, agents forecast future earnings (and other returns and

costs) for each schooling level. Using information about educational choices at age 19, together

with the ex post realization of earnings and costs that are observed at later ages, it is possible

to estimate and test which components of future earnings and costs are forecast by the agent at

age 19. This can be done provided we know, or can estimate, the earnings of agents under both

schooling choices and provided we specify the market environment under which they operate as well

as their preferences over outcomes. For certain market environments where separation theorems are

valid, so that consumption decisions are made independently of the wealth maximizing decision, it

is not necessary to know agent preferences to decompose realized earnings outcomes in this fashion.

Our method uses choice information to extract ex ante or forecast components of earnings and

to distinguish them from realized earnings. The difference between forecast and realized earnings

allows us to identify the distributions of the components of uncertainty facing agents at the time

they make their schooling decisions.

To be more precise, consider a version of the generalized Roy (1951) economy with two sectors.1

Let Si denote different schooling levels. Si = 0 denotes choice of the high school sector for person

i, and Si = 1 denotes choice of the college sector. Each person chooses to be in one or the other

sector but cannot be in both. Let the two potential outcomes be represented by the pair (Y0,i, Y1,i),

only one of which is observed by the analyst for any agent. Denote by Ci the direct cost of choosing

sector 1, which is associated with choosing the college sector (e.g. tuition and non-pecuniary costs

of attending college expressed in monetary values).

Y1,i is the ex post present value of earnings in the college sector, discounted over horizon T for

a person choosing at a Þxed age, assumed for convenience to be zero,

Y1,i =
TX
t=0

Y1,i,t

(1 + r)t
,

1See Heckman (1990) and Heckman and Smith (1998) for discussions of the generalized Roy model. In this paper
we assume only two schooling levels for expositional simplicity, although our methods apply more generally.
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and Y0,i is the ex post present value of earnings in the high school sector at age zero,

Y0,i =
TX
t=0

Y0,i,t

(1 + r)t
,

where r is the one-period risk-free interest rate. Y1,i and Y0,i can be constructed from time se-

ries of ex post potential earnings streams in the two states: (Y0,i,0, . . . , Y0,i,T ) for high school and

(Y1,i,0, . . . , Y1,i,T ) for college. A practical problem is that we only observe one or the other of these

streams. This partial observability creates a fundamental identiÞcation problem which we address

in this paper.

The variables Y1,i, Y0,i, and Ci are ex post realizations of returns and costs, respectively. At the

time agents make their schooling choices, these may be only partially known to the agent, if at all.

Let Ii,0 denote the information set of agent i at the time the schooling choice is made, which is time
period t = 0 in our notation. Under a complete markets assumption with all risks diversiÞable (so

that there is risk-neutral pricing) or under a perfect foresight model with unrestricted borrowing or

lending but full repayment, the decision rule governing sectoral choices at decision time �0� is

Si =

⎧⎪⎨⎪⎩ 1, if E (Y1,i − Y0,i − Ci | Ii,0) ≥ 0
0, otherwise.2

(4)

Under perfect foresight, the postulated information set would include Y1,i, Y0,i, and Ci. In either

model of information, the decision rule is simple: one attends school if the expected gains from

schooling are greater than or equal to the expected costs. Under either set of assumptions, a

separation theorem governs choices. Agents maximize expected wealth independently of how they

consume it.

The decision rule is more complicated in the absence of full risk diversiÞability and depends

on the curvature of utility functions, the availability of markets to spread risk, and possibilities

for storage. (See Cunha, Heckman, and Navarro (2004), and Navarro (2004) for a more extensive

discussion.) In more realistic economic settings, the components of earnings and costs required to

forecast the gain to schooling depend on higher moments than the mean. In this paper we use

2If there are aggregate sources of risk, full insurance would require a linear utility function.
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a model with a simple market setting to motivate the identiÞcation analysis of a more general

environment we analyze elsewhere (Carneiro, Hansen, and Heckman, 2003)

Suppose that we seek to determine Ii,0. This is a difficult task. Typically we can only partially
identify Ii,0 and generate a list of candidate variables that belong in the information set. We can
usually only estimate the distributions of the unobservables in Ii,0 (from the standpoint of the econo-
metrician) and not individual person-speciÞc information sets. To Þx ideas, we start the analysis

discussing identiÞcation of Ii,0 for each person, but in our empirical work we only partially identify
person-speciÞc Ii,0 and instead identify the distributions of the remaining unobserved components.
To motivate the objectives of our analysis we offer the following heuristic discussion. We seek to

decompose the �returns coefficient� in an earnings-schooling model into components that are known

at the time schooling choices are made and components that are not known. For simplicity we

assume that, for person i, returns are the same at all levels of schooling. Write discounted lifetime

earnings of person i as

Yi = ρ0 + ρ1,iSi + Ji, (5)

where ρ1,i is the person-speciÞc ex post return, Si is years of schooling, and Ji is a mean zero

unobservable. We seek to decompose ρ1,i into two components ρ1,i = ηi+νi, where ηi is a component

known to the agent when he/she makes schooling decisions and νi is revealed after the choice

is made. Schooling choices are assumed to depend on what is known to the agent at the time

decisions are made, Si = λ (ηi,Zi, τ i), where the Zi are other observed determinants of schooling

and τ i represents additional factors unobserved by the analyst but known to the agent. We seek to

determine what components of ex post lifetime earnings Yi enter the schooling choice equation.

If ηi is known, it enters λ. Otherwise it does not. Component νi and any measurement errors

in Y1,i or Y0,i should not be determinants of schooling choices. Neither should future skill prices

that are unknown at the time agents make their decisions. If agents do not use ηi in making

their schooling choices, even if they know it, ηi would not enter the schooling choice equation.

Determining the correlation between realized Yi and schooling choices based on ex ante forecasts

enables us to identify components known to agents making their schooling decisions. Even if we

cannot identify ρ1,i, ηi, or νi for each person, under conditions speciÞed in this paper we can identify
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their distributions.

Suppose that the model for schooling can be written in linear in parameters form:

Si = λ0 + λ1ηi + λ2νi + λ3Zi + τ i, (6)

where τ i has mean zero and is independent of Zi. Zi is assumed to be independent of ηi and νi.

The Zi and the τ i proxy costs and may also be correlated with Ji in (5).3 In this framework, the

goal of the analysis is to determine if λ2 = 0, i.e., to determine if agents pick schooling based on ex

post shocks to returns and, if they do, the relative magnitude of the variance of ηi to that of νi.

Application of Zi as an instrument for Si in outcome equation (5) does not enable us to decom-

pose ρ1,i into forecastable and unforecastable components. Only if agents do not use ηi in making

their schooling decisions does the instrumental variable (IV ) method recover the population mean

of ρ1,i. In that case, standard random coefficient models can identify the variance of (ηi + νi) which

is assumed to be independent of Si.4

Notice that even under the most favorable conditions for application of the IV method, we are

only able to recover the ex post mean and total ex post variability of ρ1,i = ηi + νi. We cannot,

however, decompose V ar (ηi + νi) into its components. That is, we are not able to assign the

proportion of the variance in the return that is due to ηi and that due to νi. Since we cannot

identify how much of the ex post return to schooling is unknown to the agent at the time he makes

his decision, we cannot solve the stated problem using just the instrumental variable method.

Our procedure is not based on the method of instrumental variables. Rather, it exploits certain

covariances that arise under different information structures. To see how the method works, simplify

the model down to two schooling levels. Suppose, contrary to what is possible, that the analyst

observes Y0,i, Y1,i, and Ci. Such information would come from an ideal data set in which we could

observe two different lifetime earnings streams for the same person in high school and in college as

well as the costs they pay for attending college. From such information we could construct Y1,i−Y0,i−
Ci. If we knew the information set Ii,0 of the agent, we could also construct E (Y1,i − Y0,i − Ci | Ii,0).

3Card (2001) presents a perfect certainty model that can be written in this form.
4One can use the residuals from Yi − bρ0 − bρ1Si = bUi to decompose the variance components, where instrumental

variables are used to generate the coefficient estimates. For the instrumental variable method in this case, see
Heckman and Vytlacil (1998).
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Under the correct model of expectations, we could form the residual

VIi,0 = (Y1,i − Y0,i − Ci)−E (Y1,i − Y0,i − Ci | Ii,0) ,

and from the ex ante college choice decision, we could determine whether Si depends on VIi,0. It

should not if we have speciÞed Ii,0 correctly. In terms of the model of equations (5) and (6), if there
are no direct costs of schooling, E (Y1,i − Y0,i | Ii,0) = ηi, and VIi,0 = νi.
A test for correct speciÞcation of candidate information set eIi,0 is a test of whether Si depends

on V!Ii,0 , where V!Ii,0 = (Y1,i − Y0,i − Ci)−E
³
Y1,i − Y0,i − Ci | eIi,0´. More precisely, the information

set is valid if Si ⊥⊥ V!Ii,0 | eIi,0, where X ⊥⊥ Y | Z means X is independent of Y given Z. In terms

of the simple model of (5) and (6), νi should not enter the schooling choice equation (λ2 = 0). A

test of misspeciÞcation of eIi,0 is a test of whether the coefficient of V!Ii,0 is statistically signiÞcantly
different from zero in the schooling choice equation.

More generally, eIi,0 is the correct information set if V!Ii,0 does not help to predict schooling. We
can search among candidate information sets eIi,0 to determine which ones satisfy the requirement
that the generated V!Ii,0 does not predict Si and what components of Y1,i−Y0,i−Ci (and Y1,i−Y0,i)
are predictable at the age for the speciÞed information set.5 For a properly speciÞed eIi,0, V!Ii,0
should not cause (predict) schooling choices. The components of V!Ii,0 that are unpredictable are
called intrinsic components of uncertainty, as deÞned in this paper.

Usually, we cannot determine the exact content of Ii,0 known to each agent. If we could, we
would perfectly predict Si given our decision rule. More realistically, we might Þnd variables that

proxy Ii,0 or their distribution. Thus, in the example of equations (5) and (6) we would seek to
determine the distribution of νi and the allocation of the variance of ρ1,i to ηi and νi rather than

trying to estimate ρ1,i, ηi, or νi for each person. This is the strategy pursued in this paper for a

two-choice model of schooling.

5This procedure is a Sims (1972) version of a Wiener-Granger causality test.
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Inference

The procedure just described is not practical for general models of educational outcomes. We do

not know all of the information possessed by the agent. We do not observe Y1,i,t and Y0,i,t together

for anyone. We must solve the problem of constructing counterfactuals. This entails solving the

selection problem.

One conventional way to solve the selection problem is to invoke a �common coefficient� assump-

tion,

Y1,i,t = ϕt (Xi,t) + Y0,i,t, t = 0, . . . , T,

where ϕt (X i,t) is the same for everyone with the same Xi,t. A special case is where ϕt (Xi,t) = ϕ,

a constant. This speciÞcation assumes that for each person i, the earnings in college at age t

differ from the earnings in high school by a constant, or a constant conditional on Xi,t. Under

standard assumptions, conventional econometric methods such as matching, instrumental variables,

or control functions recover ϕt (Xi,t) for everyone (see Heckman and Robb, 1986, reprinted 2000,

for discussions of alternative assumptions).

A common coefficient returns to schooling assumption for all groups with the same values of

Xi,t rules out comparative advantage in the labor market that has been shown to be empirically

important (see Heckman, 2001, and Carneiro, Heckman, and Vytlacil, 2005). The common coeffi-

cient assumption can be tested nonparametrically and is decisively rejected (Heckman, Smith, and

Clements, 1997). An alternative and weaker assumption is that ranks in the distribution of Y1,i,t

can be mapped into ranks in the distribution of Y0,i,t (e.g. the best in the Y1,i,t distribution is the

best in the Y0,i,t distribution or the best in one is the worst in the other). We present evidence

against that assumption below.

An alternative approach is to use matching. Given matching variables Qi, we can form coun-

terfactual marginal distributions from observed distributions using the matching assumption that

F (Y1,i,t |Xi,t, Si = 1,Qi) = F (Y1,i,t |Xi,t, Si = 0,Qi)

= F (Y1,i,t |Xi,t,Qi) , t = 0, . . . , T.
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If the matching assumptions are valid, we can construct counterfactuals for everyone since the

Þrst distribution is observed and the second is the distribution of the counterfactual (what persons

who do not attend college would have earned if they had attended college). By a parallel analysis

of F (Y0,i,t |Xi,t, Si = 0,Qi), we can construct F (Y0,i,t |Xi,t, Si = 1,Qi) = F (Y0,i,t |Xi,t,Qi) for

everyone, t = 0, . . . , T . This is the distribution of high school outcomes for those who attend college.

The marginal distributions acquired from matching are not enough to construct the distribution

of returns Y1,i − Y0,i because they do not identify the covariance or dependence between Y1,i,t and
Y0,i,t, unless it is assumed that the only dependence across the Y1,i,t and Y0,i,t is due to Qi and/or

Xi,t, and the parameters of this dependence can be determined from the marginal distributions, or

else special assumptions about dependence across outcomes are invoked.

Matching makes strong assumptions about the richness of the data available to analysts and

does not, in general, identify joint distributions of counterfactual returns and hence the distribution

of the rate of return. It assumes that the return to the marginal person is the same as the return

to the average person conditional on the matching variables (Heckman and Navarro, 2004).

Either matching or IV solves the selection problem under their assumed identifying conditions.

Neither method provides a way for identifying the information agents act on ex ante when there are

important unobserved (by the econometrician) components. In this paper, we build on Carneiro,

Hansen, and Heckman (2003) and use the factor structure representation (3) to construct the missing

counterfactual earnings data.

To understand the essential idea underlying our method, consider the following linear in para-

meters model:

Y0,i,t = Xi,tβ0,t + v0,i,t, t = 0, . . . , T,

Y1,i,t = Xi,tβ1,t + v1,i,t,

Ci = Ziγ + vi,C .

We assume that the life cycle of the agent ends after period T . Linearity of outcomes in terms of

parameters is convenient but not essential to our method.

Suppose that there exists a vector of factors θi = (θi,1, θi,2, . . . , θi,L) such that θi,k and θi,j are
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mutually independent random variables for k, j = 1, . . . , L, k 6= j. Assume we can represent the

error term in earnings at age t for agent i in the following manner:

υ0,i,t = θiα0,t + ε0,i,t,

υ1,i,t = θiα1,t + ε1,i,t,

where α0,t and α1,t are vectors and θi is a vector distributed independently across persons. The

ε0,i,t and ε1,i,t are mutually independent of each other and independent of the θi. We can also

decompose the cost function Ci in a similar fashion:

Ci = Ziγ + θiαC + εi,C .

All of the statistical dependence across potential outcomes and costs is generated by θ, X, and Z.

Thus, if we could match on θi (as well asX and Z), we could use matching to infer the distribution

of counterfactuals and capture all of the dependence across the counterfactual states through the

θi. However, in general, not all of the required elements of θi are observed.

