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Abstract 

Systemic financial crises involve debt (leverage). We provide a theory of the optimality of debt, which 
nevertheless can lead to a crisis. Trade is best implemented by debt because it provides the smallest 
incentive for private information production, which creates trade-reducing adverse selection. Debt 
preserves symmetric ignorance between counterparties. Debt is least information-sensitive: the value 
(in utility terms) to producing private information or learning public information about the payoff is 
lowest. Even if one party is privately informed, so there is adverse selection in the market, debt is still 
optimal because it maximizes the amount of trade. Moreover, when there can be no adverse selection, 
but public signals, debt maximizes the amount that can be traded. For the economy as a whole there is 
a systemic risk of using debt to provide liquidity: an aggregate shock, if bad enough, can be made 
worse because the amount traded is reduced further. A public signal can cause debt to become 
information-sensitive. Then agents try to prevent triggering private information production; they trade 
an amount below the expected value conditional on the shock. The shock is amplified, leading to a 
crisis. 

 

 

+ Thanks to seminar participants at the 2009 Yale Cowles Foundation Summer Economic Theory 
Conference, the New York Fed Liquidity Working Group, Wharton, NYU, Harvard, Columbia, MIT, 
Princeton, University College London, the European Central Bank, the IMF, and to Yukitoshi 
Matsushita for comments and suggestions. 
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1. Introduction 
 
In 2007-2008 the global economy experienced a systemic financial crisis reminiscent of the financial 
crises that have occurred repeatedly in U.S. history and in the histories of other countries as well.  
Systemic crises have the common feature that they involve debt, without which there would be no 
crises. Yet current theories of crisis assume the existence of debt, and current theories of debt do not 
explain the origins of crises. In this paper we provide a theory of the existence and optimality of debt, 
a theory that also shows that debt is vulnerable to a crisis in which trade collapses. 

While our theory concerns debt generally, it applies with most force to forms of debt that are used for 
transactions. Historically, this would include private banks notes, and demand deposits prior to deposit 
insurance. Currently, sale and repurchase agreements (“repo”) are a prime example (see Gorton 
(2009), and Gorton and Metrick (2009a)).  The optimality of debt is linked to the notion of “liquidity.”  
Roughly, “liquidity” refers to the ability to trade a given amount quickly without the transaction 
moving prices, and without an uninformed party losing money to a privately informed party. 
Symmetric information facilitates trade. One form of symmetric information is symmetric ignorance. 
Debt optimally facilitates trade because debt provides the smallest incentive for private information 
production, which creates adverse selection. Debt is designed to preserve symmetric ignorance, 
creating liquidity. 

We analyze a strategic security issuance, information acquisition, and trading game and show that in 
equilibrium debt is issued in the primary market and traded in the secondary market. An agent may 
have a strategic incentive to acquire private information to exploit other agents. The security design 
problem faced initially is to design a security to minimize this incentive (at initial issuance and in later 
trading).  We define the value of information of a security to be the value in terms of expected utility 
to producing private information about the payoff on the security.  This leads to the definition of the 
information-sensitivity of a security: the value (in utility terms) from a trader producing private 
information, or learning a public signal, about the security’s payoff. A “least information-sensitive 
security” is one which minimizes the incentive to produce private information and hence maximizes 
trade or liquidity because it is common knowledge that no agent will pay to produce private 
information about the security. We show that debt is an optimal security for the provision of liquidity 
because it minimizes the incentive for private information production. Information-sensitivity and 
liquidity are essentially the same. While reminiscent of the result of Gorton and Pennacchi (1990) that 
the purpose of banks is to create debt that is immune to adverse selection for trading (also see 
Holmström (2008)), here debt is shown to be the optimal trading security from first principles. 

After the debt is issued in the primary market there comes another trading date. But just prior to this 
date an interim public information signal is learned. If the interim news is bad, it causes the 
information-sensitivity of debt to rise. The expected value of the debt, its price, falls (when news is 
bad).  But the amount of trade that occurs in equilibrium may be much lower (than the expected value 
of the debt conditional on the signal) because, in equilibrium, agents want to avoid triggering the 
production of private information. One way to do this is to scale down or haircut the debt that is 
traded, that is, agents trade only a fraction of the original bond to avoid triggering information 
production. Instead of trading at the new (lower) expected value of the debt, agents trade much less or 
even not at all.  In fact, at the interim date, the best outcome may be to allow adverse selection (in 
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which case we show that debt is still optimal).  In all these possible outcomes in response to the bad 
news, there is a collapse of trade, a systemic crisis.1 
 
With both primary and secondary trading, and endogenous information acquisition, we show that the 
optimal security is always debt. But debt has different implications for information acquisition. (i) If 
only the buyer can produce information, the optimal debt contract will either avoid information 
acquisition or induce endogenous adverse selection in equilibrium (if the cost of information 
production is small). Equity is never optimal. (ii) If only the seller can produce information the 
optimal debt contract never induces adverse selection. For any cost of information production, 
information acquisition by the seller is avoided by reducing the face value of debt or increasing the 
price so as to “bribe” him not to produce information. Combining these results, we formalize the 
notion that in secondary markets it is more difficult for an uninformed agent to sell than to buy assets. 
We discuss later how this resale concern has severe implications for trading behavior in a financial 
crisis where uninformed agents face potential adverse selection because assets endogenously become 
information-sensitive. 
 
Debt is optimal for the economy, which needs a certain amount of leverage to implement efficient 
trade. But, a systemic event can occur because the debt is not riskless (as it is in Gorton and Pennacchi 
(1990)). The systemic event corresponds to information-insensitive debt becoming information-
sensitive, giving rise to concerns of adverse selection, requiring a response from agents that reduces 
the amount of trade below what could be implemented if the agents just traded at the lower expected 
value of the debt. The problem is that information, whether privately produced or a public signal, can 
reduce efficient trade.  A loss of “confidence” corresponds to an increase in information-sensitivity, 
leading to a fear of adverse selection, which may be realized.  In any case, fear of adverse selection 
reduces trade. 
 
The financial crisis in our economy comes from an entirely different source than crises and 
amplification mechanisms in the literature. It is a different crisis mechanism than that of, for example, 
Kiyotaki and Moore (1997) where the collateral value is subject to a feedback effect from the initial 
shock causing its value to decline further. The cause of the systemic event here is also distinct from 
coordination failure models of bank runs based on self-fulfilling expectations, as in Diamond and 
Dybvig (1983).  In our theory, the crisis is linked to the underlying rationale for the existence of debt 
as the optimal trading security. 
 
The two issues that we focus on, liquidity and the optimality of debt, have not been previously linked. 
On the one hand, Diamond and Dybvig (1983) and Gorton and Pennacchi (1990) study liquidity 
provision but assume the existence of debt. Diamond and Dybvig (1983) associate “liquidity” with 
intertemporal consumption smoothing and argue that a banking system with demand deposits provides 
this type of liquidity. But, as Jacklin (1987) argued, there is no explanation for the optimality of 
demand deposits in their setting, and demand deposits only arise because other markets and securities 
are arbitrarily ruled out. Gorton and Pennacchi argue that debt is an optimal trading security because it 
minimizes trading losses to informed traders when used by uniformed traders. Hence debt provides 
liquidity in that sense. Gorton and Pennacchi, however, focus on explaining the existence of banks, 
institutions that attract informed traders to be the bank equity holders, so that the uninformed traders 

                                                 
1 Arguably, this is the type of collapse which occurred in U.S. financial markets starting in August 2007; 
information-insensitive debt used as collateral in the sale and repurchase –“repo”—market became information-
sensitive when house prices did not rise.  See Gorton (2009) and Gorton and Metrick (2009). 
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can use the banks’ demand deposits to trade (minimizing their losses). In Gorton and Pennacchi the 
debt is riskless, and it is not formally shown that debt is an optimal contract. 
 
On the other hand, a large literature in corporate finance studies the optimality of debt, but does not 
study liquidity. Following Townsend (1979) and Myers and Majluf (1984) a large literature has 
developed on debt in firms’ capital structures based on agency issues in corporate finance.  Examples 
of other related papers include Hart and Moore (1995, 1998), Aghion and Bolton (1992), Bolton and 
Scharfstein (1990), Gale and Hellwig (1985), and DeMarzo and Duffie (1999).2  The settings studied 
by these authors are not that of trading (in secondary markets) or liquidity, but concern a privately-
informed firm issuing a security in the primary market. Our setting is very different. We analyze the 
design of a security for a sequence of bilateral trades, including the secondary market as well as the 
primary market. We do not assume ex ante asymmetric information, but incorporate endogenous 
information production. We ask how security design can prevent information production and 
asymmetric information from arising in the first place. In our setting there are some potential buyers 
and sellers who can produce information at some cost so that adverse selection may arise 
endogenously.3 
 
In our setting efficient trade is inhibited by “transparency.” There are a few papers that raise the issue 
of whether more information is better in the context of trading or banking. These include, for example, 
Andolfatto (2009), Kaplan (2006), and Pagano and Volpin (2009). Andolfatto (2009) considers an 
economy where agents need to trade, and shows that when there is news about the value of the 
“money” used to trade, some agents cannot achieve their desired consumption levels. Agents would 
prefer that the news be suppressed. Kaplan (2006) studies a Diamond and Dybvig-type model and in 
which the bank acquires information before depositors do. He derives conditions under which the 
optimal deposit contract is non-contingent. Pagano and Volpin (2009) study the incentives a security 
issuer has to release information about a security, which may enhance primary market issuance profits, 
but harm secondary market trading.  These authors assume debt contracts. 
 
The paper proceeds as follows.  In Section 2 we present the model.  There are three dates (t=1,2,3), a 
primary market, a secondary market, and three agents. In Section 3 we define information-sensitivity 
and derive a least information-sensitive security as well as some further results that are needed for the 
equilibrium analysis of the full game. The full model is solved by backward induction. In Section 4 we 
analyze optimal security design for an uninformed agent (investor) who faces a potentially informed 
buyer in the secondary market at t=2 when he trades the security. In Section 5 we analyze optimal 
security design for an uninformed agent when he faces a potentially informed seller in the primary 
market at t=1. In Section 6 we analyze optimal security design when there is public information at t=2 
but no agent can produce private information. In Section 7 we use the previous results to characterize 
the equilibrium of the full game with public information and private information production by some 
agents. Section 8 contains a brief discussion of the results and presents some extensions. Section 9 is a 
conclusion. 
 
 
 
 

                                                 
2 Banerjee and Maskin (1996) study repeated trade and focus on what goods will be used as the medium of 
exchange.  There, agents are exogenously privately informed about their own goods. 
3 In contrast to stock trading in a centralized exchange, bonds and all securitized assets are traded in 
decentralized markets where buyers and sellers negotiate the terms of trade. In such a setting, the seller does not 
necessarily have better information than a potential buyer. 
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2. The Model 
 
We consider an exchange economy with three dates (t=1, 2, 3) and three agents {A, B, C} whose 
utility functions are given as follows:  
 

UA=CA1+CA2+CA3 
UB=CB1+αCB2+CB3 
UC= α

1 CC1+CC2+CC3, 
 
where α>1 is a constant and where Cht denotes consumption of agent h at date t. The endowment of 
agent h is described by the vector ϖh=(ϖh1,ϖh2,ϖh3), where the second subscript refers to the time at 
which the endowment arrives. We assume that ϖA=(0,0,X), ϖB=(w,0,0), ϖC=(0,w,0) where w is a 
constant and X is a random variable. So, agent A has no endowment of goods at date 1 and 2 but 
receives x units of goods at date 3, where x is a realization of the random variable X (a project or 
“Lucas tree”). Agent B possesses w units of goods at date 1 and nothing at the other dates. Agent C 
only has w units of goods at date 2. Goods are nonstorable. The agents start with identical information 
about the random variable X. We assume that X is a continuous random variable with positive support 
on [xL, xH] and density fm(x). The information about the endowments and the project (tree) is common 
knowledge. 
 
Since agents have different marginal valuations of consumption at different dates, gains from trade can 
be realized by a reallocation of goods. Given the assumed form of the utility functions, it is socially 
efficient for agent A to consume at date 1, for agent B to consume at date 2, and for agent C to 
consume at date 3. In order to implement the efficient allocation and for agent B to consume at t=2, at 
t=1 agent B trades some of his t=1 goods to agent A and in exchange agent A promises agent B some 
of his t=3 (uncertain) endowment. Technically speaking, a promise is a contract s(x) that maps the 
outcome of X to a repayment s(x).4 At date 2, agent B can use s(x) to trade for agent C’s t=2 goods.  
 
The set of contracts: Let S denote the set of all possible securities (contracts), i.e., functions, s(x), 
which satisfy the resource feasibility (or limited liability) constraint, s(x)≤x. Any mapping s: X R 
with s(x)≤x is an element of S. Some examples are: 

(i) Equity: s(x)=βx where β∈(0,1] is the share on the x; 
(ii) Debt: s(x)=min[x, D] where D is the face value of the debt; 
(iii) Step function contract: y1 if x∈[xL,x1], yi if x∈[xi-1,xi] where yi≤xi. 
(iv) State contingent securities: s(xi)=yi where yi≤xi; 
(v) Stochastic contracts: s(xi)=yi where yi : xi  [xL, xi] with distribution Fi. 

 
In principle, agent A could promise whatever he wants, e.g. s(x)>xH, but agent B would simply not 
believe it. Therefore, at date 1, the set of (feasible) contracts agent A can issue to agent B is s∈S={s: 

s(x)≤x}. At date 2 the set of contracts agent B can trade with agent C is given by })(ˆ:ˆ{ˆ yyssS ≤=  
where y=s(x) denotes the payoff of the security that agent B has bought from agent A.  In other words, 
agent B need not simply trade the original security that he received from agent A to agent C.  He can 

                                                 
4 We assume that the realization x at date 3 is verifiable. For example, cash flows in asset backed securities deals 
are by design verifiable since third parties, the trustee and servicer, monitor and collect the underlying loans and 
distribute the cash flow to investors.  
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redesign the security by issuing a new security, ),(ˆ ys  using the original security as collateral, i.e., 
agent B can securitize the bond that he got from agent A. 
 
Two examples of feasible contracts at t=2, which will play roles later, are: 

(i) A “vertical strip,” i.e., )()(ˆ xsxs κ=  where ]1,0[∈κ  is a pro rata share of the original 
contract (i.e. agent B sells the fraction κ of his security to agent C.) 
(ii) A tranche or “horizontal slice,” is as follows. Suppose s(x)=min[x,D] was issued originally 
at t=1. Then, at t=2, agent B could create a new security using s(x) as the collateral. In 
particular, agent B could design a new bond ]ˆ),(min[)(ˆ Dxsxs = , with DD ≤ˆ . This is a debt 
contract that writes-down the original face value D of the original debt contract to the new 
face value D̂ . The original bond is used as collateral for the new contract.  In particular, the 
new debt contract is a senior tranche of the collateral, and agent B will hold the equity 
residual, with payoff ]0,ˆ)(max[ Dxs − .  The new bond is a “horizontal slice” (“tranche”) of the 
collateral based on seniority.   