The parameters αC and αs,t for s = 0, 1, and t = 0, . . . , T are the factor loadings. εi,C is

independent of the θi and the other ε components. In this notation, the choice equation can be

written as:

Ii = E

Ã
TX
t=0

¡
X i,tβ1,t + θiα1,t + ε1,i,t

¢− ¡Xi,tβ0,t + θiα0,t + ε0,i,t
¢

(1 + r)t
− (Ziγ + θiαC + εiC)

¯̄̄̄
¯ Ii,0

!
Si = 1 if Ii ≥ 0; Si = 0 otherwise. (7)

The sum inside the parentheses is the discounted earnings of agent i in college minus the discounted

earnings of the agent in high school. The second term is cost. Constructing (7) entails making a

counterfactual comparison. Even if the earnings of one schooling level are observed over the lifetime

using panel data, the earnings in the counterfactual state are not. After the schooling choice is made,

some components of theX i,t, the θi, and the εi,t may be revealed (e.g. unemployment rates, macro

shocks) to both the observing economist and the agent, although different components may be
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revealed to each and at different times. Examining alternative information sets, one can determine

which ones produce models for outcomes that Þt the data best in terms of producing a model that

predicts date t = 0 schooling choices and at the same time passes our test for misspeciÞcation of

predicted earnings and costs. Some components of the error terms may be known or not known at

the date schooling choices are made. The unforecastable components are intrinsic uncertainty as

we have deÞned it.6

To formally characterize our empirical procedure, it is useful to introduce some additional no-

tation. Let ¯ denote the Hadamard product (a ¯ b = (a1b1, . . . ,aLbL)) for vectors a and b of

length L. Let ∆Xt , t = 0, ..., T , ∆Z, ∆θ, ∆εC , ∆εt, denote coefficient vectors associated with the

Xt, t = 0, ..., T , the Z, the θ, the ε1,t − ε0,t, and the εC, respectively. These coefficients will be
estimated to be nonzero in a schooling choice equation if there is a deviation between the proposed

information set and the actual information set used by agents. For a proposed information set eIi,0
which may or may not be the true information set on which agents act we can deÞne the proposed

choice index eIi in the following way:
eIi =

TX
t=0

E
³
X i,t | eIi,0´
(1 + r)t

¡
β1,t − β0,t

¢
+

TX
t=0

h
Xi,t −E

³
Xi,t | eIi,0´i

(1 + r)t
¡
β1,t − β0,t

¢¯∆Xt (8)

+E(θi | eIi,0)" TX
t=0

(α1,t −α0,t)
(1 + r)t

−αC
#
+
h
θi −E

³
θi | eIi,0´i(" TX

t=0

(α1,t −α0,t)
(1 + r)t

−αC
#
¯∆θ

)

+
TX
t=0

E
³
ε1,i,t − ε0,i,t | eIi,0´
(1 + r)t

+
TX
t=0

h
(ε1,i,t − ε0,i,t)−E

³
ε1,i,t − ε0,i,t | eIi,0´i

(1 + r)t
∆εt

−E
³
Zi | eIi,0´γ − hZi −E

³
Zi | eIi,0´iγ ¯∆Z −E

³
εiC | eIi,0´− hεiC −E ³εiC | eIi,0´i∆εC .

To conduct our test, we Þt a schooling choice model based on the proposed model (8). We estimate

the parameters of the model including the ∆ parameters. This decomposition for eIi assumes
that agents know the β, the γ, and the α. We discuss this assumption in section 5. If it is not

correct, the presence of additional unforecastable components due to unknown coefficients affects

6As pointed out to us by Lars Hansen, the term �heterogeneity� is somewhat unfortunate. Under this term,
we include trends common across all people (e.g. macrotrends). The real distinction we are making is between
components of realized earnings forecastable by agents at the time they make their schooling choices vs. components
that are not forecastable.
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the interpretation of the estimates.

A test of no misspeciÞcation of information set eIi,0 is a joint test of the hypothesis that∆Xt = 0,

∆θ = 0, ∆Z = 0, ∆εC = 0, and ∆εt = 0, t = 0, . . . , T . That is, when eIi,0 = Ii,0 then ∆Xt = 0,

∆θ = 0, ∆Z = 0, ∆εC = 0, ∆εt = 0, t = 0, . . . , T , and the proposed choice index eIi = Ii.
In a correctly speciÞed model, the components associated with zero ∆j are the unforecastable

elements or the elements which, even if known to the agent, are not acted on in making schooling

choices. To illustrate the application of our method, assume for simplicity that the X i,t, the Zi,

the εi,C , the β1,t,β0,t, the α1,t,α0,t, and αC are known to the agent, and the εj,i,t are unknown and

are set at their mean zero values. We can infer which components of the θi are known and acted

on in making schooling decisions if we postulate that some components of θi are known perfectly

at date t = 0 while others are not known at all, and their forecast values have mean zero given Ii,0.
If there is an element of the vector θi, say θi,2 (factor 2), that has nonzero loadings (coefficients)

in the schooling choice equation and a nonzero loading on one or more potential future earnings, then

one can say that at the time the schooling choice is made, the agent knows the unobservable captured

by factor 2 that affects future earnings. If θi,2 does not enter the choice equation but explains future

earnings, then θi,2 is unknown (not predictable by the agent) at the age schooling decisions are made.

An alternative interpretation is that the second component of
hPT

t=0
(α1,t−α0,t)
(1+r)t

−αC
i
is zero, i.e.,

that even if the component is known, it is not acted on. We can only test for what the agent knows

and acts on.

One plausible scenario is that εi,C is known but the future ε1,i,t and ε0,i,t are not, have mean

zero, and are insurable. If there are components of the εj,i,t that are predictable at age t = 0, they

will induce additional dependence between Si and future earnings beyond the dependence induced

by the θi. Under a perfect foresight assumption we can identify this extra dependence. We develop

this point further in section 3 after we introduce additional helpful notation. Our procedure can be

generalized to consider all components of (8). We can test the predictive power of each subset of

the overall possible information set at the date the schooling decision is being made.

The intuition underlying our testing procedure is thus very simple. The components that are

forecastable and acted on in making schooling choices are captured by the components of ex post

realizations that are known by the agents when they make their educational choices. In terms of
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the simple model of equations (5) and (6), by decomposing ρ1,i into ηi and νi so ρ1,i = ηi + νi, we

determine how much of the ex post variability in ρ1,i is due to forecastable ηi and unforecastable νi.

The predictable components will be estimated to have nonzero coefficients in the schooling choice

equation. The uncertainty at the date the decision about college is being made is captured by

the factors that the agent does not act on when making the decision of whether or not to attend

college.7

A similar but distinct idea motivates the Flavin (1981) test of the permanent income hypothesis

and her measurement of unforecastable income innovations. She picks a particular information seteIi,0 (permanent income constructed from an assumed ARMA (p, q) time series process for income,

where she estimates the coefficients given a speciÞed order of the AR and MA components) and

tests if V!Ii,0 (our notation) predicts consumption. Her test of �excess sensitivity� can be interpreted
as a test of the correct speciÞcation of the ARMA process that she assumes generates eIi,0 which
is unobserved (by the economist), although she does not state it that way. Blundell and Preston

(1998) and Blundell, Pistaferri, and Preston (2004) extend her analysis but, like her, maintain an

a priori speciÞcation of the stochastic process generating Ii,0. Blundell, Pistaferri, and Preston
(2004) claim to test for �partial insurance.� In fact their procedure can be viewed as a test of their

speciÞcation of the stochastic process generating the agent�s information set. More closely related

to our work is the analysis of Pistaferri (2001), who uses the distinction between expected starting

wages (to measure expected returns) and realized wages (to measure innovations) in a consumption

analysis.

In the context of our factor structure representation, the contrast between our approach to iden-

tifying components of intrinsic uncertainty and the approach followed in the literature is as follows.

The traditional approach would assume that the θi are known to the agent while the {ε0,i,t, ε1,i,t}Tt=0
are not.8 Our approach allows us to determine which components of θi and {ε0,i,t, ε1,i,t}Tt=0 are
known and acted on at the time schooling decisions are made.

Assuming that the problems raised by selection on Si are solved by the methods exposited in the

7This test has been extended to a nonlinear setting, allowing for credit constraints, preferences for risk, and the
like. See Cunha, Heckman, and Navarro (2004) and Navarro (2004).

8The analysis of Hartog and Vijverberg (2002) exempliÞes this approach and uses variances of ex post income to
proxy ex ante variability.
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next section and their vector generalizations, we can estimate the distributions of the components of

(3) and the coefficients on the factors θi from panel data on earnings. This statistical decomposition

does not tell us which components of (3) are known at the time agents make their schooling decisions.

If some of the components of {ε0,i,t, ε1,i,t}Tt=0 are known to the agent at the date schooling decisions
are made and enter (8), then additional dependence between Si and future Y1,i − Y0,i due to the
{ε0,i,t, ε1,i,t}Tt=0, beyond that due to θi, would be estimated.
It is helpful to contrast the dependence between Si and future Y0,i,t, Y1,i,t arising from θi and

the dependence between Si and the {ε0,i,t, ε1,i,t}Tt=0. Some of the θi in the ex post earnings equation
may not appear in the choice equation. Under other information sets, some additional dependence

between Si and {ε0,i,t, ε1,i,t}Tt=0 may arise. The contrast between the sources generating realized
earnings outcomes and the sources generating dependence between Si and realized earnings is the

essential idea in this paper. The method can be generalized to deal with nonlinear preferences

and imperfect market environments.9 A central issue, discussed in section 4, is how far one can go

in identifying income information processes without specifying preferences, insurance, and market

environments.
9In a model with complete autarky with preferences G, ignoring costs,

Ii =
TX
t=0

E

"
G
¡
Xi,tβ1,t + θiα1,t + ε1,i,t

¢−G ¡Xi,tβ0,t + θiα0,t + ε0,i,t
¢

(1 + ρ)t

¯̄̄̄
¯ eIi,0

#
,

where ρ is the time rate of discount, we can make a similar decomposition but it is more complicated given the
nonlinearity in G. For this model we could do a Sims noncausality test where

V!Ii,0 =
TX
t=0

G
¡
Xi,tβ1,t + θiα1,t + ε1,i,t

¢−G ¡Xi,tβ0,t + θiα0,t + ε0,i,t
¢

(1 + ρ)t
−

TX
t=0

E

"
G
¡
Xi,tβ1,t + θiα1,t + ε1,i,t

¢−G ¡Xi,tβ0,t + θiα0,t + ε0,i,t
¢

(1 + ρ)
t

¯̄̄̄
¯ eIi,0

#
.

This requires some speciÞcation of G. See Carneiro, Hansen, and Heckman (2003), who assume G(Y ) = lnY and that
the equation for lnY is linear in parameters. Cunha, Heckman, and Navarro (2004) and Navarro (2004) generalize
that framework to a model with imperfect capital markets where some lending and borrowing is possible.
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3 Identifying counterfactual distributions and extracting

components of unpredictable uncertainty using factor mod-

els

To motivate our econometric procedures, it is useful to work with a slightly more abstract notation

and a simpler set up. Omit the individual i subscript to simplify the notation and suppose that

there is one period only (T = 0) so Y1 = Y1,0, Y0 = Y0,0. We relax this assumption later in this

section but initially use this framework to focus on the main econometric ideas motivating our

solution of the selection problem. Assume that (Y0, Y1) have Þnite means and can be expressed in

terms of conditioning variables X. Write

Y0 = μ0 (X) + U0, (9a)

Y1 = μ1 (X) + U1, (9b)

where E (U0 |X) = E (U1 |X) = 0, E (Y0 |X) = μ0 (X), and E (Y1 |X) = μ1 (X). The ex post
gain for an individual who moves from S = 0 to S = 1 is Y1 − Y0.
Write index I as a net utility,

I = Y1 − Y0 − C, (10)

where C is the cost of participation in sector 1. We write C = μC(Z) + UC, where the Z are

determinants of cost. We may write

I = μI(X,Z) + UI . (11)

Under perfect certainty,

μI(X,Z) = μ1(X)− μ0(X)− μC(Z) and UI = U1 − U0 − UC .

More generally, we deÞne UI as the error in the choice equation and it may or may not include all

future U1, U0, or UC . Similarly, μI(X,Z) may only be based on expectations of future X and Z
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at the time schooling decisions are made. We write

S = 1 if I ≥ 0; S = 0 otherwise. (12)

A major advantage of our approach over previous work on estimating components of uncertainty

facing agents is that we control for the econometric consequences of endogeneity in the choice of

S and thereby avoid self-selection biases. The choice equation is also a source of identifying infor-

mation for extracting forecastable components. This paper builds on recent research by Carneiro,

Hansen, and Heckman (2003) that solves the problem of constructing counterfactuals by identifying

the joint distribution of (Y0, Y1) conditional on S (or I) using a factor structure model. These

models generalize the LISREL models of Jöreskog (1977) and the MIMIC models of Jöreskog and

Goldberger (1975) to produce counterfactual distributions. We now exposit the main idea under-

lying our method, working with a one-factor model to simplify the exposition. Carneiro, Hansen,

and Heckman (2003) develop the general multifactor model we use in our empirical analysis.

3.1 Identifying counterfactual distributions

Identifying the joint distribution of potential outcomes is a difficult problem because we do not

observe both components of (Y0, Y1) for anyone. Thus, one cannot directly form the joint distribution

of potential outcomes (Y0, Y1). Heckman and Honoré (1990) show that if (i) C = 0 for every person,

(ii) decision rule (12) applies in an environment of perfect certainty, (iii) there are distinct variables

in μ1(X) and μ0(X), (iv) X is independent of (U1, U0), and other mild regularity restrictions are

satisÞed, then one can identify the joint distribution of (Y0, Y1) givenX, even without additional Z

variables. In this case the agents choose S solely in terms of the differences in potential outcomes.

However, in an environment of uncertainty or if C varies across people and contains some variables

unobserved by the analyst, this method breaks down. We present a more general analysis without

maintaining the perfect certainty assumption.

As shown by Heckman (1990), Heckman and Smith (1998), and Carneiro, Hansen, and Heckman

(2003), under the assumptions that (i) (Z,X) are statistically independent from (U0, U1, UI), (ii)

μI (X,Z) is a nontrivial function of Z given X, (iii) μI (X,Z) has full support, and (iv) the

18



elements of the pairs (μ0(X), μI(X,Z)) and (μ1 (X) , μI(X,Z)) can be varied independently of

each other, then one can identify the joint distributions of (U0, UI), (U1, UI) up to a scale σ∗I for UI

and also μ0 (X) , μ1 (X) , and μI (X,Z) , the last expression up to scale σI .
10 Thus, one can identify

the joint distributions of (Y0, I∗) and (Y1, I∗) given X and Z where I∗ = I/σI . As a by-product

we identify the mean functions. One cannot recover the joint distribution of (Y0, Y1) or (Y0, Y1, I∗)

givenX and Z without further assumptions. We provide an intuitive motivation for why F (Y0, I∗)

and F (Y1, I∗) are identiÞed in Appendix 1. Once we estimate these distributions, we perform factor

analysis on (Y0, I∗) and (Y1, I∗).

The factor structure approach provides a solution to the problem of constructing counterfactual

distributions. We show the essential idea. Suppose that the unobservables follow a one-factor

structure (i.e., θ is a scalar). Carneiro, Hansen, and Heckman (2003) generalize these methods

to the multifactor case. We can extend these methods to nonseparable models using the analysis

reported in Heckman, Matzkin, Navarro, and Urzua (2004), but we do not do so in this paper.

We assume that all of the dependence across (U0, U1, UI∗) is generated by a scalar factor θ,

U0 = θα0 + ε0,

U1 = θα1 + ε1,

UI∗ = θαI∗ + εI∗.

We assume that θ is statistically independent of (ε0, ε1, εI) and satisÞes E (θ) = 0 and E
¡
θ2
¢
= σ2θ.

All the ε�s are mutually independent with E (ε0) = E (ε1) = E (εI∗) = 0, V ar (ε0) = σ2ε0 , V ar (ε1) =

σ2ε1 , and V ar (εI) = σ
2
εI
(the ε terms are called uniquenesses in factor analysis). Because the factor

loadings may be different, the factor may affect outcomes and choices differently and may even have

different signs in different equations.

To show how one can recover the joint distribution of (Y0, Y1) using factor models, we break the

argument into two parts. First we show how to recover the factor loadings, factor variance, and the

variances of the uniquenesses. This part is like traditional factor analysis except that some latent

10Full support means the support of μI(X,Z) matches (or contains) the support of UI . (See Heckman and Honoré,
1990, and Carneiro, Hansen, and Heckman, 2003, for more precise formulations of these conditions.) The support of
a random variable is the set of values where it has a positive density.
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variables (e.g. I∗) are only observed up to scale so their scale must be normalized. Then, we show

how to construct joint distributions of counterfactuals.

3.2 Recovering the factor loadings

We consider identiÞcation of the model when the analyst has different types of information about

the choices and characteristics of the agent.

3.2.1 The case when there is information on Y0 for I < 0 and Y1 for I > 0 and the

decision rule is (12)

Under the conditions stated in section 3.1 and the papers referenced there, after conditioning onX

and controlling for selection, one can identify F (U0, UI∗) and F (U1, UI∗). From these distributions

one can identify the left hand side of

Cov (U0, UI∗) = α0αI∗σ
2
θ

and

Cov (U1, UI∗) = α1αI∗σ
2
θ.

The scale of the unobserved I is normalized, a standard condition for discrete choice models.

A second normalization that we need to impose is σ2θ = 1. This is required since the factor is not

observed and we must set its scale. That is, since αθ = kα θ
k
for any constant k, we need to set the

scale by normalizing the variance of θ. We could alternatively normalize some αj to one. Finally,

we set αI∗ = 1, an assumption we can relax, as noted below.

Under these conditions, we can identify α1 and α0 from the known covariances above. From the

Þrst covariance, we identify α0. From the second, we identify α1. From the normalization, we know

σ2θ. Since

Cov (U1, U0) = α1α0σ
2
θ,

we can identify the covariance between Y1 and Y0 even though we do not observe the pair (Y1, Y0)

for anyone. We then use the variances V ar (U1) , V ar (U0) and the normalization V ar (UI∗) = 1 to
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recover the variance of the uniquenesses σ2ε0 , σ
2
ε1 , σ

2
εI∗ .

The fact that we needed to normalize both σ2θ = 1 and αI∗ = 1 is a consequence of our assumption

that we have only one observation for Y1 and Y0. If we have access to more observations on life cycle

earnings from panel data, as we do in our empirical work, we can use (Y0,0, . . . Y0,T , Y1,0, . . . , Y1,T )

to relax one normalization, say σ2θ = 1, since then we can form, conditional on X and Z, the left

hand side of
Cov (U1,t0 , U1,t)

Cov (U1,t0 , UI∗)
= α1,t

and
Cov (U0,t0 , U0,t)

Cov (U0,t0 , UI∗)
= α0,t,

and recover σ2θ from, say, Cov (U1,t, UI∗) = α1,tσ
2
θ. IdentiÞcation of the variances of the uniquenesses

follows as before.

The central idea motivating our identiÞcation strategy is that even though we never observe

(Y0, Y1) as a pair, both Y0 and Y1 are linked to S through the choice equation. From S we can

generate I∗, using standard methods in discrete choice analysis. From this analysis we effectively

observe (Y0, I∗) and (Y1, I∗). The common dependence of Y0 and Y1 on I∗ secures identiÞcation of

the joint distribution of Y0, Y1, I∗. We next develop a complementary strategy based on the same

idea where, in addition to a choice equation, we have a measurement equation observed for all

observations whether or not Y1 or Y0 is observed. The measurement may be a test score which is a

proxy for �ability� θ. This measurement plays the role of I∗ and, in certain respects, identiÞcation

with a measurement of this type is more transparent and more traditional.

3.2.2 Adding a measurement equation

Suppose that we have access to a measurement for θ that is observed whether S = 1 or S = 0 in

addition to data on outcomes S and Y0 or Y1. In educational statistics, a test score is often used to

proxy ability. Suppose that the analyst has access to one ability test M for each person. Measured

ability M is

M = μM (X) + UM .
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Assume that

UM = θαM + εM ,

where εM is mutually independent from (ε0, ε1, εI) , and θ.11 We assume αM 6= 0. With this

additional information we can form

Cov (M,Y0|X,Z) = Cov (UM , U0) = αMα0σ
2
θ,

Cov (M,Y1|X,Z) = Cov (UM , U1) = αMα1σ
2
θ,

Cov (M, I∗|X,Z) = Cov (UM , UI∗) = αMαI∗σ
2
θ.

Conditioning on (X,Z), we can recover the error terms for the unobservables U0, UI∗ and UM

using the preceding arguments. If we impose the normalization αM = 1, which can be interpreted

as requiring that higher levels of measured ability are associated with higher levels of factor θ, we

can form the ratio
Cov (U0, UI∗)

Cov (UM , UI∗)
= α0

and identify α0. In a similar fashion, we can form

Cov (U1, UI∗)

Cov (UM , UI∗)
= α1

and we can recover α1. From

Cov (UM , U0) = α0σ
2
θ,

we can obtain σ2θ. Finally, we can identify αI∗ based on information from

Cov (UM , UI∗) = αI∗σ
2
θ,

so we can obtain αI∗ up to scale. Thus, with one measurement, one choice equation and two

outcomes we can identify σ2θ and αI∗ up to scale. We can use the identiÞed variances V ar (U0) ,

V ar (U1) , V ar (UI∗) = 1, and V ar (UM) to recover the variance of the uniquenesses σ2ε0, σ
2
ε1
, σ2εI∗ ,

11For simplicity, we assume that this is a continuous measurement. Discrete measurements can also be used. See
Carneiro, Hansen, and Heckman (2003).
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and σ2εM . Thus, having access to a measurement (M) and choice data with decision rule (10)�(12)

allows us to estimate the covariances among the counterfactual states.12

But how to identify the distributions? Traditional factor analysis assumes normality. We present

a more general nonparametric analysis. Allowing for nonnormality is essential for getting acceptable

empirical results as we note below.

3.3 Recovering the distributions nonparametrically

Given the identiÞcation of factor loadings, factor variances, and uniquenesses, we show how to

identify the marginal distributions of θ and ε0, ε1, εI∗ nonparametrically (the last one up to scale).

The method is based on a theorem by Kotlarski (1967). For completeness, we state his theorem.

Theorem 1 Suppose that we have two random variables T1 and T2 that satisfy:

T1 = θ + v1

T2 = θ + v2

with θ, v1, v2 mutually statistically independent, E (θ) < ∞, E (v1) = E (v2) = 0, that the condi-
tions for Fubini�s Theorem are satisÞed for each random variable, and that the random variables

possess nonvanishing (almost everywhere) characteristic functions. Then, the densities fθ, fv1, fv2

are identiÞed.

Proof See Kotlarski (1967). ¤

Applied to the current context, we have a choice equation, two outcome equations, and a mea-

surement equation.13 Assume that we normalize αM = 1 so that all factor loadings, factor variances,

12We cannot dispense with the choice equation unless we have data on F (Y0,M | X,Z) and F (Y1,M |
X,Z). Recall that, in most cases, we observe data that allows us to construct F (Y0,M |X,Z, S = 0) and
F (Y1,M |X,Z, S = 1). The required information for dispensing with the choice equation might be obtained when
we have limit sets Z̄u and Z̄l such that Pr(S = 1 |X,Z) = 1 for z ∈ Z̄u and Pr(S = 0 |X,Z) = 0 for z ∈ Z̄l. Then
we can replace I with M and do factor analysis(see Carneiro, Hansen, and Heckman, 2003).
13Again, for the sake of simplicity, we assume that M is continuous but our methods work for discrete measure-

ments. (See Carneiro, Hansen, and Heckman, 2003).
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and variances of uniquenesses are known. The system is

I∗ = μI∗ (X,Z) + θαI∗ + εI∗,

Y0 = μ0 (X) + θα0 + ε0,

Y1 = μ1 (X) + θα1 + ε1,

M = μM (X) + θ + εM .

Note that this system can be rewritten as

I∗ − μI∗(X,Z)
αI∗

= θ +
εI∗

αI∗
,

Y0 − μ0(X)
α0

= θ +
ε0
α0
,

Y1 − μ1(X)
α1

= θ +
ε1
α1
,

M − μM(X) = θ + εM .

Applying Kotlarski�s theorem to any pair of equations, we conclude that we can identify the densities

of θ, εI∗
αI∗
, ε0
α0
, ε1
α1
, εM . Since we know αI∗, α0, and α1, we can identify the densities of θ, εI∗ , ε0, ε1, εM .14

Thus, we can identify the distributions of all of the error terms. Finally, to recover the joint

distribution of (Y1, Y0), note that

F (Y1, Y0 |X) =
Z
F (Y1, Y0 | θ,X) dFθ (θ) .

From Kotlarski�s Theorem, Fθ(θ) is known. Because of the factor structure, Y1, Y0, and S are

independent once we condition on θ, so it follows that

F (Y1, Y0 | θ,X) = F (Y1 | θ,X)F (Y0 | θ,X) .
14Recall that UI is only known up to scale σI .
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But F (Y1 | θ,X) and F (Y0 | θ,X) are identiÞed once we condition on the factors since

F (Y1 | θ,X, S = 1) = F (Y1 | θ,X)

F (Y0 | θ,X, S = 0) = F (Y0 | θ,X) .

Note further that if θ were known to the analyst, our procedure would be equivalent to matching

on θ which is equivalent, for identiÞcation, to matching on the propensity score Pr (S = 1 |X,Z, θ).15

Our method generalizes matching by allowing the variables that would produce the conditional in-

dependence assumed in matching to be unobserved by the analyst.

The discussion in this section is for a one-factor model. In our empirical work, we use a multi-

factor model where the factors are used to characterize earnings dynamics and possible dependence

between future ε and S. Carneiro, Hansen, and Heckman (2003) provide the analysis we need for

the general multifactor case. The key idea is that, with enough measurements, outcomes and choice

equations, we can identify the number of factors generating dependence among the Y1, Y0, C, S,

and M and the distributions of the factors.16

3.4 Models with multiple factors and tests for full insurance versus

perfect certainty

Our empirical work is based on a 5 period (t = 0, . . . , 4) version of equations (1) and (8). In

Þtting the model, we introduce the possibility of additional sources of dependence in the choice

equation (8), distinct from the dependence arising from some or all of the components of θ. This

additional dependence may be generated from future (ε1,i,t, ε0,i,t), t = 0, . . . , T that affect schooling

choices.

From the covariances between Si (or I∗i ) and Y0,i,t and Y1,i,t, t = 0, . . . , T , under certain condi-

tions, we can identify additional sources of dependence between (Y0,i,t, Y1,i,t) and I∗i apart from θi

15Carneiro, Hansen, and Heckman (2003) discuss the matching relationship between factor and matching models.
For a discussion of factor models and control functions, see Heckman and Navarro (2004).
16A precise statement of what is �enough� information is given in Carneiro, Hansen, and Heckman (2003). See their

discussion of the Ledermann bound. The key idea is that the number of factors has to be small relative to the number
of measurements, outcomes and choice equations. This bound can be relaxed if there are a priori restrictions on the
factor loadings beyond innocuous normalizations. Using nonnormality one can also relax the Ledermann bound.
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arising from the dependence of ε0,i,t and ε1,i,t with
PT

t=0
E(ε1,i,t−ε0,i,t|!Ii,0)

(1+r)t
. In our empirical speciÞca-

tion discussed below, there are multiple earnings outcomes in each schooling state, a choice equation

and a vector of measurement equations to tie down the distribution of θi and the distributions of

the {ε0,i,t, ε1,i,t}Tt=0.
To see how additional sources of dependence might arise in Þtting the data, consider a model

with perfect foresight. Following the analysis in section 3.2 and in the papers cited there, we can

estimate

Cov (Yj,i,t, I
∗
i |X,Z) =

α0j,t
σ∗I
ΣΘ

"PT
t=0 (α1,t −α0,t)
(1 + r)t

−αC
#
+

µ
1

σ∗I

¶
V ar (εj,i,t)

(1 + r)t
, t = 0, . . . , T ; j = 0, 1,

where ΣΘ is the variance-covariance matrix of the θi. Conditional onX and Z, dependence between

Yj,i,t and I∗i can arise from two sources: from the θi and from the εj,i,t. Under complete markets,

if the εj,i,t are unknown at date t = 0 and have mean zero given Ii,0, the second term on the right

hand side vanishes and the factors θi capture any dependence between Yj,i,t and Si.

Using limit set arguments, as in Carneiro, Hansen, and Heckman (2003) and Cunha, Heckman,

and Navarro (2004), we can identify the αj,t, j = 0, 1, t = 0, . . . , T , the distribution of θi and the

distributions of the εj,i,t from earnings data alone in the limit sets.17 Under either complete markets

or under perfect foresight, we can identify αC up to scale σ∗I from the covariances between Yj,i,t,

and I∗i , provided a rank condition is satisÞed. In the case of scalar θi, we can identify αC for a Þxed

scale of I∗i from the preceding equation for perfect foresight as

1

αj,tσ2θ

"
−Cov (Yj,i,t, I∗i |X,Z) +

V ar (εj,i,t)

(σ∗I) (1 + r)
t +

αj,t
σ∗I
σ2θ

PT
t=0 (α1,t − α0,t)
(1 + r)t

#
=
αC
σ∗I
.

Since we know all of the ingredients on the left hand side, we can identify αC up to scale σ∗I . If

there is an element of X not in Z, we can identify the scale σ∗I (See equation (7)). Since αC is

overidentiÞed if T > 0, we can test between a perfect foresight model and a complete contingent

17Footnote 12 deÞnes the limit sets. See Carneiro, Hansen, and Heckman (2003) for a more complete discussion
of identiÞcation in limit sets.
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claims model by checking if the same αC is estimated for different Cov (Yj,i,t, I∗) terms.18 In the

complete contingent claims model with uncertainty, the middle term in the brackets would be zero

for all εj,i,t.19

4 More general preferences and market settings

To focus on the main ideas regarding model identiÞcation in this paper, we have deliberately used

the simple market structures of complete contingent claims markets. What can be identiÞed in

more general environments? In the absence of perfect certainty or perfect risk sharing, preferences

and market environments also determine schooling choices. The separation theorem we have used

to this point breaks down.

If we postulate information processes a priori, and preferences up to some unknown parameters

as in Flavin (1981), Blundell and Preston (1998), and Blundell, Pistaferri, and Preston (2004) , we

can identify departures from speciÞed market structures. In Cunha, Heckman, and Navarro (2004),

we postulate an Aiyagari (1994) � Laitner (1992) economy with one asset and parametric preferences

to identify the information processes in the agent�s information set. We take a parametric position

on preferences and a nonparametric position on the economic environment and the information set.

An open question, not yet fully resolved in the literature, is how far one can go in nonparamet-

rically jointly identifying preferences, market structures and information sets. In Cunha, Heckman,

and Navarro (2004), we add consumption data to the schooling choice and earnings data to secure

identiÞcation of risk preference parameters (within a parametric family) and information sets, and

to test among alternative models for market environments. Alternative assumptions about what

analysts know produce different interpretations of the same evidence. The lack of full insurance

interpretation given to their empirical results by Flavin (1981) and Blundell, Pistaferri, and Pre-

18This procedure would break down only if
V ar(εj,i,t)

(1+r)t

αj,tΣΘ
"T

t=0

(α1,t−α0,t)
(1+r)t

is constant across all t.

19This testing procedure generalizes to the case of vector θ provided that a rank condition

α0j,tΣΘ

PT
t=0 (α1,t −α0,t)
(1 + r)t

6= 0

holds for a collection of L terms of the covariances of Yj,i,t with I∗i where L is the number of factors.
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ston (2004) may be a consequence of their misspeciÞcation of the agent�s information set generating

process. We discuss this point further in section 5 when we present our estimates, to which we now

turn.

5 Empirical results

We Þrst describe our data and estimating equations. We then discuss the estimates obtained from

our model, and their economic implications.

5.1 The data, equations, and estimation

Appendix 2 considers a practical problem that plagues life cycle analysis. Few data sets contain the

full life cycle of earnings along with the test scores and schooling choices needed to directly estimate

our model and extract components of uncertainty. We need to combine data sets. Otherwise, we

can only obtain partial identiÞcation of the model. In our empirical analysis, we use a sample of

white males from the NLSY data pooled with PSID data, as described in Appendix 3 (placed on

our website), to produce life cycle data on earnings and schooling.