 
Public Information: We assume that at date 1 the agents’ prior on X is given by the (mixture) 

distribution Fm, where the density of Fm is given by ∑=
=

K

k
kkm xfxf

1
)()( λ , where 0≥kλ , ∑ =

=

K

k
k

1
1λ , 

and there are K distributions, each indicated by Fk. We assume that {Fk} is ordered by First Order 
Stochastic where FN first-order stochastically dominates all other distributions, while F1 is first-order 
stochastically dominated by all other distributions. At date 2, the agents receive a public signal about 
the “true” distribution of X (i.e. public news about which distribution x will be drawn from).  

Private Information Production: We assume that agents A and C can produce information about the 
final payoff at the cost γ (in terms of utility) at date 1 and 2.5 If an agent produces information, he 
privately learns the true realization x. Information acquisition is not observable by other agents.6  

Sequence of Moves and Events: The timing of events at t=1 is as follows: 

 t=1.0: The realization of X (namely, x) occurs but is not publicly known. 
t=1.1: Agent B makes a take-it-or-leave-it contract offer of s(x) to agent A.  
t=1.2: Agents A chooses whether to produce private information about the true x at the cost γ 

or not.  
t=1.3: Agent A accepts the contract or not. 

If there is no trade between agents A and B, the game ends. If agent B trades with agent A, then at t=2 
agent B has the claim s(x) available to use to trade with agent C. The timing of events at t=2 is as 
follows: 

t=2.0: The public signal Fk is observed. 
t=2.1: Agent B makes a take-it-or-leave-it contract offer )(ˆ ys to agent C. 
t=2.2: Agents C chooses whether to produce private information about the true x at the cost γ 

or not (if the information was not produced earlier). 
t=2.3: Agent C accepts the offer or not. 

                                                 
4 This assumption is made for tractability and is discussed later. At this point, it suffices to note that agent B (the 
proposer at both dates) cannot acquire information, so no signaling issue arises. For an analysis of a bargaining 
game with two sided information acquisition see Dang (2008).  
6 In Appendix B we discuss alternative information structures where information production results in less than 
perfect information.  This does not change any results. 
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 t=3:    Agent B redeems s(x) with agent A, and agent C redeems )(ˆ ys with agent B. 
 
To fix ideas the reader may want to think of agent B as an agent who wants to buy a security so as to 
save his current endowment for future consumption. For that purpose agent B wants to buy the 
securitized project from agent A at t=1 and later sell it to agent C at t=2 so that he can consume at his 
desired consumption date. We assume that agent B is fully rational but less sophisticated in the sense 
that he cannot produce private information about the security he uses to trade. Thus agent B wants to 
buy a security that is “liquid”, i.e. least prone to adverse selection.7 
 
We are interested in the following question: What is the “optimal” security, s(x), for such a sequence 
of transactions when agents A and C are sophisticated in that they can produce private information, 
while agent B cannot produce information? The problem is to design a security such that given some 
information production cost, it does not pay for an agent to learn about the final payoff of the security. 
If no agent has an incentive to learn, then no agent is concerned about facing a privately informed 
counterparty and adverse selection. If only a subset of agents can produce information, then preventing 
information production is desirable since symmetric information facilitates trade and efficient 
intertemporal reallocations of consumption goods. 
 
In the next section we define information-sensitivity and derive a least information-sensitive security 
as well as some further results that are needed for the equilibrium analysis of the full game. We 
proceed by backward induction. In Section 4 we analyze optimal security design by agent B when he 
faces a potentially informed buyer (agent C) at t=2. In that section we assume that agent A cannot 
produce information and there is no public information. In Section 5 we analyze optimal security 
design by agent B when he faces a potentially informed seller (agent A) at t=1. In that section we 
assume that agent C cannot produce information and there is no public information. In Section 6 we 
analyze optimal security design by agent B when there is public information at t=2 but agent A and C 
cannot produce private information. In Section 7 we characterize the equilibrium of the full game with 
public information and private information production by both agents A and C and discuss welfare 
implications.  
 
 
3. The Design of a Least Information-sensitive Security  
 
In subsection A we define information-sensitivity, which is a key parameter for our theory of debt and 
financial crises. In subsection B we derive some results that are needed for the equilibrium analysis of 
the whole game. And subsection C contains shows the maximal debt amount that can be issued.  
Subsection D analyzes securitization, a particular form of debt. In this section we assume that w<E[X]. 
Otherwise, the efficient allocation requires agent A to sell his whole project (tree) to agent B and it 
may seem that there is no reason to discuss optimal security design subsequently. However, we show 
below that this assumption is not crucial for any results. 

A. Information-Sensitivity 

                                                 
7 Asset-backed securities are designed to reflect the demand of rational but less sophisticated investors (agent B) 
who use these assets to “store” their wealth and are concerned about facing agents with the ability to produce 
information and thus potential adverse selection in the secondary market when they have to sell the security. 
Examples include insurance companies and pension funds. Or we can interpret agent B as a bank that has excess 
cash at t=1 that he wants store by using s(x). At t=2, he has a shortage of cash and thus wants to sell s(x) to agent 
C. Since agent B cannot produce information, agent B wants to buy a security that is least prone to potential 
adverse selection. Sale and repurchase agreements (repo), using securitized assets as collateral, is a kind of 
private money endogenously created by the banking system. 
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In this subsection we assume that there is no interim public information. Thus we omit the subscript m 
and just write F in this section. We start with analyzing a (pure) decision problem of the following 
type: Suppose the agent (with utility function U=C1+C2+C3) has wealth w and can buy a security s(x) 
with p=E[s(x)] where p denotes the price and s(x) specifies the payoff as a function of x. If the agent is 
informed, then he knows the true realization of x. We ask which security s(x), with p=E[s(x)], gives 
rise to the lowest value of information or, in other words, which security is least information-sensitive.  
 
Definition (The value of information): Suppose the decision of the agent is whether to buy a particular 
security or not. With respect to that security, the value of information of a buy (B) transaction is 
defined as )()( IGEUPIEUB −=π , where EU(PI) is the expected utility based on the optimal 
transaction decision in each state under perfect information about x (PI), and EU(IG) denotes the 
expected utility of a buy transaction based on the initial information, ignorance of the true state (IG). 
An analogous definition applies to value of information of a sell transaction, Sπ , where the agent must 
decide to either sell or not sell the asset. Formally, the value of information is given by: 

dxxfxsp
Hx

Lx
B )(]0),(max[ ⋅∫ −=π

 and  

dxxfpxs
Hx

Lx
S )(]0,)(max[ ⋅∫ −=π . 

To understand these expressions first consider the point of view of the buyer. Under ignorance a (risk 
neutral) agent is willing to buy the security since E[s(x)]=p. The value of information to a potential 
buyer concerns the region where s(x)<p.  That is the area where the buyer is overpaying. If the buyer 
knew that s(x)<p, then he would not trade and instead he would consume the unspent amount p. 
Define })({ pxsxQ <=<  to be the set of such states and define })({ pxsxQ ≥=> . Thus, 

],[ HL xxQQQ ==+ >< . So, the value of information for a potential buyer is 

:)()( IGEUPIEU BBB −=π  

⇔ ∫ ⋅−⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫ ⋅+∫ ⋅=
>< QQQ

B dxxfxsdxxfxsdxxfp )()()()()(π
 

⇔ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫ ⋅+∫ ⋅−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫ ⋅+∫ ⋅=

><>< QQQQ
B dxxfxsdxxfxsdxxfxsdxxfp )()()()()()()(π

 

⇔ 
=∫ ⋅−=

<Q
B dxxfxsp )())((π dxxfxsp

Hx

Lx
)(]0),(max[ ⋅∫ −

 

This is the value of avoiding overpayment. 