Following the preceding theoretical analysis, we consider only two schooling choices: high school

and college graduation. From now on we use c, h to denote college and high school, respectively.

�c� corresponds to 1 and �h� corresponds to 0 in the previous notation. For simplicity and famil-

iarity, in this paper we assume complete contingent claims markets. Because we assume that all

shocks are idiosyncratic, schooling choices are made on the basis of expected present value income

maximization. Carneiro, Hansen, and Heckman (2003) assume the absence of any credit markets

or insurance. One of the goals of this paper is to check whether their empirical Þndings about com-

ponents of income inequality are robust to different assumptions about the operation of the credit

market and insurance markets. Cunha, Heckman, and Navarro (2004) estimate an Aiyagari-Laitner

economy with a single asset and borrowing constraints and discuss risk aversion and the relative

importance of uncertainty.

The method developed in this paper is based on the idea that some or all components of expected

future earnings may affect current choices. In order to gain some preliminary insights on whether
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components of future earnings (and returns) affect current schooling choices, we present a simple

empirical analysis in Table 1. Using the sample described below and in Appendix 3 (posted on

the website), we regress log ex post earnings on schooling and schooling interacted with an ability

test (ASVAB) to obtain an estimate of the ex post return to schooling under the assumption that,

conditional on the test score, the ex post return is the same for everyone.20 This is a form of

matching estimator as described in section 2. Assuming that the conditioning variable controls for

selection, we use the estimated return to schooling and plug it into a schooling choice model to test

whether future earnings affect college choices. In order to account for possible selection biases not

controlled for by matching, we repeat the exercise using instrumental variables estimates of returns

instead.21 The matching (OLS) estimator is reported in the Þrst row of Table 1. The IV estimator

is reported in the second row. The estimated effects of these estimators on schooling choices are

given in the third and fourth rows. For either estimation method, we Þnd statistically signiÞcant

evidence that estimated ex post returns affect current schooling choices. This evidence suggests

that some components of future earnings may predict schooling.

However, this evidence is not decisive. The estimates do not clearly delineate what is unknown

to the agent at the time schooling choices are made. They also do not distinguish between the role

of ability in generating future earnings from the role of ability in reducing costs of schooling. The

procedure developed in this paper makes these distinctions. We can also determine the information

set facing agents using the method developed in the previous sections, which we now apply.22

Table 2.1 presents descriptive statistics of the data used to estimate the model. College graduates

have higher present value of earnings than high school graduates. College graduates also have higher

test scores, come from better family backgrounds, and are more likely to live in a location where

college tuition is lower.

To simplify the empirical analysis, we divide the lifetimes of individuals into 5 periods. The Þrst

period covers ages 19 through 28, the second goes from 29 through 38, the third from 39 to 48, the

fourth from 49 to 58, and the Þfth from 59 to 65. For each schooling level s, s ∈ {c, h}, and for
20We use the NLSY sample because of the availability of instruments in it.
21See Heckman and Navarro (2004) for an exposition of the strong conditions required for this to be a valid

procedure.
22A better test would be based on variables that more plausibly affect returns but not schooling, except through

returns. Labor market wages for different schooling levels are one plausible candidate.
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each period t, we calculate the present value of earnings as of age 19, Ys,t.23 To simplify notation

drop the �i� subscript. If Ys,t is generated by a three factor model, we would write:

Ys,t =Xβs,t + θ1αs,t,1 + θ2αs,t,2 + θ3αs,t,3 + εs,t for t = 0, 1, 2, 3, 4, s ∈ {c, h} . (13)

It turns out that a three-factor model is all that is required to Þt the data. Since the scales of

the factors are unknown, it is necessary to normalize some loadings (the α). In this paper, we set

αc,0,2 = αc,2,3 = 1. The normalization for ability (associated with the measurements M based on

test scores) is presented in the next paragraph. Using the identiÞcation scheme of Carneiro, Hansen,

and Heckman (2003) for the factor loadings, we also normalize αs,t,3 = 0, for t = 0 and t = 1 and for

s = c and s = h. This normalization has the substantive interpretation that θ3 affects earnings only

in the third and subsequent periods. Thus, θ3 is associated with mid-career wage developments.

For the measurement system for cognitive ability (M in the notation of section 3.2.2) we use

Þve components of the ASVAB test battery: arithmetic reasoning, word knowledge, paragraph

comprehension, math knowledge and coding speed. We dedicate the Þrst factor (θ1) to this test

system, and exclude the others from it. This justiÞes our interpretation of θ1 as ability. We include

family background variables among the covariates XM in the ASVAB test equations. In Table 2.2

we list the elements of XM . Formally, let Mj denote the test score j,

Mj =XMωj + θ1αtestj ,1 + εtestj . (14)

To set the scale of θ1, we normalize αtest1,1 = 1.

The cost function C is given by

C = Zγ + θ1αC,1 + θ2αC,2 + εC , (15)

where the Z are variables that affect the costs of going to college and include variables that do not

affect outcomes Ys,t, such as local tuition. Table 2.2 shows the full set of covariates used, and the

23In our empirical work we use a 3% interest rate. We assume it is constant. It would be useful to explore
alternative time series of interest rates based on the data actually facing our cohorts. Alternative choices of constant
interest rates do no affect the main qualitative Þndings about the relative importance of forecastable heterogeneity.
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exclusions (the variables in Z not in X.) We include tuition among the elements of Z but allow

for a more general notion of costs in our empirical work, including psychic costs.

The valuation or net utility function for schooling choice is

I = E0

Ã
4X
t=0

Yc,t − Yh,t
(1 + r)t

!
−E0 (C) , (16)

where E0 denotes the information set under I0 and r is the interest rate. Individuals go to college
if I > 0. The individual decision maker is assumed to be the child although parental resources can

affect C. Cost variable C also includes the effect of ability on reducing tuition costs. We test and

do not reject the hypothesis that individuals, at the time they make college going decisions, know

their cost functions, the Z and the X, factors θ1, θ2, and unobservables in cost εC . However, they

do not know factor θ3, or εs,t, s ∈ {c, h}, t ∈ {0, 1, 2, 3, 4} , at the time they make their educational
choices. Addition of these components to the choice equation does not improve the Þt of the model

to the data.24

We assume that each factor k, is generated by a mixture of Jk normal distributions,

θk v
JkX
j=1

pk,jφ
¡
θk | μk,j, τk,j

¢
,

where φ
¡
η | μj, τ j

¢
is a normal density for η with mean μj and variance τ j and

JkP
j=1

pk,j = 1, and

pk,j > 0. As shown in Ferguson (1983), mixtures of normals with a large number of components

approximate any distribution of θk arbitrarily well in the S1 norm. The εs,t are also assumed to

be generated by mixtures of normals. We estimate the model using Markov Chain Monte Carlo

methods as described in Carneiro, Hansen, and Heckman (2003). In Tables 2.3 − 2.5 we present
estimated coefficients and factor loadings. For all factors, a two-component model (Jk = 2, k =

1, . . . , 3) is adequate.25

24We use �t� statistics in the choice equation to determine whether additional factors enter the choice equation.
We use χ2 goodness of Þt measures to determine if additional factors are required.
25Additional components do not improve the goodness of Þt of the model to the data.
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5.2 Empirical results

5.2.1 How the model Þts the data

To assess the validity of our estimates and to assess the number of factors we need and the number

of components of the mixtures that are required, we perform a variety of checks of Þt of predictions

against the data. We Þrst compare the proportions of people who choose each schooling level. In

the NLSY data, 52.9% choose high school and 47.1% choose college. The model predicts roughly

53.2% and 46.8%, respectively. The model replicates the observed proportions remarkably well, and

formal tests of equality of predicted and actual proportions cannot be rejected at the 5% signiÞcance

level. This is also true when we partition the data on subsets of X and Z.

Figures 1.1�1.5 show the densities of the predicted and actual present values of earnings for the

overall sample of the pooled NLSY-PSID data sets.26 The Þt is good. When we perform formal tests

of equality of predicted and actual overall distributions at the 5% level, the model marginally fails

to Þt the data for the overall sample for the Þrst, third and last periods (see Table 3a). However,

addition of factors and additional components of the mixture of normals do not signiÞcantly improve

the Þt. Reducing the number of factors by one substantially reduces the overall Þt (see Table 3b).

Figures 2.1�2.5 and 3.1�3.5, show the same densities restricted to the sample of those who choose

high school (sequence 2) and college (sequence 3). The Þt is also good. The model Þts the data

better when we perform formal tests of equality of predicted and actual distributions for each

schooling choice than it does overall, suggesting the failure of Þt is due to the failure to predict

mean differences. As is apparent from Table 3a, the only case in which the model does not pass

the χ2 goodness of Þt test is for the high school distribution of earnings in period 4. We conclude

that a three-factor model with our normalizations Þts the data. From this analysis, we conclude

that earnings innovations εs,t in a three-factor model are not in the agents� information sets at the

time they are making schooling decisions. If they were, additional factors would be required to

capture the full covariance between educational choices and future earnings.27 Table 3b shows that

a two-factor model has a much worse Þt to the data.
26The earnings are pretax. It would be better to use post-tax earnings and we propose to do so in subsequent

work.
27Cunha, Heckman, and Navarro (2004) consider application of alternative testing and model selection criteria.
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5.2.2 The factors: non-normality and evidence on selection

Figure 4 reveals that in order to Þt the data, one must allow for non-normal factors. The Þgure plots

the estimated densities of the factors along with normal versions with the same mean and variance.

None of the factors is normally distributed. A traditional assumption used in factor analysis (see

Jöreskog, 1977) is violated. Our approach is more general and does not require normality.

Figure 5.1 plots the density of factor 1 conditional on educational choices. The solid line is the

density of factor 1 for agents who are high school graduates, while the dashed line is the density of

the factor for agents who are college graduates. Since factor 1 is associated with cognitive tests, we

can interpret it as an index of �ability� . The agents who choose college have, on average, higher

ability. Factor 1 is estimated from a test score equation that controls for parental background

and level of education at the date the ASVAB tests are taken. Figure 5.1 shows that selection on

ability is an important factor in explaining college attendance. A similar analysis of factor 2 that

is presented in Fig. 5.2 reveals that schooling decisions are not very much affected by it, while we

see no evidence of selection by schooling level on factor 3 (see Fig. 5.3). This evidence is consistent

with the interpretation that at the time agents make their schooling decisions, they do not know

factor 3. Agents cannot select on factors they do not know when they are making their schooling

decisions.

5.2.3 Estimating joint distributions of ex ante and ex post counterfactuals: returns,

costs, and ability as determinants of schooling

A major contribution of this paper is the identiÞcation and estimation of ex ante and ex post

distributions of outcomes and returns without imposing special assumptions about the dependence

across potential outcomes. Letting E0 denote the expectation under the ex ante information set

I0, we construct the distribution of (Y0, Y1) (ex post) and of (E0 (Y0) , E0 (Y1)) ex ante conditional
on X. The X are assumed to be known both ex ante and ex post. The ex post gross return R

(excluding cost) is

R =
Y1 − Y0
Y0

,
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while the ex ante gross return is

E0 (R) = E0

µ
Y1 − Y0
Y0

¶
.

Both population heterogeneity and uncertainty produce the randomness generating R. Population

heterogeneity in I0 (information sets) produces the randomness generating E0 (R) . A standard

argument shows that the means of R and E0 (R) over the entire population, and on any conditioning

subset, are the same.

In estimating the distribution of earnings in counterfactual schooling states within a policy

regime (e.g. the distributions of college earnings for people who actually choose to be high school

graduates under a particular tuition policy), one standard approach is to assume that both dis-

tributions are the same except for an additive constant�the coefficient of a schooling dummy in

an earnings regression possibly conditioned on the covariates. Recently developed methods relax

this assumption by assuming preservation of ranks across potential outcome distributions, but do

not freely specify the two outcome distributions (see Heckman, Smith, and Clements, 1997; Cher-

nozhukov and Hansen, 2005; Vytlacil and Shaikh, 2005).

Table 4.1 presents the ex post conditional distribution of college earnings given high school

earnings decile by decile. If the dependence across outcomes were perfect and positive, the diagonal

elements would be �1� and the off diagonal elements would be �0.� There is negative dependence

between the relative positions of individuals in the two distributions, and the dependence is far

from perfect. For example, almost 10% of those who are at the sixth decile of the ex post high

school distribution would be in the eighth decile of the ex post college distribution.

Note that this comparison is not made in terms of positions in the overall distribution of earnings.

We can determine where individuals are located in the population distribution of potential high

school earnings and the population distribution of potential college earnings although in the data

we only observe individuals in either one or the other state. The assumption of perfect dependence

across factual and counterfactual distributions that is often made in the literature is incorrect for

the data we analyze.

While Table 4.1 is the conditional distribution of ex post earnings across people, Table 4.2
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presents the conditional distribution of population ex ante college earnings on high school earnings

decile by decile. These conditional distributions are produced by allowingX, θ1, θ2, εC to vary across

persons as they do in the population, but integrating out the unknown εs,t, s = c, h, t = 0, . . . , 4, and

θ2. (In Table 4.1, these components contribute to the measured variability.) The ex ante conditional

distribution shows less dispersion than the distribution of ex post outcomes since components of

future realizations are integrated out. Ex ante, agents forecast more negative dependence across

counterfactual earnings states than the ex post dependence on realized earnings. Realized θ3 and

the {εs,t}4t=0 are forces toward positive dependence. The distinction between ex ante and ex post
counterfactual distributions is a major contribution of this paper and demonstrates that information

revelation is an important aspect of life cycle decision making.

Our ability to distinguish ex ante outcomes from ex post outcomes highlights a major advantage

of our approach over conventional instrumental variable and matching approaches to estimating

returns to education which focus on ex post returns. Decisions are made ex ante. Outcomes are

measured ex post. It is the ex ante return that agents act on but the ex post, or realized, return

that empirical economists usually measure.28

Let I =
P4

t=0

(Yc,t−Yh,t)
(1+r)t

− C. Using our empirical model, we present three sets of estimates: (i)
Ex ante returns based on ex ante choices E0 (R | E0 (I) ≥ 0) and E0 (R | E0 (I) < 0); (ii) Ex post
returns based on choices made with ex ante information (R | E0 (I) ≥ 0) , (R | E0 (I) < 0) (what is
usually presented in the literature on �program evaluation�) and (iii) Ex post returns based on ex

post choices (R | I ≥ 0) , (R | I < 0). The last set of returns conveys how returns and choices would
differ if agents could �do it over again,� i.e., make decisions based on hindsight. The same people are

used to form measures (i) and (ii). For measure (iii), agents are allowed to change their schooling

choices with hindsight.

Figures 6.1 and 6.2 present, respectively, the Þtted and counterfactual marginal distributions of

ex post earnings for high school and college graduates. Figure 6.1 reveals that high school graduates

are more likely to be successful in the high school sector than those who attend college. In Fig. 6.2,

we compare the densities of present value of earnings in the college sector for persons who choose

28As Hicks (1946, p. 179) puts it, �Ex post calculations of capital accumulation have their place in economic and
statistical history; they are a useful measuring for economic progress; but they are of no use to theoretical economists
who are trying to Þnd out how the system works, because they have no signiÞcance for conduct.�
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college with the counterfactual distributions of college earnings for high school graduates. The

density of the present value of earnings for college graduates is to the right of the counterfactual

density of the present value of earnings of high school graduates if they were college graduates.

The surprising feature of both Þgures is that the overlap of the distributions is substantial. Ex

post, many high school graduates would have large earnings as college graduates. This suggests the

importance of costs and expectational elements in explaining schooling decisions. The densities of

ex ante earnings are more compressed than the densities of ex post earnings (see Figs 6.3 and 6.4)

but the patterns are similar reßecting the fact that most of the measured variability in earnings is

due to heterogeneity. The densities under perfect certainty (Figs 6.5 and 6.6) for high school and

college, respectively, show a much sharper separation between the earnings in the choice taken and

the counterfactual earnings. Using hindsight, people would make wiser choices and separate out

more sharply, but there is still considerable overlap between the two distributions for both schooling

choices.

Tables 5.1�5.4 provide further evidence on the importance of distinguishing between ex ante and

ex post returns. In Table 5.1, we report the estimated and counterfactual ex post present value of

earnings for agents who choose high school. The typical high school student would earn $605.92

thousand dollars over the life cycle. She would earn $969.34 thousand if she had chosen to be a

college graduate.29 This implies a mean lifetime return of 117% to a college education over the

whole life cycle (i.e., a monetary gain of $363.42 thousand dollars for four years of college).30 In

Table 5.2, we note that the typical college graduate earns $1,007.64 thousand dollars (above the

counterfactual earnings of a typical high school student) and would make only $536.43 thousand

dollars over her lifetime if she chose to be a high school graduate instead. The lifetime returns to

college education for the typical college graduate (which in the literature on program evaluation is

referred to as the effect of Treatment on the Treated) is 133%, above that of the return for a high

school graduate.

Table 5.3 reports the ex post earnings in high school and college and returns to college for people

indifferent between college and high school. Not surprisingly, people on the margin of indifference

29These numbers may appear to be large but are a consequence of using only a 3% discount rate.
30The mean return E (R) = E

³
Y1−Y0
Y0

´
= 1.17 and is higher than the mean E(Y1−Y0)

E(Y0)
= 969.34−605.92

605.92 �0.60.
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have returns that are intermediate between those who go to college and those who go to high school.

Table 5.4 presents rates of return to college under different assumptions about agent information,

for people who choose high school, for people who choose college and for those at the margin of

indifference between going to college or not. The persons at the margin are more likely to be affected

by a policy that encourages college attendance, and their returns should be used to compute the

marginal beneÞt of policies that induce people into schooling.31

Ex ante and ex post mean returns must be the same for any subpopulation if agents use the

information available to them. The mean returns under perfect certainty are different from the other

returns because of re-sorting by persons into schooling in response to the information revealed after

initial college choices are made. Some people would choose different levels of schooling if they had

hindsight. Returns to college for those choosing high school in hindsight would be lower; returns

to college would be higher. For those on the margin of indifference, the returns are about the same

under perfect certainty as they are in the other two experiments reported in the table.

While ex ante and ex post mean returns must be identical, the ex ante and ex post distributions

are not.32 Figure 7.1 plots the density of ex post returns to education for agents who are high

school graduates (the solid curve), and the density of ex post returns to education for agents who

are college graduates (the dashed curve). College graduates have returns distributed �to the right�

of high school graduates, so the difference is not only a difference for the mean individual but is

actually present over the entire distribution. Agents who choose a college education are the ones

who tend to gain more from it.

Figure 7.2 presents the ex ante returns for college and high school students. These densities

are not much different from the ex post densities. Figure 7.3 shows the densities of returns for

those who would choose high school and college in an environment of perfect certainty. Clearly, the

distributions are more sharply separated. Uncertainty reduces the force of comparative advantage

31Heckman and Vytlacil (1999, 2005) develop an alternative method for estimating the ex post return to persons
at the margin of attending school.
32Let W1 = μ (η, ν1) be the outcome in period �1.� The agent in period �0� knows (η, ν0). The ex ante mean value

of W1 given η and ν0 is

E0 (W1 | η, ν0) =
Z
μ (η, ν1) dF (ν1 | η, ν0) ,

where F (a | b) is the distribution of a given b. The ex post mean of W1 given (η, ν1) is μ (η, ν1). The ex post mean of
W1 given (η) is E (W1 | η) =

R
μ (η, ν1) dF (ν1 | η). Averaging over (η, ν0) and E (W1, η) over η produces the same

mean outcome. This is true for any central moment.
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emphasized by Roy (1951).

Figure 8 shows the estimated densities of the monetary value of cost, both overall and by

schooling level. College is less costly for those who attend college. �Psychic costs� can stand in for

expectational errors and attitudes towards risk. We do not distinguish among these explanations

in this paper. The estimated costs are too large to be due to tuition costs alone.

It is important to note that our cost estimates are critically dependent on the assumption that

the α, β, and γ are known by the agent. If the agent cannot accurately forecast future prices,

and the prices are random variables but statistically independent of the θ (as would be plausible,

since the prices are set in national markets and the θ are individual speciÞc), then what we are

calling estimated costs include expectational errors (see Carneiro, Hansen, and Heckman, 2003).33

In the absence of cost data, and data on expectations, this ambiguity is intrinsic and highlights the

importance of maintained assumptions in interpreting evidence on schooling choices.

In the human capital literature, a conventional maintained assumption used when computing

rates of return from measured earnings data is that direct costs are only a small fraction of total

earnings (see Heckman, Lochner, and Todd, 2004). Our evidence casts doubt on the validity of this

assumption. Psychic costs (including expectational forecast errors) are a sizeable component of the

33This is obvious from expression (2.8). If the α, β, and γ are random variables from the point of view of the
agent using information set eIi,0, and are independent of X, Z, and θ, then expectational errors enter symmetrically
with cost shocks. Thus, consider the Þrst two terms in (2.8) associated with the X and β.
Analyzing the contribution of expectations about β to the total error term in the schooling choice index, we obtain

four components

TX
t=0

E
³
Xi,t | eIi,0´
(1 + r)t

E
³
β1,i,t − β0,i,t | eIi,0´

+
TX
t=0

E
³
Xi,t | eIi,0´
(1 + r)

t

h
β1,i,t − β0,i,t −

h
E
³
β1,i,t − β0,i,t | eIi,0´ii¯∆βt

+
TX
t=0

³
Xi,t −E

³
Xi,t | eIi,0´´

(1 + r)t
E
³
β1,i,t − β0,j,t | eIi,0´¯∆X

+
TX
t=0

³
Xi,t −E

³
Xi,t | eIi,0´´

(1 + r)
t

h
β1,i,t − β0,i,t −

h
E
³
β1,i,t − β0,i,t | eIi,0´ii¯∆X,βt

where, as before, ¯ is a Hadamard product, and∆βt and∆X,βt are deÞned as coefficients analogous to the coefficients
used in (2.8). A comparable expression can be derived for the other coefficients if they are random. The expectational
errors about the coefficients are an additional source of variability in outcomes that cannot be distinguished from
variations due to the expectational errors in the X without using additional information. See the second and fourth
terms and note they they would enter εC as we have deÞned it in the previous sections and would hence be conßated
with costs.
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net return, and they explain why agents who face high gross returns do not go to college. Ignoring

direct costs overstates the rates of return. The existence of large ex post returns that could be

realized by high school students who do not attend college are attributable in our model to psychic

costs and expectational errors in some unknown proportion.

5.2.4 How well can agents predict future earnings?

In Figs 9.1 through 9.3, we separate the effect of heterogeneity (total unobserved variance) from

uncertainty in earnings. These calculations are reported for the population as a whole. Figure 9.1

plots the densities of the present value of earnings for the agent, using different information sets,

denoted by Θ. First, consider the case in which the agent has no information about the θ or the

{ε0,t, ε1,t}Tt=0. The Z,X, εC , and the model coefficients are assumed to be known in all of these
simulations. They are set at mean values. The choice of means affects the locations but not the

shapes of the densities. The εs,t are unknown and various assumptions about which the agent knows

are tested. Note that the density has a large variance, if the agent knows only factor 1, i.e., the

factors in the information set are Θ = {θ1}.34 In this case, the reduction in the forecast from

knowing ability only from knowledge of her cognitive ability adds little to the forecast of her future

earnings. Now, assume that the agent is given knowledge of factor 2 as well, so that Θ = {θ1, θ2}.
Note that knowledge of factor 2 causes a substantial reduction in the variance of the present value

of earnings in high school. Thus, while factor 2 does not greatly affect college choices, it greatly

informs the agent about her future earnings. When the agent is given knowledge of factors 1, 2,

and 3, that is, Θ = {θ1, θ2, θ3} , she can forecast earnings somewhat better. However, our analysis
suggests that agents do not know factor 3. Figure 9.2 reveals much the same story about college

earnings, except that knowledge of factor 3 now substantially increases the predictability of college

earnings.

Knowledge of the factors enables agents to make better forecasts of returns. Figure 9.3 presents

the same type of exercise regarding information sets available to the agent for returns to college

(Y1 − Y0). Knowledge of factor 2 also helps the agents forecast their gains better. Almost 48% of

the variability in returns is forecastable at age 19. Knowledge of factor 3, which is not known at

34As opposed to the econometrician who never gets to observe the Θ.
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age 19, would greatly improve predictability of future earnings.

Table 6.1 presents the variance of potential lifetime earnings in each state, and returns under

different information sets available to the agent. Tables 6.1�6.6 are calculated for the entire popu-

lation. Note that in Table 6.1 knowledge of factor 2 is quantitatively important in reducing forecast

variance of lifetime earnings for college and high school. Factor 3 is more powerful but, according

to our estimates, it is not known by the agent at age 19. Tables 6.2�6.6 show the period by period

predictability of discounted earnings from the vantage point of age 19 when the agent knows only

θ1 and θ2. Earnings in later periods are less predictable than earnings in earlier periods using only

factors 1 and 2. Quantitatively, factors 2 and 3 are important in predicting future earnings and

returns whereas ability (factor 1) is not.

This discussion sheds light on the issue of distinguishing predictable components of heterogeneity

from uncertainty. We have demonstrated that there is a large dispersion in the distribution of the

present value of earnings. This dispersion is largely due to heterogeneity, which is forecastable

by the agents at the time they are making their schooling choices. The remaining dispersion is

due to luck (uncertainty) or unforecastable errors regarding the coefficients as of age 19. Since

any measurement errors in ex post earnings are allocated to uncertainty, our estimates arguably

underestimate the degree of predictability of future earnings known to the agents at age 19.

5.2.5 Ex ante choices versus choices under perfect certainty

Once the distinction between heterogeneity and uncertainty is made, we can talk meaningfully

about the distinction between ex ante and ex post decision making. From our analysis, we conclude

that, at the time agents pick their schooling, {ε0,i,t, ε1,i,t}Tt=0 and θ3 in their earnings equations are
unknown to them. These are the components that correspond to �luck� as deÞned by Jencks, Smith,

Acland, Bane, Cohen, Gintis, Heyns, and Michelson (1972). It is clear that schooling choices would

be different, at least for some individuals, if they knew the realized components of earnings. If

agents knew these luck components when choosing schooling levels, decision rule (10)�(12) would
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now be

I =
4X
t=0

(Yc,t − Yh,t)
(1 + r)t

− C > 0

S = 1 if I > 0; S = 0 otherwise,

where no expectation is taken to calculate I since all components are known with certainty by the

agents.

In our empirical model, if individuals could pick their schooling level using their ex post informa-

tion (i.e., after learning their luck components in earnings), 25.19% of high school graduates would

rather be college graduates and 31.40% of college graduates would have stopped at the high school

level. Uncertainty about future outcomes greatly affects schooling choices, and there is plenty of

scope for ex post regret.35

6 Summary and conclusions

This paper discusses the problem of separating heterogeneity from uncertainty. We develop and

apply a method for estimating both heterogeneity and uncertainty from ex post earnings data

and from schooling choices. We estimate substantial predictable and unpredictable components

of earnings as of age 19. Agents have greater difficulty in predicting outcomes in later periods of

their life cycles than they do in earlier periods. Procedures that equate variability with uncertainty

overstate risk and, hence, understate the pricing of risk. If agents knew their ex post earnings

outcomes resulting from their schooling choices, a substantial fraction (around 30%) would change

their schooling decisions. Hicks� distinction between ex ante and ex post is an empirically important

one.

This paper takes a Þrst step toward resolving an empirical puzzle in the labor economics lit-

erature. Ex post returns to college are high for those who stop at high school. Our evidence is

35In a companion paper Cunha, Heckman, and Navarro (2005), we address issues similar to the ones addressed in
this paper but use a more ad hoc approach to pooling data across samples to construct a life cycle data set. That
procedure follows Carneiro, Hansen, and Heckman (2003) rather than the more rigorous methodology derived in
Appendix 2. That paper shows even less uncertainty than we have shown here and establishes a strong correlation
across latent skill levels, which is positive. We are much more conÞdent in the empirical results in this paper than
in the results reported in the previous paper.
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that, within a complete markets setting, psychic costs of schooling (and expectational errors in

a more general model) account for this phenomenon. This evidence has importance implications

for the conventional human capital literature that ignores these costs in computing rates of return

to schooling. However, a story that relies on psychic costs to explain the puzzle is not entirely

satisfactory. One needs to account more systematically for borrowing constraints and risk aversion,

and we do so elsewhere in Carneiro, Hansen, and Heckman (2003), Cunha, Heckman, and Navarro

(2004), and Navarro (2004).

Throughout this paper we have maintained the assumption of complete markets for idiosyncratic

components of risk. An open question which we address, but do not solve, is how to simultaneously

identify constraints (market structure), preferences and information confronting agents. Different

scholars focus on different aspects of the decision problem facing agents. Those who postulate

speciÞc information structures and the preferences of agents test for alternative market structures

(e.g. partial insurance). In this paper, we have estimated information structures, making assump-

tions about market structures and constraints that neutralize the effects of risk preferences and

uncertainty on schooling choices.

In Cunha, Heckman, and Navarro (2004), we build on the analysis of this paper to estimate an

Aiyagari (1994) � Laitner (1992) economy and simultaneously identify preferences (within a para-

metric family) and information sets allowing for market incompleteness. We extend the analysis

of Carneiro, Hansen, and Heckman (2003) by considering more ßexible parameterizations of pref-

erences against risk aversion and allowing for restricted lending and borrowing. (They assume an

environment of complete autarky). A robust Þnding across all environments we have studied is

that uncertainty is empirically important. Hicks� important distinction between ex ante and ex post

income receives substantial empirical support in the data on schooling choice and earnings, and

changes the way we interpret a vast empirical literature on ex post returns to schooling.
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Appendix 1 Amotivation for the nonparametric identiÞca-

tion of the joint distribution of outcomes and

the binary choice equation

The following intuition motivates conditions under which F (Y0, I∗ | X,Z) is identiÞed. A formal
proof is given in Carneiro, Hansen, and Heckman (2003). A parallel argument holds for F (Y1, I∗ |
X,Z). First, under the conditions given in Cosslett (1983), Manski (1988), and Matzkin (1992),

we can identify μI(X,Z)
σI

from Pr(S = 1 | X,Z) = Pr(μI(X,Z) + UI ≥ 0 | X,Z). We can also
identify the distribution of UI

σI
.36 Second, from this information and F (Y0 | S = 0,X,Z) = Pr(Y0 ≤

36An alternative to the conventional approach, which requires large support conditions, postulates that μI(X,Z) =
XγX +ZγZ and normalizes one coefficient on a continuous coordinate of Z, say Z1, to unity (e.g. γZ1 = 1). Then,
Þxing the remaining values of X and Z at speciÞed values (X = x, �Z = �z, where �Z is Z removed of its Þrst
coordinate) and tracing Z1 over its support, we identify the distribution of UI over the support of Z1, assumed to
lie in an interval [CL, CU ) which may or may not be the support of UI . Assuming UI is absolutely continuous, we
can thus identify

FUI (uI | CL ≤ UI < CU ) =
FUI (uI)

FUI (CU )− FUI (CL)
.