For a seller (S) information is valuable when s(x)>p, that is, when the security is worth a lot, the seller 
would be undervaluing it were he to sell for the price p. Again, define })(:{ pxsxQ ≥=>  and 

})(:{ pxsxQ <=< . Proceeding similarly, the value of information for the seller is 
)()( IGEUPIEU SSS −=π  
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⇔ 
pdxxfxsdxxfp

QQ
S −⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫ ⋅+∫ ⋅=
><

)()()(π
 

⇔ ∫ ⋅−=
>Q

S dxxfpxs )())((π
 
= .)(]0,)(max[ dxxfpxs

Hx

Lx
⋅∫ −  

This is the value of avoiding selling the security for too little.   

Example: The agent’s utility function is U=c1+c2 and wealth is 1.5. Suppose there are two outcomes, 
s(x=L)=1 or s(x=H)=2, both states are equally likely, and the price of buying this asset is 1.5. Suppose 
the decision of the agent is whether to buy the asset or not. If the agent buys the asset without 
information acquisition, or simply consumes his endowment, then EU(IG)=1.5. If the agent acquires 
information, then in state 1 he does not buy the asset and consumes his endowment at t=1; in state 2 he 
buys the asset and consumes s(x=H)=2 at t=2. Thus, EU(PI)=0.5⋅1.5+0.5⋅2=1.75 and πB=0.25. 
 
Definition (Information-sensitivity of a security): Suppose an agent can buy either of two securities 
that have the same expected value and the same price. Security i is said to be less information- 
sensitive than security j for agent h if the value of information for buying security i is lower than the 

value of information for buying security j, i.e. j
h

i
h ππ < . The analogous definition applies to a sell 

transaction.8 
 

B. Debt as a Least Information-sensitive Security 

A standard debt contract is given by: 
 
 sD(x) = D  if x > D  
 sD(x) = x if x ≤ D. 
 
That is, a standard debt contract is a security that pays sD(x)=x up to a specified amount, the face value 
of the debt, D.  In the range x ≤ D the payoff function has slope 1 due to the resource constraint or 
limited liability. If x>D, then the investor receives D. In order to implement trade we will be interested 
in the following (standard) debt contract, which has price w and face value D, where D solves the 
following equation:  

.)()(∫ ∫+=
D

x

x

DL

H
dxxDfdxxxfw  

The price of debt equals its expected value.  By design this debt contract can potentially implement the 
transaction needed to achieve the efficient allocation.  That is, the amount w can be traded. Given f(x) 
and w, D is determined. 
 
Now we derive a contract with the minimal information-sensitivity subject to the constraint that any 
contract should have the same expected payoff and that the prices of all contracts are p=E[s(x)]. (Note, 
if traded, the contract should implement efficient consumption, i.e. p=E[s(x)]=w.) In other words, we 
are minimizing πB and πS over a set {s} of functions where {s: s(x)≤x and E[s(x)]=p}, and we require 
the solution to hold for any distribution F for x. In each of these cases, this is a non-trivial 
mathematical problem in functional space, but the solution and the proof turn out to be surprisingly 

                                                 
8 Although similar in spirit, Demarzo and Duffie (1999) define information-sensitivity differently.  
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simple. The two minimization problems have the same solution for all distributions F(x), as will be 
seen. 

Proposition 1: Assume for all s that E[sD(x)] = E[s(x)] = p and that s(x)≤x. Debt is a least information-
sensitive security for the buyer and the seller. 

Proof: The proof follows from two lemmas.  

Lemma 1: Debt is a least information-sensitive security for the buyer of the security. 

Proof: Consider two securities, sD(x) and s(x), where sD(x) is debt, i.e., sD(x) = D, for x≥D and sD(x) = 
x, for x<D.  Recall that we have assumed that for all s that E[sD(x)] = E[s(x)] =  p, and that there is the 
resource constraint s(x)≤x. The lemma says that debt is a contract that minimizes: 

dxxfxsp
Hx

Lx
B )(]0),(max[ ⋅∫ −=π  . 

Equivalently, for all s,  

 ∫ ⋅−≤∫ ⋅−

<<
SQDQ

D dxxfxspdxxfxsp )())(()())((      (*) 

where })(:{ pxsxQ DD ≤=< and })(:{ pxsxQS ≤=< . Note, pxxxsD ≤≥=  allfor   s(x) )(  implies (i) 
s

L
D QpxQ << ⊆= ],[ , (ii) DD Qxpxsp <∈−≤−  allfor    s(x) )( , and (iii) prob( DQ< )≤prob( SQ< ) for all s.  

// 

Lemma 2: The value of information to the seller of a security is equal to the value of information to 
the buyer of a security. 

Proof:  E[s(x)]=p can equivalently be written as: 

0])([ =− pxsE   

⇔ 
0)())(()())(( =∫ ⋅−+∫ ⋅−

>< QQ
dxxfpxsdxxfpxs

 

⇔ ∫ ⋅−−=∫ ⋅−
<> QQ

dxxfpxsdxxfpxs )())(()())((
 

⇔ ∫ ⋅−=∫ ⋅−
<> QQ

dxxfxspdxxfpxs )())(()())((
 // 

End of the proof of Proposition 1. 
 
The intuition for Proposition 1 is as follows. The buyer must decide to buy the bond with price p or 
not. If he knows the true value of the payoff, x, then he does not buy the bond in states where x<p 
because his payoff is s(x)=x<p. Since the debt contract has slope one in this region of states, i.e. the 
buyer receives the maximum amount of repayment that is possible, there exists no other contract that 
has a smaller set of states that are information-sensitive. Figure 1 depicts the debt contract (the dark 
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blue line). The set of states where information has value to the buyer is denoted by D
BQ . It is easy to 

see that S
B

D
B QQ ⊆  for all s∈S. 

Figure 1  
          )(xsD

B     x 
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            p  

   

  

      xL               p    D             xH    x 

  

D
BQ   

The value of information to the buyer is that he avoids overpaying p when the realization of x is less 
than that, x<p. The seller of the security, benefits from being informed to the extent that he avoids 
paying back too much when the realization of x is larger than p.  In the states where x<p, the buyer 
must be compensated for his low payoff (the blue dotted point triangle), evaluated with the density 
f(x)), with larger payoffs than w in states x>p (the red dotted line area). The expected payoffs in these 
high states are exactly the states where information has value to the seller. 

Proposition 1 states that for any given distribution F(x), if the trading of debt triggers information 
acquisition, then so does the trade of any other security with the same expected value (or price). Note, 
debt is also less information-sensitive than any stochastic contract. Even if s(x) is stochastic, the 
stochastic repayment s(x) must be backed by the outcome of the underlying X. Thus if the agent 
knows that x<p, he knows s(x)<p for any stochastic realization s(x). So information about X has value 
to an agent even if s(x) is stochastic and determined at t=2. The following results are self-evident. 

Proposition 2 (Characterization): The set {s} of securities with p=E[s(x)]=w that has the minimal 
information-sensitivity is given by {s: s(x)=x for x≤w and s(x)≥w for x>w}. 

Proposition 2 identifies a class of debt contracts that are least information-sensitive. This class 
includes standard debt, but also arbitrary senior debt-like securities, of the type shown in panel (c) of 
Figure 2, below. This proposition shows that the key feature of a least information-sensitive security is 
not the flat part of a standard debt contract, but seniority of repayment when there is default, i.e. for 
x<p, the holder of the security is repaid first and receives everything the underlying asset delivers.9 
Later we show that if there is public interim information about the distribution of x, at t=2 the standard 

                                                 
9 The limited liability (slope 1) assumption is not crucial. If there is insurance and the security issuer can repay 
m⋅x for m>1, then a least information-sensitive security has the feature that s(x)=mx for x<p/m. But with asset 
insurance, agents may also have an incentive to learn about the ability m of the insurer to step in the case of non-
full delivery of the issuer. Thus information acquisition may also be about the credibility of the insurer. Another 
interpretation of security insurance is that insurance changes the distribution of s(x), having less probability mass 
on the left tail. With this interpretation, it is obvious that Proposition 1 holds without any modification.  
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debt contract has an expected interim information-sensitivity that is less than the expected 
information-sensitivity of the other contracts given in Proposition 2.  

Corollary 1 (Equity): Assume E[sD(x)]=E[sE(x)]<E[X]. Equity, sE(x), is strictly more information-
sensitive than debt. 

Corollary 2 (Levered Equity): The security with the maximal information-sensitivity is given by: 
0)( =xs for ],[ dxx L∈  and  xxs =)(  for ],[ Hxdx∈  where d solves 

wdxxxf
Hx

d
=∫ )( .   

 
Figure 2 compares the payoff on debt to three other securities. Figure 2 shows the payoff to an equity 
contract, in panel (a), the payoff on levered equity in panel (b); and another least information-
sensitive, debt-like, contract is shown in panel (c). In panel (a) the red dotted triangle is the area where 
equity is more information-sensitive than debt. In panel (b) the information-sensitive area is the 
rectangle spanned by p and d and evaluated with the density is the value of information. In panel (c) 
the payoff is non-monotonic, compared to the flat payoff on standard debt. 
 

Figure 2 

(a) Equity                                            (b) Levered Equity                    (c) Another least     
information-sensitive 
security 

 s(x)                s(x)     s(x) 

 

           βx    

     p          p           p 

 

        xH         d        xH            xH

 E
B

D
B QQ ⊂  

In the remainder of the paper we employ the standard assumption (motivated by moral hazard 
concerns) that s(x) is non-decreasing. 

C. Maximum Debt Issuance 

Now we assume that the cost of information production about the true value of X is γ  in terms of 
utility. So what is the maximal amount of debt that can be issued without triggering information 
production? Proposition 1 shows that for any contract with p=E[s(x)], we have πB=πS. Thus 
information production is not worthwhile for a buyer or a seller if .γπ ≤B    

Corollary 3 (Maximum Debt Issuance): The maximum amount of debt (with p=E[sD(x)]) that agent B 
can buy at t=1 and sell at t=2 without triggering information acquisition by agent A and C is given by 
min[w, E[X], p] where p solves the following equation: 
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γ=∫ −
p

xL

dxxfxp )()( . 

Corollary 3 will play an important role in the proof of the main results.  

D. Securitization10 

We can think of securitization in this context. The maximum possible debt that can be issued can be 
increased if it is backed by a portfolio of projects. Suppose a claim is written on a portfolio of N 
projects, X1,…, XN with distributions F1,…, FN. Define Y=X1+…+XN as the random variable with 
distribution Fy. Securitization refers to the structure where the random variable Y is a pool of 
mortgages or automobile loans that are sold to a Special Purpose Vehicle (SPV), which finances the 
purchase of these loans by issuing asset-backed securities in the capital markets. 

In general it is very complicated to calculate the distributions of a sum of random variables.  As an 
example, suppose N=2, and X1 and X2 are independently and uniformly distributed on [0,1]. Then Y is 
not uniformly distributed; it has density:   

⎪
⎩

⎪
⎨

⎧
<<−
≤≤

=
otherwise        0

2y1for y  2
1y0for y       

(y)Yf
. 

The information-sensitivity of a single debt contract with price p=E[sD(x)]<E[x] is ∫ −
p

dxxfxp
0

)()( . If 

all the X’s are independently and identically distributed, trading N individual bonds gives rise to the 

total value of information, .πNN ≡ΠΣ
 We compare ΣΠN  to the information-sensitivity of a debt 

portfolio (DP) (i.e., a single bond backed by N projects) and to the information-sensitivity of a 

portfolio of debt contracts (PD). Denote dyyfyp N
DP

Y

p

DP
DP
N )()(

0
⋅∫ −=Π  as the information-

sensitivity of a single bond backed by a portfolio of N projects where ∑=
=

N

n
nXy

1
. Analogously, denote 

dyyfysp N
PD

Y

p

PD
PD
N )())((

0
⋅∫ −=Π  as the information-sensitivity of a portfolio of bonds where 

∑=
=

N

n
i Dxys

1
],min[)( . To facilitate comparison, we set Nppp PDDP == . Also, define 

dyyfyNp NY

pN

N
DP
N )()(

0

1 ⋅∫ −=Π
⋅

, i.e. the information-sensitivity per unit of project debt. 

Lemma 3 (Portfolio Information-Sensitivity): Suppose Y=X1+…+XN, where Xi is independently and 
uniformly distributed on [0,1] for i=1,.., N. Then: 

(i) ΣΠ<Π<Π N
PD
N

DP
N  for N≥2.  

                                                 
10 See Gorton and Souleles (2006) for details of securitization. 
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(ii) 
DP
N

DP
N Π<Π +1  for all N.  

Proof: See Appendix A. // 

Part (i) of the Lemma shows that the information-sensitivity of a single bond, backed by the sum of 
the cash flows of the N projects, is lower than the information-sensitivity of a portfolio of bonds, 
where each bond is backed by a single project, which in turn is lower than the sum of information-
sensitivities of the N individual bonds. This provides an explanation for securitization.  This analysis 
suggests that securitization is not (primarily) about diversification of risks. If this were the case, then 
issuing equity shares on the pool would be optimal.11 
 
 
4.  Optimal Security Design when the Buyer is Potentially Privately Informed (at t=2)   

Section 3 introduced some terminology and intermediate results. In order to solve for the equilibrium of 
the full game, we proceed in three steps. This section analyzes optimal security design by agent B when 
he faces a potentially informed buyer (agent C) in the secondary market at t=2 but there is no public 
information.  In Section 5 we analyze optimal security design by agent B when he faces a potentially 
informed seller (agent A) in the primary market at t=1, anticipating best responses at t=2. In Section 6 we 
analyze optimal security design at t=1 when there is public information at t=2 but no private information 
production. Finally, we assemble these results in Section 7 to characterize the equilibrium of the full 
game with public information at t=2 and where agents A and C can both choose whether or not to 
produce private information. 

In this section we assume that agent A cannot produce information at t=1 so as to focus on the strategic 
interaction between agent B (seller) and agent C (buyer) in the secondary market at t=2. So agent B does 
not face the information acquisition constraint of agent A and agent A is willing to sell any contract s(x) 
with E[s(x)]=w in the primary market at t=1. To simplify notation, we can thus think of agent B as 
owning X and designing s(x) for trade with agent C at t=2 who has a t=2 endowment of w. We first 
analyze the case where agent C is privately informed (γ=0); and then the general case where agent C has 
to pay γ≥0 to become privately informed.  