Since Pr (S = 1 |X,Z) = FUI (XγX +ZγZ), if the supports of Z1 and UI match, we can invert for each X, Z

F−1UI (Pr (S = 1 |X,Z)) =XγX +ZγZ
and identify the coefficients γX , γZ provided that (X,Z) is of full rank. However, if the support of UI strictly
contains that of Z1, the same operation identiÞes

F−1UI

µ
Pr (S = 1 |X,Z)
FUI (CU )− FUI (CL)

¶
=XγX +ZγZ ,
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y0 | μI(X,Z) + UI ≤ 0,X,Z), we can form

F (Y0 | S = 0,X,Z) Pr(S = 0 |X,Z) = Pr(Y0 ≤ y0, I∗ ≤ 0 |X,Z).

The left hand side of this expression is known (we observe Y0 when S = 0 and we know the

probability that S = 0 given X,Z). The right hand side can be written as

Pr

µ
Y0 ≤ y0, UI

σI
≤ −μI(X,Z)

σI
|X,Z

¶
.

We know μI(X,Z)
σI

and can vary it for each ÞxedX. In particular if μI(X,Z) gets small (μI(X,Z)→
−∞) we can recover the marginal distribution Y0 from which we can recover μ0(X).

Using (9a), we can express this probability as

Pr

µ
U0 ≤ y0 − μ0(X),

UI
σI
≤ −μI(X,Z)

σI
|X,Z

¶
.

Note thatX and Z can be varied and y0 is a number. Thus we can trace out the joint distribution

of
³
U0,

UI
σI

´
. Thus we can recover the joint distribution of

(Y0, I
∗) =

µ
μ0(X) + U0,

μI(X,Z) + UI
σI

¶
.

Notice the three key ingredients. (i) The independence of (U0, UI) and (X,Z). (ii) The assumption

that we can set μI(X,Z)
σI

to be very small (so we get the marginal distribution of Y0 and hence μ0(X)).

(iii) The assumption that μI(X,Z)
σI

can be varied independently of μ0(X). This enables us to trace

out the joint distribution of
³
U0,

UI
σI

´
.

where FUI (CU )− FUI (CL) is unknown.
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Appendix 2 Combining data sets to estimate a life cycle

model

A serious empirical problem plagues most life cycle analyses. It is a rare data set that includes the

full life cycle earnings experiences of persons along with their test scores, measurements, schooling

choices, and background variables. Many data sets like the National Longitudinal Survey of Youth

(NLSY 79) have partial information up to some age. A few other data sets (e.g. the Panel Survey

on Income Dynamics or PSID) have full information on some life cycle variables but lack the detail

of the richer data which provide information only on truncated life cycles. This appendix considers

two issues: (i) What can be identiÞed from the truncated life cycle data and (ii) What can be learned

from combining the truncated data with a data set with fewer variables but with information on

schooling and earnings on entire life cycles? Our factor model provides a natural framework for

combining samples to produce identiÞcation even when the model is not identiÞed in each sample.

To Þx ideas and motivate the empirical work, suppress the individual i subscripts and write

Ys,t =Xβs,t + θ1αs,t,1 + θ2αs,t,2 + θ3αs,t,3 + εs,t, t = 0, . . . , 4, s = 0, 1, (17)

where αs,t,3 = 0 for t = 0, 1. An individual picks S = 1 if

4X
t=0

1

(1 + r)t−1
E (Y1,t − Y0,t | I0)−E (Cost | I0) > 0,

that is S = 1 if

4X
t=0

1

(1 + r)t−1

"
E (X | I0)

¡
β1,t − β0,t

¢
+

3X
j=1

E (θj | I0) (α1,t,j − α0,t,j) +E (ε1,t − ε0,t | I0)
#

−E (Z | I0)γ −
3X
j=1

E (θj | I0) (αC,j)−E (εC | I0) ≥ 0,

where Z may include elements in common with X. It will prove convenient to write the choice
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equation in reduced form, letting Q combine X and Z:

I = QγI + θ1αI,1 + θ2αI,2 + θ3αI,3 + εI , (18)

where εI is the composite of the errors from the choice equation. Finally, the external measurements

are written as

Mk =XMβM,k + θ1αM,k,1 + εM,k, k = 1, . . . ,K,

where K is the number of measurements (test scores in our application). For the case in which we

have access to full life cycle data, the contribution to the likelihood of an individual who chooses

S = s, is given by

Z
Θ

4Y
t=0

1Y
s=0

{f (Ys,t|θ,X)Pr (S = s|Z,θ)}1(S=s)
KY
k=1

f (Mk|θ,XM) dF (θ) , (19)

where it is assumed that the (X,Z) are independent of θ and the ε and Θ is the support of θ.

IdentiÞcation follows from the analysis of Carneiro, Hansen, and Heckman (2003).

Now, suppose that we only have access to a sample A in which we only observe some of the

variables at early stages of the life cycle. In particular, assume that sample A does not include

observations on {Ys,t}4t=2 as is the case with the NLSY, which contains no information on earnings
after age 43.

The contribution to the likelihood of an individual who chooses, for example, S = 1 is

Z
Θ

"
1Y
t=0

f (Y1,t|θ,X)
#
[Pr (I ≥ 0|Z,θ)]

KY
k=1

f (Mk|θ,XM)

(
4Y
t=2

Z
f (Y1,t|θ,X) dF (Y1,t)

)
dF (θ)

=

Z
Θ

"
1Y
t=0

f (Y1,t|θ,X)
#
Pr (I ≥ 0|Z,θ)

KY
k=1

f (Mk|θ,XM) dF (θ) .
37 (20)

We integrate out earnings for the periods in which we do not observe them. Using the Þrst two

periods of data, we can identify a model in which we have K external measurements, 2 time periods

for earnings, and a reduced form schooling equation that combines parameters of earnings with cost

37If she had chosen S = 0 then we would write Pr (I < 0|Z, θ) instead.
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parameters. For K ≥ 3, from the measurements conditional on X we can form

Cov (Mk,Mk0 |XM) = αM,kαM,k0σ
2
θ1
. 38

Taking ratios of these covariances, we can identify the factor loadings up to one normalization.39

We can identify the distributions of the error terms for measurements. From these, we can identify

the distributions of θ1, {εk}Kk=1 nonparametrically by using Kotlarski�s theorem. Then, under the
support assumptions in Carneiro, Hansen, and Heckman (2003), and noting that we have identiÞed

σ2θ1, we can form

Cov (Mk, Ys,t |XM ,X) = αM,kαs,t,1σ
2
θ1
, s = 0, 1, t = 0, 1,

and identify the loadings on the Þrst factor for each s for t = 0, 1.40 From the covariances of I
σI
with

either M or Ys,t, we can identify the factor loadings associated with (18) up to scale σI .

Once we identify all of the parameters related to θ1 we can, for each schooling level s (remember

that αs,t,3 = 0 for t = 0, 1), form

Cov (Ys,0, Ys,1 |X)− αs,0,1αs,1,1σ2θ1 = αs,0,2αs,1,2σ
2
θ2

Cov (Ys,t, I |X,Z)− αs,t,1αI,1σ2θ1 = αs,t,2αI,2σ
2
θ2
, t = 0, 1,

where the left hand side is known and the loadings on factor 1 are identiÞed up to scale from

earnings and choice. Recall that factor 3 does not enter the earnings equations for t = 0, 1. We

can then solve for the loadings on θ2 in the earnings and choice equations. Proceeding as before,

we can recover the distributions of θ2, and
©{εs,t}1s=0ª1t=0 provided we have at least one exclusion

(one continuous element of Z not in X). Notice that, since we are not able to identify any of the

parameters of earnings for t > 1, we cannot identify all of the structural parameters in the choice

equation so we cannot separate the effect of costs from the effect of future earnings.

38Or if K ≥ 2 and we use either the choice equation or one of the earnings equations. See Carneiro, Hansen, and
Heckman (2003).
39The means of the functions (and so the βk) are trivially identiÞed from E (θ1) = E (θ2) = E (εs,t) = 0.
40As before, given the support conditions the means are identiÞed from the mean zero assumptions on the error

term.
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Now, suppose that we have access to a second independent sample B that is generated by the

same process that generates sample A.41 In this second sample, we do not observe {Mk}Kk=1 but we
do observe earnings and schooling choices (and X and Z) for all time periods. For sample B, an

individual with S = 1 has a contribution to the likelihood that would be given by integrating out

the test scores from the likelihood (19):

Z
Θ

"
4Y
t=0

f (Y1,t|θ,X)
#
Pr (I ≥ 0|Z,θ)

(
KY
k=1

Z
f (Mk|θ,XM) dF (Mk)

)
dF (θ)

=

Z
Θ

"
4Y
t=0

f (Y1,t|θ,X)
#
Pr (I ≥ 0|Z,θ) dF (θ) . (21)

From this sample alone we cannot recover the loadings or the marginal distributions of θ1, θ2, {ε1,t}4t=0 ,
and εI , without additional assumptions.42

We combine both samples so that a person�s contribution to likelihood is given by (20) if an

individual comes from sample A and is given by (21) if he comes from sample B. In this case, we

would be able to recover all of the elements of the model. To see why, notice that from sample A

alone the only unidentiÞed parameters are the coefficients and distributions for earnings in t > 1.

In sample B we can form the left hand sides of

Cov (Ys,t, Ys,0 |X) = αs,t,1αs,0,1σ
2
θ1
+ αs,t,2αs,0,2σ

2
θ2

Cov (Ys,t, Ys,1 |X) = αs,t,1αs,1,1σ
2
θ1 + αs,t,2αs,1,2σ

2
θ2, t = {2, 3, 4} ,

where all parameters except αs,t,1 and αs,t,2 for t = 2, 3, 4 are identiÞed from data on sampleA. These

covariances form a system of two linear equations in two unknowns that, under a standard rank

condition, we can solve for the unknowns αs,t,1 and αs,t,2 for t > 1 and s = 0, 1. A similar argument

allows us to recover the parameters associated with θ3 using the covariances of the outcomes Ys,t

after period 1. Since we have identiÞed all of the parameters of the earnings equations, we can

solve for the structural parameters of the choice equation and separate costs from future earnings.

41By this we mean that the parameters and distributions of the random variables in both samples are the same.
42It is clear we will never recover any of the parameters of the measurement equations in this sample. If we changed

our normalizations on the rest of the system however, so that θ2 does not enter the earnings equation at t = 0, 1 for
example, and there is no third factor, we could recover all of the remaining parameters of the model.
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More generally, we can obtain more efficient estimates for the overidentiÞed parameters by pooling

samples.

This procedure abstracts from cohort effects for the coefficients and factor loadings and cohort

effects for the distributions of θ. With additional structure (e.g. additivity), we can identify such

effects, but we acknowledge that general cohort effects can dramatically bias estimates based on

pooling the data.
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Figure 1.1
Densities of fitted and actual present value of earnings

from age 19 to 28 for overall sample

Thousands of Dollars

Fitted
Actual

Present value of earnings from age 19 to 28 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.2
Densities of fitted and actual present value of earnings

from age 29 to 38 for overall sample

Thousands of Dollars

Fitted
Actual

Present value of earnings from age 29 to 38 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1�- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.3
Densities of fitted and actual present value of earnings

from age 39 to 48 for overall sample

Thousands of Dollars

Fitted
Actual

Present value of earnings from age 39 to 48 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.4
Densities of fitted and actual present value of earnings

from age 49 to 58 for overall sample

Thousands of Dollars
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Actual

Present value of earnings from age 49 to 58 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.
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Figure 1.5
Densities of fitted and actual present value of earnings

from age 59 to 65 for overall sample
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%.  L et (Y
0
,Y

1
) denote

potential outcomes in high school and college sectors, respectively.  L et S=0 denote choice of the high 
school sector, and S=1 denote choice of the college sector.  Define observed earnings as Y =SY1

+(1�- S)Y  
0
. 

Finally, let  f(y) denote the density function of observed earnings.  Here we plot the density functions f 
generated from the data (the dashed line), and that predicted by the model (the solid line). We use kernel
density estimation to smooth these functions.



Present value of earnings from age 19 to 28 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Figure 2.1
Densities of fitted and actual present value of earnings

from age 19 to 28 for people who choose to graduate high school

Thousands of Dollars

Fitted
Actual



Present value of earnings from age 29 to 38 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 39 to 48 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Figure 2.3
Densities of fitted and actual present value of earnings

from age 39 to 48 for people who choose to graduate high school
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Present value of earnings from age 49 to 58 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
| S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Figure 2.4
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from age 49 to 58 for people who choose to graduate high school
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%. Earnings here are Y
0
.

Here we plot the density functions f(y
0
|S=0) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 19 to 28 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Figure 3.1
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Present value of earnings from age 29 to 38 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 39 to 48 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 49 to 58 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Present value of earnings from age 59 to 65 discounted using an interest rate of 3%. This plot is for Y
1
.

Here we plot the density functions f(y
1
| S=1) generated from the data (the dashed line), and that

predicted by the model (the solid line).  We use kernel density estimation to smooth these functions.
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Let f(θ
1
) denote the probability density function of factor θ

1
.  We allow f(θ

1
) to be a mixture

of normals.  Assume µ
1
=E(θ

1
) and σ

1
=Var(θ

1
).  Let φ(µ

1
,σ

1
) denote the density of a normal random variable

with mean µ
1
 and variance σ

1
.  The solid curve is the actual density of factor θ

1
, f(θ

1
), while the dashed

curve is the density of a normal random variable with mean µ
1
 and variance σ

1
.  We proceed similarly for

factors 2 and 3 using the notation in the legend.
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Let f(θ
1
) denote the probability density function of factor θ

1
.  We allow f(θ

1
) to be a mixture

of normals.  The solid line plots the density of factor 1 conditional on choosing the high school sector,
that is, f(θ

1
|choice=high school).  The dashed line plots the density of factor 1 conditional on choosing

the college sector, that is, f(θ
1
|choice=college).
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Figure 5.1
Densities of "ability" (factor 1) by schooling level
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Let f(θ
2
) denote the probability density function of factor θ

2
.  We allow f(θ

2
) to be a mixture

of normals.  The solid line plots the density of factor 2 conditional on choosing the high school sector,
that is, f(θ

2
|choice=high school).  The dashed line plots the density of factor 2 conditional on choosing

the college sector, that is, f(θ
2
|choice=college).
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Factor 2

High School
College



Let f(θ
3
) denote the probability density function of factor θ

3
.  We allow f(θ

3
) to be a mixture

of normals.  The solid line plots the density of factor 3 conditional on choosing the high school sector,
that is, f(θ

3
|choice=high school).  The dashed line plots the density of factor 3 conditional on choosing

the college sector, that is, f(θ
3
|choice=college).
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Let Y
0
 denote the present value of earnings from age 19 to 65 in the high school sector (discounted at a 3%

interest rate). Let f(Y
0
) denote its density function.  The  solid  line  plots the predicted Y

0
 density

conditional on choosing high school, that is, f(Y
0
| S=0), while the dashed line shows the counterfactual

density function of Y
0
 for those agents who are actually college graduates, that is, f(Y

0
| S=1). This

assumes that the agent chooses schooling without knowing θ
3
 and ε=(ε

0,t
, ε

1,t
, t=0,...T)
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Figure 6.1
Densities of ex post present value of counterfactual and fitted earnings

from age 19 to 65 in the high school sector

Thousands of Dollars

HS (fitted)
Col (counterfactual)



Let Y
1
 denote the present value of earnings from age 19 to 65 in the college sector (discounted at a 3%

interest rate).  Let f(Y
1
) denote its density function.  The dashed line plots the predicted Y

1
 density

conditional on choosing college, that is, f(Y
1
|S=1), while the solid line shows the counterfactual

density function of Y
1
 for those agents who are actually high school graduates, that is, f(Y

1
|S=0). This

assumes that the agent chooses schooling without knowing θ
3
 and ε=(ε

0,t
, ε

1,t
, t=0,...T)
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Figure 6.2
Densities of ex post present value of counterfactual and fitted earnings

from age 19 to 65 in the college sector
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HS (counterfactual)
Col (fitted)
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L et ε=(ε

0,t
, ε 

1,t
, t=0,...T ).  L et E (Y

0
) denote the ex ante present value of earnings from age 19 to 65 in the

high school sector (discounted at a 3% interest rate).  L et f(E

curve plots the predicted Y
0
 density conditional on choosing high school, that is, f(E (Y

0
)|S=0), while the

dashed line shows the counterfactual density function of E (Y
0
) for those agents who are actually college

graduates, that is, f(E (Y
0
)|S=1).  T his is constructed assuming that the agent chooses schooling without 

knowing 
                         

and ε.