For the case where agent C is informed (γ =0), agent B solves the following optimization problem:   

∫ ⋅−+∫ +⋅=
>< QQ

B
xsp

dxxfxsxpdxxfxEU )())((()(max
)(,

α   (*) 

where p∈R+,{s(x): s(x)≤x}, and })({ pxsxQ <=< , })({ pxsxQ ≥=> . 

The first term in (*) says that in states x such that s(x)<p, the informed agent C does not buy and there is 
no trade, so that agent B consumes x at t=3. The second term states if there is trade, then agent B 
consumes p at t=2 and x-s(x) at t=3.  So agent B needs to choose a real number p and a function s(x) in 
the functional space {s(x): s(x)≤x} to maximize his expected utility. 

                                                 
11 The most information-sensitive residual equity tranche is typically kept by the issuer or sometimes bought by 
the most sophisticated banks.  Part (ii) shows that more debt can be issued if the debt portfolio is larger. See 
Gorton and Souleles (2006) and Gorton and Pennacchi (1993). 
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Lemma 4: Suppose agent C is privately informed (γ =0).  The optimal contract that agent B offers to sell 

to agent C is a debt contract sD(x)=[x,D] with price p=D where D maximizes DDF ))(1( − .  

Proof: The proof is in two steps. (1) We first show that debt maximizes the probability that agent B 
obtains any (desired) amount, p, of goods from agent C, as well as avoids any repayment larger than p 
(i.e., p=D). Then, (2), we derive the optimal p (price) and face value D.  

Step 1: Suppose agent B offers to sell ],min[)( DxxsD =  for the price p=D. Since agent A knows the 

true value of x, he buys )(xs D  only if x≥D. The set of states with no trade is }{ DxxQD <= . The 

probability of trade is )(1 DF− . If trade occurs, then agent B repays D to agent A at t=2.  Now, note: 

(i) Since xxs D =)(  for x≤D, there exists no other contract s where the set of states with no trade is 

smaller than DQ , i.e. })({ DxsxQQ SD <=⊆
 
and s)contract under  ()(1 tradeprobDF ≥−  for 

all s∈S.  

(ii) Consider a contract s where s(x)=x for x≤D and s(x)>D for some x.  If trade occurs in these states, 
then agent B repays s(x)>D to agent C.    

Step 2: Substituting p=D and s(x)=min[x,D] into (*) yields ].[)))((1( XEDDDFEU A +−−= α  

Agent B chooses D to maximize BEU
 
and thus DDF ))(1)(1( −−α , i.e. DDF ))(1( − . // 

Lemma 4 shows that for γ =0 and any distribution F(x), debt is the optimal contract for an uninformed 
seller to sell when facing a privately informed buyer. In other words, (p,s(x)) with p=D, s(x)=min[x,D] 
and D solving DDF ))(1( − , is the unique solution to (*).  Figure 3 highlights the intuition which 
compares the (dotted blue) debt contract with the (“thick green”) contract sG(x) where pD=pG=D and 
E[sD(x)]=E[sG(x)].  In region I, under both contracts, there is no trade and agent B consumes x at t=3. In 
region II, under debt contract, agent B consumes D at t=1 and x-D at t=3, while with contract sG(x) he 
consumes nothing at t=1 and x t=3. Since αD+(x-D)>x, integrating over the states x in region II implies 
EU(D)>EU(G). In region III, agent B consumes D at t=1 and x-D at t=3 under the debt contract, agent B 
consumes D at t=1 and x-sG(x)<x-d at t=3. Again, in this region EU(D)>EU(G). 

Figure 3  
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The next result shows that debt is an optimal security for any γ, i.e. debt maximizes the expected utility 
of agent B when facing a potentially privately informed buyer (agent C).  

Proposition 3: For any {F, α, γ}, the optimal contract that agent B offers to sell to agent C is a debt 
contract.  
(a) If γ≥π, then agent B sells debt with face value D and price p=E[sD(x)]=w.  
(b) If γ<π, depending on {α, γ} agent B either chooses: 

 (i) Strategy I (Down-sizing debt): Debt with (DI, pI) such that DI<D and pI=E[sI(x)]<w.       
Agent C does not produce information.   

(ii) Strategy II (Debt with Information Acquisition): Debt with (DII, pII) such that DI<DII≤D 
and pI<pII<E[sII(x)]≤w. Agent C produces information and there is adverse selection.  

   

Proof:  In step 1 we derive optimal contracts without triggering information acquisition and in step 2 we 
derive optimal contracts with information acquisition.  

Step 1: Agent B may not be able to trade the amount of debt so that he can consume w at t=2 without 
information acquisition.  He may have to reduce or “down-size” the debt relative to the maximum 
amount that can be traded without triggering information production, given in Corollary 3.  This is 
Strategy I below.  If down-sizing of the efficient amount of debt results in a transaction that is very 
small, then agent A can consider how much could be transacted if he makes an offer that just induces 
agent C to produce information, i.e., just covers agent B’s cost of information production. This is 
Strategy II below. We start with Strategy I.  

Strategy I (Down-Sizing Debt): Agent B chooses (pI,sDI(x)) where the   

price pI  solves γ=∫ −
Ip

Lx

I dxxfxp )()( , and a face value DI solves    

I
ID

Lx

Hx

ID

I pdxxfDdxxxf =∫ ∫+ )()( ,  

i.e., the expected payoff is: IID pxsE =)]([ .  

Note, if agent C is uninformed, he does not accept any offer (p,s(x)) with p>E[s(x)]. On the other hand, 
any (p,s(x)) with p≤E[s(x)] and p>pI, triggers information production. Suppose agent B sells the whole 

project (i.e. s(x)=x) for p=pI+ε<E[X].  For any ε>0, γ=∫ −>∫ −
Ip

Lx

Ip

Lx
dxxfxpdxxfxp )()()()( . In other 

words, agent C produces information because a larger expected overpayment can be avoided. On the 
other hand, in states where agent C trades, i.e. for x such that s(x)>p, agent C is better off than under the 
debt contract which implies that agent B is worse off.   

Corollary 3 shows that if γ is small, then pI (the amount agent B can consume at t=2) is small. Therefore, 
if γ is sufficiently low and α is large, then avoiding information acquisition may not be optimal. 

Step 2: Now we derive a strategy that maximizes the payoff of agent B with private information 
acquisition by agent C. The construction of Strategy II is similar in spirit to the proof of Lemma 4 which 
shows that debt is optimal if γ=0. 
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Strategy II (Debt with Information Acquisition): Suppose agent B wants to consume the amount pII, 
which he will choose optimally. Then debt is optimal since it maximizes the probability of obtaining pII. 
Facing an informed agent C the set of states with no trade is minimized since sD(x)=x for x≤pII. Given 
the “desired” pII, the optimal modified debt contract has the following form: price p=pII and a face value 

DII= κ+IIp  such that γπ =),( IIII Dp , i.e. when agent C acquires information he just covers his 
information cost.  Note, without information acquisition agent C would not buy the contract sD(x) for the 
price pII since E[sD(x)]<pII. This can be seen as follows: Suppose E[sD(x)]=pII.  Since pII>pI (Corollary 3), 

this implies that γπ >D .  Reducing the face value to IID  such that γπ =),( IIII Dp , implies that 
E[sD(x)]<pII.  

Under Strategy II agent B’s payoff is:  .)()()()( ∫+∫ −+∫

IIp

Lx

Hx

IID

IIHx

IIp

II dxxxfdxxfDxdxxfpα
 

The first two terms correspond to a transaction where agent B obtains the amount pII at date 2 and 
consumes the residual at date 3.  The last term is the case where there is no transaction and agent B just 
consumes the value s(x) at date 3.  Agent B’s payoff can be written (with simple algebra) as: 
 

 ),,(][))(1( IIIIIIII DpRXEppF −+−α  
 
where R can be interpreted as the expected payment to agent C; it is given by: 

.)()( ∫+∫=
Hx

IID

II
IID

IIp
dxxfDdxxfxR

 

Formally, Strategy II is debt with price pII, face value IID , and an expected payoff  IID pxsE <)]([  
where: 

  pII and DII maximize ),(][))(1( IIIIIIII DpRXEppF −+−α
   

where R is the expected payment to agent B and 

IID  solves γπ =),( IIII Dp :  γ=∫ −+∫ −
Hx

IID

IIII
IID

IIp

II dxxfpDdxxfpx )()()()( .  

The set of debt-like contracts maximizing RxEppF IIII −+− ][))(1(α
 
is given by {s: s(x)=x, for x≤pII, 

E[s(x)] such that π=γ} and p=pII.  If γ=0, the optimal contract is unique and given by Proposition 3.  

Agent B chooses the strategy, either Strategy I or Strategy II, with the highest expected utility. In any 
case, debt is issued.  // 

Proposition 3 says that agent B has two types of potential best responses when facing a potentially 
informed buyer (agent C) at t=2. Strategy I is writing down debt relative to the efficient level such that 
agent C buys without information production. In this case agent B consumes pI at t=2. Agent B is not 

able to receive any higher price without triggering information production. Note,  p>pI implies γπ >D  

since pI is set such that γπ =D . We will come back to this point in the next section. For γ small, pI is 
small. Then the best response of agent B may be to induce adverse selection. Trade occurs with 
probability less than one but if trade occurs agent B can consume pII >pI.  
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Note, if Dπγ ≥ , then it is clearly optimal for agent B to choose Strategy I with p=E[sD(x)]=w for any α. 
(Agent B consumes the maximum possible amount w at t=2 and agent C gets his outside option.) If 

πγ < , then depending on γ and α agent B may either choose Strategy I or Strategy II.12  

Proposition3 describes the optimal security design by agent B, facing agent c who can potentially 
produce private information.  With regard to agent B facing agent A at t=1, we have: 

Corollary 4:  Suppose agent A cannot produce information at t=1 and there is no public information at 
t=2. Agent B has two types of optimal debt strategies. (i) At t=1, agent B buys a debt contract sD(x) 
from agent A with E[sD(x)]=w and p=w. At t=2, when facing agent C, agent B possibly writes down 
debt according to Strategy I or II in Proposition 3 and consumes any unsold part of s(x) at t=3. (ii) At t=1 
agent B buys debt from agent A according to Proposition 3 and sells it to agent C at t=2 without redesign 
and consumes any unspent amount w-p at t=1.  

Corollary 4 is a building block for the equilibrium of the full game, analyzed in Section 7. 

 

5.  Optimal Security Design when the Seller is Potentially Informed (at t=1)  

In this section we analyze optimal security design by agent B when he faces a potentially informed 
seller (of a security), namely, agent A in the primary market at t=1. To focus on the strategic 
interaction between agent B and A, we assume that agent C cannot produce information at t=2 and 
there is no public information. We first analyze the special case γ=0 (in subsection A) and then case of 
γ≥0 (in subsection B). Since actions are publicly observable and agent B and C have symmetric 
information, agent C is willing to buy s(x) from agent B for the price s(x)]  sellsA agent  )([ xsEp = . 

A. Agent A is Private Informed (γ=0) 

At t=1, agent B chooses the pair (p, s(x)), i.e. a price and a security (a function) s(x), to maximize his 
expected utility. For γ=0, i.e. agent A is informed, agent B solves the following optimization problem:  

∫ ⋅∫ +⋅+−=
>< Q

k
Q

kB
xsp

dxxfwdxxfxspwEU )()())((max
)(,

α   (**) 

where p∈R+ ,{s(x): s(x)≤x},  })({ pxsxQ ≤=< and })({ pxsxQ >=> . 

The first term of (**) says that in states where agent A sells (i.e. s(x)≤p), the value of the security is 
])()([ pxsxsE ≤  which is the third term in the first integral. This is also the amount of goods that 

agent C is willing to pay for the security at t=2. Thus, in each of these states x, agent B consumes s(x) 

at t=2 and w-p at t=1. Integrating over the relevant set of states })({ pxsxQ ≤=<  yields the expected 
utility of agent B conditional on that he has bought s(x) from agent A. The second term states that 
agent B consumes his endowment w at t=1 if there is no trade with agent A. (In this case he does not 
                                                 
12 It is easy to see that Strategy I dominates Strategy II if γ is only slightly smaller than π. On the other hand, 

Strategy II (adverse selection) dominates Strategy I if >−+− RxEppF IIII ][))(1(α  
II pxEp −+> ][α ⇔ IIIIII ppRppF −>−− αα ))(1( . This is the case if γ close to zero since 0≈Ip and 

IIII ppFR ))(1( −≈ , which implies that 0))(1())(1( >−−− IIIIIIII ppFppFα  for 1>α .   
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trade his t=1 goods for agent C’s t=2 goods since agent B has a higher marginal valuation of 
consumption at t=1 than agent C.) 

Lemma 5: Suppose agent A is privately informed at t=1 (γ=0). Then the optimal contract for agent B 
to buy from agent A is debt with price p=D and face value D, where D maximizes: 
 

∫ −+∫
Hx

D

D

Lx
DdxxDfdxxxf )()( αα . 

 
Proof: Agent A only sells (the security) if s(x)≤p. For a given price p, it is a strictly dominated 
strategy for agent B to choose a contract s(x) where s(x)>p (for any x>p) since in these states agent A 
does not sell which reduces ])([ tradexsE , i.e. the expected consumption of agent B at t=2 by trading 

])([ tradexsE  for agent C’s goods. Thus an optimal contract must have s(x)≤p for all x.  In words, 

agent A should not ask for a repayment larger than the price.  Since sD(x)=min[x,p]  maximizes 
(pointwise) what agent A can consume at t=2 because sD(x)=x≥s(x) for all x≤p and all s(x), debt is the 
optimal contract. Substituting p=D and s(x)=min[x,D] into (**) yields 

+∫ −+= dxxfDxwEU
D

Lx
B )()(α  ∫ −

Hx

D
dxxfDD )()(α dxxxfw

D

Lx
∫+= )(α DdxxDf

Hx

D
−∫+ )(α . (Note, 

suppose agent A offers to buy debt with price D and face value D’ larger than D (price), then agent B 
does not sell in states x>p=D since he repays s(x)>D and 

DdxxxfwDtradexsEwEU
D

Lx
kB −∫+=−+= )(])([ αα . With face value D’, the expected value of the 

security conditional on trade is strictly smaller, i.e. ptradexsEtradexsE D
k

D
k << ])([])([ ' .)  // 

 
We can use Figure 3, introduced previously, to highlight the intuition. Suppose E[sD(x)]=E[s(x)] and 
both contracts have the same price p=D. In regions I and II, there is trade under both contracts and 
agent B consumes w-p at t=1. Under the debt contract, agent B can sell sD(x) for the price 

]sellsA agent )([ xsEp DD =  to agent C and consume this amount at t=2. Under contract s(x), agent B 

can sell s(x) for the price ]sellsA agent )([ xsEpS =  to agent C and consume this amount at t=2. 