�

θ  ,ε3

θ  ,ε3
θ  ,ε3

θ
 3

θ  ,ε3

(Y
0θ  ,ε3

) denote its density function. The solid
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Figure 6.4
Densities of ex ante present value of counterfactual and fitted earnings

from age 19 to 65 in the college sector
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L et ε={ ε    ,ε    ,t=0,...,T } . L et E       (Y  ) denote the ex ante present value of earnings from age 19 to 65 in the
0,t 1,t θ  ,ε

3
1

college sector (discounted at a 3% interest rate). Let f(E       (Y  )) denote its density function. T he solid lineθ  ,ε
3

1

plots the counterfactual Y    density conditional on choosing high school, that is, f(E       (Y  )| S=0), while the 1 1θ  ,ε
3

dashed line shows the predicted density function of E       (Y  ) for those agents who are actually college graduates,

that is,  f(E       (Y  )| S=0). T his is constructed assuming that the agent chooses schooling without knowing θ  and ε.
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1

1 3



Let Y
0
 denote the present value of earnings from age 19 to 65 in the high school sector (discounted at a 3%

interest rate).  Let f(Y
0
) denote its density function.  The solid curve plots the predicted Y

0
 density

conditional on choosing high school, that is, f(Y
0
|S=0), while the dashed line shows the counterfactual

density function of Y
0
 for those agents who are actually college graduates, that is, f(Y

0
|S=1).  This

assumes that the agent chooses schooling with complete knowledge of future earnings.
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Figure 6.5
Densities of present value of counterfactual and fitted earnings from age 19 to 65

assuming perfect certainty in the high school sector
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Let Y
1
 denote the present value of earnings from age 19 to 65 in the college sector (discounted at a 3%

interest rate).  Let f(Y
1
) denote its density function.  The solid curve plots the counterfactual Y

1
 density

conditional on choosing high school, that is, f(Y
1
|S=0), while the dashed line shows the predicted

density function of Y
1
 for those agents who are actually college graduates, that is, f(Y

1
|S=1).  This

assumes that the agent chooses schooling with complete knowledge of future earnings.
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Densities of present value of counterfactual and fitted earnings from age 19 to 65

assuming perfect certainty in the college sector
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Let Y
0
,Y

1
 denote the present value of earnings in the high school and college sectors, respectively.

Define ex post returns to college as the ratio R=(Y
1
−Y

0
)/Y

0
.  Let f(r) denote the density function of

the random variable R.  The solid line is the density of ex post returns to college for high school
graduates, that is f(r|S=0).  The dashed line is the density of ex post returns to college for college
graduates, that is, f(r|S=1). This assumes that the agent chooses schooling without knowing θ

3
 and

ε=(ε
0,t

, ε
1,t

, t=0,...T)
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Let ε=(ε
0,t

, ε
1,t

, t=0,...T).  Let Y
0
,Y

1
 denote the present value of earnings in the high school and college

sectors, respectively.  Define ex ante returns to college as the ratio Eθ
3
,ε(R)=Eθ

3
,ε((Y1

−Y
0
)/Y

0
).  Let f(r)

denote the density function of the random variable Eθ
3
,ε(R).  The solid line is the density of ex post returns

to college for high school graduates, that is f(r|S=0).  The dashed line is the density of ex post returns to
college for college graduates, that is, f(r|S=1).   This assumes that the agent chooses schooling without
knowing θ

3
 and ε.
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Let Y
0
,Y

1
 denote the present value of earnings in the high school and college sectors, respectively

(discounted at a 3% interest rate).  Define returns to college as the ratio R=(Y
1
−Y

0
)/Y

0
.  Let f(r)

denote the density function of the random variable R.  The solid line is the density of returns to college
for high school graduates, that is f(r|S=0).  The dashed line is the density of returns to college for college
graduates, that is, f(r|S=1).  This assumes that the agent chooses schooling with complete knowledge of
future earnings.
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Fraction of the Base State

High School
College



Let C denote the monetary value of psychic costs.  Let f(c) denote the density function of psychic costs
in monetary terms.  The dashed line shows the density of psychic costs for high school graduates, that
is f(c|S=0).  The dotted line shows the density of psychic costs for college graduates, that is, f(c|S=1).
The solid line is the unconditional density of the monetary value of psychic costs, f(c).
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Let Θ denote the agent's information set.  Let Y0 denote the present value of earnings in the high school
sector (discounted at a 3% interest rate).  Let f(y0|Θ) denote the density of the present value of earnings

in high school conditioned on the information set Θ. Then:
The solid line plots f(y0|Θ) under no information, i.e. Θ=∅.
The dashed line plots f(y0|Θ) when only factor 1 is in the information set, i.e. Θ=(θ1).
The dashed-dotted line plots f(y0|Θ) when factors 1 and 2 are in the information set, i.e. Θ=(θ1,θ2).
The crossed line plots f(y0|Θ) when all factors are in the information set, i.e. Θ=(θ1,θ2,θ3).

The X are put at the mean and are assumed to be known. The θ, when known, are set at their mean of zero.
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Densities of present value of high school earnings

under different information sets for the agent calculated
for the entire population regardless of schooling choice

Thousands of Dollars

Θ = ∅
Θ = (θ1)
Θ = (θ1,θ2)
Θ = (θ1,θ2,θ3)



 
Let Θ denote the agent's information set.  Let Y1 denote the present value of earnings in the college
sector (discounted at a 3% interest rate).  Let f(y1|Θ) denote the density of the present value of earnings

in high school conditioned on the information set Θ. Then:
The solid line plots f(y1|Θ) under no information, i.e. Θ=∅.
The dashed line plots f(y1|Θ) when only factor 1 is in the information set, i.e. Θ=(θ1).
The dashed-dotted line plots f(y1|Θ) when factors 1 and 2 are in the information set, i.e. Θ=(θ1,θ2).
The crossed line plots f(y1|Θ) when all factors are in the information set, i.e. Θ=(θ1,θ2,θ3).

The X are put at the mean and are assumed to be known. The θ, when known, are set at their mean of zero.
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Figure 9.2
Densities of present value of college earnings

under different information sets for the agent calculated
for the entire population regardless of schooling choice

Thousands of Dollars

Θ = ∅
Θ = (θ1)
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Θ = (θ1,θ2,θ3)



 
 
Let Θ denote the agent's information set.  Let Y0,Y1 denote the present value of earnings in the high school
and college sectors, respectively (discounted at a 3% interest rate).  Let D=Y0-Y1 be the difference of the present

value of earnings in the college and high school sector.  f(d|Θ) denote the density of the difference of present
value of earnings conditioned on the information set Θ. Then:
The solid line plots f(d|Θ) under no information, i.e. Θ=∅.
The dashed line plots f(d|Θ) when only factor 1 is in the information set, i.e. Θ=(θ1).
The dashed-dotted line plots f(d|Θ) when factors 1 and 2 are in the information set, i.e. Θ=(θ1,θ2).
The crossed line plots f(d|Θ) when all factors are in the information set, i.e. Θ=(θ1,θ2,θ3).

The X are put at the mean and are assumed to be known The θ when known are set at their mean of zero
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Figure 9.3
Densities of returns college vs high school

under different information sets for the agent calculated
for the entire population regardless of schooling choice

Thousands of Dollars

Θ = ∅
Θ = (θ1)
Θ = (θ1,θ2)
Θ = (θ1,θ2,θ3)



Variable Coefficient Std. Error
School (High School vs. College) 0.2735 0.0344
School*ASVAB 0.0279 0.0063

School 0.2573 0.0451
School*ASVAB 0.0153 0.0083

Variable Coefficient Std. Error
bSchool + bSchool*ASVAB*ASVAB 12.6244 0.7284
Marginal Effect 4.8333 0.2654

bSchool + bSchool*ASVAB*ASVAB 22.9150 1.3221
Marginal Effect 8.7731 0.4817
*Includes controls for Mincer experience (age - years of schooling - 6), experience squared, cohort dummies, and 
ASVAB scores.
†We use parental education, family income, broken home, number of siblings, distance to college, local tuition, 
cohort dummies, South at age 14 and urban at age 14 to instrument for schooling and schooling interacted with 
ASVAB scores.

‡We use the predicted return to school to test whether future earnings affect current schooling choices. We include 
controls for family background, cohort dummies, distance to college, and local tuition.

Instrumental Variables†

Schooling Choice Probit Equation‡
Using OLS Results

Using IV Coefficients

Table 1
Estimated Effects of Ex Post  Returns to Schooling on Schooling 
Choice using OLS and IV To Estimate The Ex Post  Returns To 

Schooling
Log Earnings Regression*

OLS



Variable Name Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max Obs Mean Std. Dev Min Max
Asvab AR* 1362 0.72 0.95 -1.78 1.96 747 0.26 0.89 -1.78 1.96 615 1.27 0.70 -1.36 1.96
Asvab PC* 1362 0.42 0.80 -2.68 1.36 747 0.07 0.86 -2.68 1.36 615 0.84 0.44 -1.06 1.36
Asvab WK* 1362 0.52 0.72 -2.29 1.34 747 0.20 0.76 -2.29 1.34 615 0.92 0.41 -1.36 1.34
Asvab MK* 1362 0.62 1.03 -1.62 2.11 747 0.00 0.81 -1.62 2.11 615 1.38 0.73 -1.46 2.11
Asvab CS* 1362 0.21 0.85 -2.52 2.49 747 -0.08 0.79 -2.52 2.08 615 0.56 0.77 -2.52 2.49
Urban at age 14 3695 0.79 0.40 0.00 1.00 1953 0.75 0.44 0.00 1.00 1742 0.85 0.36 0.00 1.00
Parents Divorced 3695 0.15 0.36 0.00 1.00 1953 0.18 0.38 0.00 1.00 1742 0.13 0.34 0.00 1.00
Number of Siblings 3695 2.86 1.96 0.00 17.00 1953 3.19 2.08 0.00 14.00 1742 2.49 1.74 0.00 17.00
Father's Education 3695 4.31 1.94 1.00 8.00 1953 3.56 1.51 1.00 8.00 1742 5.15 2.03 1.00 8.00
Mother's Education 3695 4.21 1.55 1.00 8.00 1953 3.68 1.26 1.00 8.00 1742 4.79 1.63 1.00 8.00
Born between 1906 and 1915 3695 0.01 0.10 0.00 1.00 1953 0.01 0.12 0.00 1.00 1742 0.00 0.06 0.00 1.00
Born between 1916 and 1925 3695 0.04 0.19 0.00 1.00 1953 0.04 0.21 0.00 1.00 1742 0.03 0.18 0.00 1.00
Born between 1926 and 1935 3695 0.07 0.25 0.00 1.00 1953 0.07 0.26 0.00 1.00 1742 0.06 0.24 0.00 1.00
Born between 1936 and 1945 3695 0.09 0.29 0.00 1.00 1953 0.07 0.26 0.00 1.00 1742 0.11 0.31 0.00 1.00
Born between 1946 and 1955 3695 0.20 0.40 0.00 1.00 1953 0.17 0.37 0.00 1.00 1742 0.24 0.43 0.00 1.00
Born between 1956 and 1965 3695 0.55 0.50 0.00 1.00 1953 0.56 0.50 0.00 1.00 1742 0.53 0.50 0.00 1.00
Born between 1966 and 1975 3695 0.04 0.21 0.00 1.00 1953 0.07 0.25 0.00 1.00 1742 0.02 0.14 0.00 1.00
Education 3695 1.47 0.50 1.00 2.00 1953 1.00 0.00 1.00 1.00 1742 2.00 0.00 2.00 2.00
Age in 1980 3695 26.87 12.32 5.00 68.00 1953 26.53 13.10 5.00 68.00 1742 27.25 11.39 9.00 68.00
Grade Completed 1980 1362 12.06 1.66 8.00 18.00 747 11.44 0.92 8.00 12.00 615 12.80 2.03 9.00 18.00
Enrolled in 1980 1362 0.57 0.50 0.00 1.00 747 0.33 0.47 0.00 1.00 615 0.86 0.35 0.00 1.00
PV of Earnings† 7152 2.38 1.64 0.00 18.59 3708 1.95 1.14 0.00 11.52 3444 2.83 1.95 0.00 18.59
Tuition at age 17 3695 1.80 0.72 0.00 5.55 1953 1.82 0.74 0.00 5.55 1742 1.76 0.70 0.00 5.55
*Note:
  AR=Arithmetic Reasoning
  PC=Paragraph Composition
  WK= Word Knowledge
  MK=Math Knowledge
  CS=Coding Speed
†In thousands of Dollars

Table 2.1
Descriptive Statistics from the Pooled NLSY/1979 and PSID (white males)

Full Sample High School Sample College Sample



Variable Name Cost Function (Z ) Test System (X M ) Earnings (X )
Urban at age 14 Yes Yes No
Parents Divorced Yes Yes No
Number of Siblings Yes Yes No
Father's Education Yes Yes No
Mother's Education Yes Yes No
Born between 1906 and 1915 Yes No Yes
Born between 1916 and 1925 Yes No Yes
Born between 1926 and 1935 Yes No Yes
Born between 1936 and 1945 Yes No Yes
Born between 1946 and 1955 Yes No Yes
Born between 1956 and 1965 Yes No Yes
Born between 1966 and 1975 Yes No Yes
Age in 1980 No Yes No
Grade Completed 1980 No Yes No
Enrolled in 1980 No Yes No
Tuition at age 17 Yes No No

List of Variables Included and Excluded in Each System
Table 2.2



Coefficients Mean Standard Deviation
Constant -2.2504 0.3587
Mother's Education 0.2250 0.0274
Father's Education 0.3386 0.0246
Parents Divorced -0.1976 0.0845
Number of Siblings -0.1012 0.0163
Urban Residence at age 14 0.1998 0.0755
Dummy birth 1916-1925 0.6076 0.3582
Dummy birth 1926-1935 0.5553 0.3471
Dummy birth 1936-1945 0.7050 0.3417
Dummy birth 1946-1955 0.4160 0.3355
Dummy birth 1956-1965 -0.2064 0.3346
Dummy birth 1966-1975 -1.4159 0.3703
Tuition at 4-year college -0.0953 0.0447
Loading Factor 1 1.3523 0.1315
Loading Factor 2 0.4785 0.1335
Loading Factor 3 -0.0624 0.1274

Estimated Coefficients in Schooling Choice Equation
Table 2.3



Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Dummy birth 1916-1925 - - - - - - - - -0.1054 0.0829
Dummy birth 1926-1935 - - - - - - -0.0225 0.0974 -0.1443 0.0809
Dummy birth 1936-1945 - - - - -0.1105 0.1034 -0.0201 0.0989 0.0616 0.1276
Dummy birth 1946-1955 - - -0.1779 0.0987 -0.2636 0.0917 0.1657 0.1973 - -
Dummy birth 1956-1965 -0.7107 0.0637 -0.2936 0.0883 -0.0757 0.1385 - - - -
Dummy birth 1966-1975 -0.6730 0.0960 -0.2360 0.2267 - - - - - -
Constant 2.6276 0.0658 2.4021 0.0935 1.8880 0.0870 1.2819 0.0870 0.6147 0.0746
Loading Factor 1 0.1636 0.0433 0.1059 0.0485 0.0164 0.0949 0.0466 0.1122 -0.0077 0.0775
Loading Factor 2 -1.2138 0.0903 -1.6282 0.1142 -1.4415 0.1172 -1.1225 0.1056 -0.3924 0.0763
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 0.2428 0.1684 0.2791 0.1510 0.1327 0.1013

Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Dummy birth 1916-1925 - - - - - - - - -0.2976 0.3218
Dummy birth 1926-1935 - - - - - - -0.0881 0.1846 -0.3743 0.3147
Dummy birth 1936-1945 - - - - -0.0059 0.1710 0.0384 0.1696 -0.2256 0.3457
Dummy birth 1946-1955 - - -0.1944 0.1262 -0.0512 0.1568 0.2122 0.2238 - -
Dummy birth 1956-1965 -0.7375 0.0686 -0.2340 0.1182 -0.1081 0.2910 - - - -
Dummy birth 1966-1975 -0.3459 0.1736 1.3144 0.7365 - - - - - -
Constant 2.2802 0.0670 3.5270 0.1191 3.1859 0.1720 2.4843 0.1914 1.3632 0.3367
Loading Factor 1 0.2225 0.0853 0.3137 0.1296 -0.2870 0.2415 -0.2676 0.2656 -0.0144 0.2300
Loading Factor 2 1.0000 0.0000 2.3887 0.1573 2.3194 0.1715 1.7102 0.1806 0.7481 0.1231
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.5354 0.1627 0.8876 0.1665

Period Three Period 4

Table 2.4
Estimated Coefficients for High School Earnings Equation

Period Zero Period One Period Two

Estimated Coefficients for College Earnings Equation
Period Zero Period One Period Two Period Three Period 4



Coefficients Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
Constant -1.1198 0.2256 -1.0262 0.1719 -0.5180 0.2032 -1.4751 0.2265 -1.2706 0.2281
Mother's Education 0.0735 0.0177 0.0529 0.0136 0.0614 0.0158 0.0469 0.0178 0.0561 0.0175
Father's Education 0.0494 0.0136 0.0593 0.0105 0.0461 0.0121 0.0168 0.0139 0.0870 0.0135
Family Income in 1979 0.0008 0.0015 0.0009 0.0012 0.0000 0.0014 0.0038 0.0016 0.0021 0.0015
Parents Divorced -0.0584 0.0564 -0.0514 0.0440 -0.0947 0.0508 0.0458 0.0569 -0.0138 0.0560
Number of Siblings -0.0193 0.0111 -0.0397 0.0086 -0.0143 0.0099 -0.0273 0.0115 -0.0313 0.0110
South Residence at age 14 -0.1278 0.0463 -0.0906 0.0358 -0.0064 0.0423 -0.1418 0.0475 -0.1365 0.0464
Urban Residence at age 14 0.0640 0.0461 -0.0243 0.0361 0.0117 0.0422 0.0258 0.0468 0.0529 0.0466
Enrolled at School at Test Date 0.0646 0.0528 -0.0036 0.0403 -0.0515 0.0471 0.0074 0.0527 0.3122 0.0529
Age at Test Date 0.0096 0.0164 0.0237 0.0128 -0.0170 0.0148 0.0048 0.0165 -0.0510 0.0166
Highest Grade Completed at Test Date 0.0911 0.0198 0.0604 0.0155 0.0721 0.0179 0.1082 0.0201 0.1732 0.0198
Loading Factor 1 1.0000 0.0000 0.6801 0.0321 0.8069 0.0377 0.5648 0.0319 0.9562 0.0293
Loading Factor 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Loading Factor 3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Coding Speed

Table 2.5
Estimated Coefficients of Test Equations

Math KnowledgeWord Knowledge
Paragraph 

CompositionArithmetic Reasoning



High School College Overall
 χ2 Statistic 91.9681 74.2503 204.3823

Critical Value* 107.5217 82.5287 178.4854
 χ2 Statistic 86.6649 107.6417 207.6152

Critical Value* 116.5110 116.5110 218.8205
 χ2 Statistic 26.2658 45.5301 106.5721

Critical Value* 43.7730 55.7585 91.6702
 χ2 Statistic 35.3846 29.7218 55.5758

Critical Value* 31.4104 30.1435 55.7585
 χ2 Statistic 23.2193 14.9131 41.8657

Critical Value* 23.6848 16.9190 35.1725
* 95% Confidence, equiprobable bins with approx. 15 people per bin

Period 5

Table 3a

The Three-Factor Model

Period 1

Period 2

Period 3

Period 4

Goodness of Fit Tests: Predicted Earnings Densities vs. Actual Densities



High School College Overall
 χ2 Statistic 109.5702 132.3027 267.4894

Critical Value* 107.5217 82.5287 178.4854
 χ2 Statistic 104.1649 150.5556 247.6732

Critical Value* 116.5110 116.5110 218.8205
 χ2 Statistic 40.7028 61.7322 114.1692

Critical Value* 43.7730 55.7585 91.6702
 χ2 Statistic 39.7253 47.5559 64.2503

Critical Value* 31.4104 30.1435 55.7585
 χ2 Statistic 18.3217 26.5855 40.4078

Critical Value* 23.6848 16.9190 35.1725
* 95% Confidence, equiprobable bins with approx. 15 people per bin

Period 5

Table 3b
Goodness of Fit Tests: Predicted Earnings Densities vs Actual Earnings Densities

Period 1

Period 2

Period 3

Period 4

The Two-Factor Model



Table 4.1

High School 1 2 3 4 5 6 7 8 9 10
1 0.0035 0.0109 0.0240 0.0326 0.0524 0.7538 0.1137 0.1557 0.2511 0.2808
2 0.0098 0.0244 0.0419 0.0631 0.0894 0.1122 0.1391 0.1747 0.2048 0.1407
3 0.0160 0.0466 0.0741 0.0877 0.1041 0.1213 0.1441 0.1549 0.1581 0.0931
4 0.0236 0.0603 0.0911 0.1062 0.1220 0.1298 0.1348 0.1372 0.1266 0.0683
5 0.0439 0.0848 0.1108 0.1227 0.1303 0.1309 0.1211 0.1139 0.0928 0.0489
6 0.0627 0.1074 0.1214 0.1304 0.1330 0.1218 0.1168 0.0954 0.0695 0.0415
7 0.0963 0.1256 0.1340 0.1334 0.1200 0.1200 0.0937 0.0784 0.0554 0.0433
8 0.1378 0.1659 0.1529 0.1396 0.1114 0.0925 0.0740 0.0561 0.0296 0.0402
9 0.1939 0.1970 0.1498 0.1180 0.1002 0.0771 0.0534 0.0362 0.0200 0.0543
10 0.3354 0.1983 0.1167 0.0812 0.0515 0.0351 0.0266 0.0152 0.0130 0.1271

Ex-Post Conditional Distributions (College Earnings Conditional on High School Earnings)
Pr(di<Yc≤di+1 |dj<Yh≤dj+1) where di is the ith decile of the College Lifetime Ex-Post Earnings Distribution and d j is the jth 

decile of the High School Ex-Post Lifetime Earnings Distribution
Corrrelation(YC,YH) = -0.3899

College



Table 4.2

High School 1 2 3 4 5 6 7 8 9 10
1 0.0002 0.0079 0.0108 0.0226 0.0421 0.0594 0.0909 0.1447 0.2236 0.3978
2 0.0044 0.0180 0.0286 0.0530 0.0720 0.1010 0.1362 0.1686 0.2114 0.2068
3 0.0106 0.0362 0.0578 0.0786 0.1062 0.1152 0.1498 0.1618 0.1692 0.1146
4 0.0200 0.0546 0.0786 0.1024 0.1204 0.1266 0.1376 0.1406 0.1290 0.0902
5 0.0390 0.0740 0.1004 0.1130 0.1291 0.1387 0.1295 0.1206 0.1010 0.0546
6 0.0454 0.1017 0.1253 0.1353 0.1333 0.1323 0.1189 0.1011 0.0754 0.0314
7 0.0873 0.1299 0.1437 0.1451 0.1299 0.1199 0.0965 0.0777 0.0519 0.0180
8 0.1336 0.1603 0.1613 0.1431 0.1160 0.0974 0.0793 0.0589 0.0389 0.0112
9 0.2063 0.2016 0.1651 0.1293 0.1056 0.0840 0.0540 0.0317 0.0155 0.0068

10 0.4123 0.2318 0.1393 0.0868 0.0556 0.0365 0.0210 0.0110 0.0049 0.0006

College

Ex-Ante Conditional Distribution (College Earnings Conditional on High School Earnings)
Pr(di<Yc≤di+1 |dj<Yh≤dj+1) where di is the ith decile of the College Lifetime Ex-Ante Earnings Distribution and dj is the jth decile 

of the High School Ex-Ante Lifetime Earnings Distribution
Individual expects out θ3 and εs,t for t=0, … , 4, which are unknown by the agent at the time of the schooling choice.

Corrrelation(YC,YH) =  -0.6993



High School (Fitted) College 
(counterfactual)

Average Present Value of Earnings 605.92 969.34
Std. Err. 13.719 67.164

Average returns 
Std. Err.

Average returns§ to college for high school graduates

*Thousands of dollars. Discounted using a 3% interest rate.
†The counterfactual is constructed using the estimated college outcome equation applied to the population 
of persons selecting high school
§As a fraction of the base state, i.e. (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).

1.17
0.1350

Table 5.1
Average present value of earnings* for high school graduates

Fitted and Counterfactual†

White males from NLSY79



High School 
(Counterfactual) College (fitted)

Average Present Value of Earnings 536.43 1007.64
Std. Err. 26.187 35.113

Average returns
Std. Err.

Average returns§  to college for college graduates

* Thousands of dollars. Discounted using a 3% interest rate.
†The counterfactual is constructed using the estimated high school outcome equation applied to the 
population of persons selecting college
§As a fraction of the base state, i.e. (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).

1.33
0.0958

Table 5.2
Average present value of earnings* for college graduates

Fitted and Counterfactual†

White males from NLSY79



High School College
Average  Present Value of Earnings 571.33 975.16
Std. Err. 37.066 70.557

Average returns 
Std. Err.

† As a fraction of the base state, i.e. (PVearnings(Col)-PVearnings(HS))/PVearnings(HS).

Average returns† to college for people indifferent between high school and college

§ Thousands of dollars. Discounted using a 3% interest rate.

High School vs Some College
1.26

0.3691

Table 5.3
Average present value of earnings* for population of persons 

indifferent between high school and college
Conditional on education level

White males from NLSY79



Table 5.4
Average ex-post, ex-ante and perfect certainty returns∗

White males from NLSY79
For people who choose high school
ex-post† ex-ante‡ perfect certainty§

Average 1.1594 1.1594 0.9337
Std. Err. 0.1362 0.1362 0.1154

For people who choose college
ex-post† ex-ante‡ perfect certainty§

Average 1.3398 1.3398 1.6121
Std. Err. 0.1083 0.1083 0.1082
For people indifferent between high school and college

ex-post† ex-ante‡ perfect certainty§

Average 1.2585 1.2585 1.2418
Std. Err. 0.3868 0.3868 0.1067

∗ Let Y0, Y1 denote the present value of earnings in high school and

college, respectively. The return to college R is defined as

R =
(

Y1 − Y0

Y0

)
† Let I denote the schooling choice index. Let Θ0 denote the informa-

tion set of the agent at the time of the schooling choice. Let R denote

the return to college. The ex-post mean return to college for a high-

school graduate is E (R | E0 (I) < 0) , where E0 (I) = E (I | Θ0) .
Similarly, the ex-post mean return to college for a college graduate is

E (R | E0 (I) ≥ 0) . The ex-post mean return to an agent just indiffer-

ent between college and high-school is E (R | E0 (I) = 0) .
‡ Let I denote the schooling index. Let Θ0 denote the information

set of the agent at the time of the schooling choice. Let R denote the

return to college. The ex-ante mean return to college for a high-school

graduate is E (E0 (R) | E0 (I) < 0) . Similarly, the ex-ante mean return

to college for a college graduate is E (E0 (R) | E0 (I) ≥ 0) . The ex-ante

mean return to an agent just indifferent between college and high-school

is E (E0 (R) | E0 (I) = 0) . By a property of means, the mean ex-ante

and the mean ex-post returns must be equal for the same conditioning

set, i.e. E (E0 (R) | E0 (I) ≥ 0) = E (R | E0 (I) ≥ 0) .
§ Let I denote the schooling index. Let R denote the return to col-

lege. The return to college under perfect certainty for a high-school

graduate is E (R | I < 0) . Note that now the agent makes his schooling

choice under perfect certainty (that is why we condition on I). Simi-

larly, the return to college under perfect certainty for a college graduate

is E (R | I ≥ 0) . The return to college under perfect certainty for an

agent just indifferent between college and high-school is E (R | I = 0) .



Table 6.1
Agent’s Forecast Variance of Present Value of Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 156402.14 73827.89 267796.38
Θ = {θ1} 0.95% 0.27% 0.44%

Θ = {θ1, θ2} 29.10% 29.43% 47.42%
Θ = {θ1, θ2, θ3} 68.03% 32.27% 62.65%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0095)*156402.14
‡Variance of the unpredictable component of earnings between age 19 and 65

as predicted at age 19.

1



Table 6.2
Agent’s Forecast Variance of Period Zero Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 13086.24 14303.35 33910.17
Θ = {θ1} 1.90% 0.91% 0.05%

Θ = {θ1, θ2} 23.58% 30.08% 41.02%
∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0190)*13086.24
‡Variance of the unpredictable component of earnings between age 19 and 28

as predicted at age 19.

2



Table 6.3
Agent’s Forecast Variance of Period One Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 26618.64 17545.90 65804.89
Θ = {θ1} 1.90% 0.31% 0.34%

Θ = {θ1, θ2} 62.43% 43.00% 69.60%
∗We use an interest rate of 3% to calculate the present value of earnings.
†So we would say that the variance of the unpredictable component of period 1

college earnings × = {θ1} is (1-0.0190)*26618.64
‡Variance of the unpredictable component of earnings between age 29 and 38

as predicted at age 19.

3



Table 6.4
Agent’s Forecast Variance of Period Two Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 40406.20 16716.50 68918.36
Θ = {θ1} 0.95% 0.00% 0.63%

Θ = {θ1, θ2} 38.66% 35.02% 58.63%
Θ = {θ1, θ2, θ3} 75.25% 40.17% 70.98%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0095)*40406.20
‡Variance of the unpredictable component of earnings between age 39 and 48

as predicted at age 19.
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Table 6.5
Agent’s Forecast Variance of Period Three Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 53194.23 14605.29 66926.12
Θ = {θ1} 0.65% 0.08% 0.73%

Θ = {θ1, θ2} 16.18% 24.55% 34.65%
Θ = {θ1, θ2, θ3} 81.20% 31.53% 70.11%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.0065)*53194.23
‡Variance of the unpredictable component of earnings between age 49 and 58

as predicted at age 19.
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Table 6.6
Agent’s Forecast Variance of Period Four of Earnings∗

Under Different Information Sets
(fraction of the variance explained by Θ)†

The Calculation is for the Entire Population Regardless of Schooling Choice.
Var(Yc) Var (Yh) Var(Yc-Yh)

For lifetime:‡

Variance when Θ = ∅ 23096.81 10656.83 32236.82
Θ = {θ1} 0.00% 0.00% 0.00%

Θ = {θ1, θ2} 6.84% 4.10% 11.41%
Θ = {θ1, θ2, θ3} 56.70% 6.16% 37.95%

∗We use an interest rate of 3% to calculate the present value of earnings.
†The variance of the unpredictable component of period 1 college earnings

Θ = {θ1} is (1-0.00)*23096.81
‡Variance of the unpredictable component of earnings between age 59 and 65

as predicted at age 19.
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