Since  sD(x)≥s(x) (point-wise)  pD≥ pS, agent B can consume more under the debt contract at t=3. For x 
in region III, there is no trade under s(x) and agent B consumes w at t=1 and nothing at t=2. But under 

debt contract, agent C consumes w-D at t=1 and DxsEp DD == ]sellsA Agent )([  at t=2. Since w-

D+αD>w, debt also strictly dominates s(x) in region III. Now we turn to the general case where γ≥0.  
Note, (p,sD(x)) is chooses to maximize BEU such that BEU >w (no trade at t=1). 
 
Now we turn to the general case where γ≥0.  
 

B. Agent A Faces Costly Information Production (γ≥0) 
 
We now turn to the case where information production is costly. 
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Proposition 4: For any {F, α, γ}, the optimal contract that agent B offers to buy from agent A is a debt 
contract.  
(a) If γ≥π, then agent B buys debt with face value D and price p=E[sD(x)]=w.  
(b) If γ<π, depending on {α, γ} agent B either chooses: 

(i) Strategy I (Down-sizing debt): Debt with (DI, pI) such that DI<D and pI=E[sI(x)]<w.  
    Agent A does not produce information.  
(ii) Strategy III (Surplus-sharing; bribe): Debt with (DIII, pIII) such that DI<DIII≤D and 

pI<pIII<E[sIII(x)] ≤w.  
     Agent A does not produce information. 

Proof: See Appendix A. 
 
Proposition 4 states that agent B compares two different strategies.  In Strategy I agent B computes the 
maximal amount of debt that can be traded without triggering information production and without 
giving agent A any surplus. Strategy III also avoids information production but agent A gets some 
surplus (a bribe). In this case, agent B offers to pay more than the expected value of the bond, but the 
bond has a higher face value than in Strategy I. Strategy III may dominate Strategy I because it 
achieves a larger amount that is traded, and hence is more efficient.  
 
Proposition 4 states that it is never a best response for agent B to induce agent A to acquire 
information. The intuition is the following. Consider any debt contract (p,sD(x)) such that agent A 
acquires information. This implies that π>γ (and thus D>p) and in particular agent A does not sell in 
states x where sD(x)=D>p. For any price p, agent B can strictly do better if he reduces the face value to 
D=p. Trade occurs with probability one while he pays the same price. The optimal (p,D) is given in 
the proof of Proposition 4. 
 
Another way of seeing why Strategy III (surplus sharing; bribe) strictly dominates a strategy that 
induces adverse selection is as follows. Lemma 5 shows that if agent A is informed the best response 
of agent B is to propose to buy a debt contract with price equals to face value. In other words, it is not 
optimal for an uninformed buyer to ask for more than he is paying, i.e. s(x)>p for x>p, because this 
reduces the probability of trade and the expected value of s(x) conditional on trade while paying the 
same price p. Consequently, if such a contract is to be traded as the optimal response of agent B when 
facing an informed agent A, then agent A does not produce information in the first place. 
 
Comparing Proposition 4 with the earlier Proposition 3 reveals an interesting asymmetry in the 
strategies. If an uninformed buyer faces a potentially informed seller, his best response is to propose 
either Strategy I, the maximum debt write-down or, Strategy III, a combination of a debt write-down 
and a bribe for the seller not to produce information. Previously, if an uninformed seller faces a 
potentially informed buyer, his best response is to propose either Strategy I, maximally write-down 
debt, or Strategy II, a contract that induces the buyer to produce private information. Bribing the buyer 
not to produce information by offering a larger E[s(x)] is not a best response of the uninformed seller 
because it is ineffective.   
 
These results formalize the notion that an uninformed agent on the sell side of the market may face 
more difficulty selling than an uninformed agent who wants to buy. If an uniformed seller (agent B at 
t=2) wants to sell a security, he cannot obtain (and thus consume) more than pI (of Strategy I of 
Proposition 3) even if the expected payoff E[s(x)] is very large. If he wants to consume more than pI, 
this triggers information production by the buyer and he faces the risk of not being able to sell at all. 
On the other hand, if an uninformed buyer (agent B at t=1) wants to buy and consume E[s(x)], then by 
offering a price high enough, he can always induce an (informed or potentially informed) seller to sell.  
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The asymmetry has to do with the information sensitivities of the buyer and the seller, πB and πS. 
Agent B (the uninformed seller) cannot raise the price above pI because that increases the blue dotted-
point triangle to the larger red dotted-line triangle in Figure 4 (a), raising πC for agent C. However, an 
uninformed buyer (agent B) can offer to raise the price without this problem. In contrast, raising the 
price reduces πA of the seller (agent A). In Figure 4 (b), the blue dotted point area shrinks to the red 
dotted line area. Therefore, it is “easier” for an uninformed agent to buy than to sell securities. 
 

Figure 4 
(a)                                                         (b) 
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Proposition 4 also shows that the assumption that w<E[X] is not crucial. If w≥E[X] and γ is high, then 
trading the whole project or issuing a degenerate debt contract with face value D=xH, is optimal, i.e. 
agent B buys s(x)=x for p=E[X].  If γ<γ’ (where γ’ is the cost of information production such that exactly 
the efficient level of debt can be issued), instead of trading the whole project, buying debt with face 
value D<xH is optimal. As γ decreases, the best response of agent B is to reduce the face value. 

 
6.  Optimal Security Design When There is Public Information (at t=2)  

Propositions 3 and 4 show that for γ sufficiently high and when there is no public information at t=2, 
any contract with expected payoff E[s(x)]=w is optimal.  In this section we derive a further benefit of 
debt in a setting where γ is sufficiently high so that there are no adverse selection concerns, but where 
there is an interim public signal. We show that debt maximizes the amount of intertemporal trade that 
can be implemented. The amount of intertemporal trade that can be implemented we call a security’s 
“trading capacity.”  
 
Here is a summary of the argument.  Suppose no agent can acquire information about the true value of 
the underlying asset X at any date, i.e., γ=∞.  Since there are no adverse selection concerns, it is easy 
to see that an optimal security for agent B to buy at t=1 has p=w and payoff Em[s(x)]=w. At t=2, it is 
efficient for agent B to consume by selling the security s(x) to agent C in exchange for goods. But at 
t=2, there is a public signal about the distribution of X. When the signal reveals that distribution k is 
the true distribution, then the market value of the security is Ek[s(x)]. This means that the resale price 
of security s fluctuates. In this section we ask: what date 1 security, s(x), maximizes the expected 
trading capacity between agents B and C and thus the expected consumption of agent B at t=2?  Note, 
agent C owns w units of goods at t=2. 
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Proposition 5 (Debt maximizes trading capacity): Suppose {s(x): non-decreasing in x} and {F: each 
Fk has non-overlapping support}. And suppose no agent can acquire private information (γ=∞). Then 
buying debt from agent A with E[sD(x)]=w and p=w at date 1 maximizes the expected utility of agent 
B. 
 
Proof: See Appendix A. 
 
To highlight the intuition, suppose K=2. Then we have )]([)]([ 21 xsEwxsE <<  and 

)]([)]([ 21 xsEwxsE DD << . We show by contradiction that there exists no s(x) such 

that )]([)]([ 11 xsExsE D> . Suppose )]([)]([ 11 xsExsE D> . Then we must have s(x)>D for some x’ 

where D<x’< 1
Lx . Non-decreasing of s(x) implies that s(x)>sD(x)=D for all x>x’. In particular, we have 

s(x)>sD(x)=D for all ],[ 22
HL xxx∈ . See Figure 5 (a). This implies that )]([)]([ 22 xsExsE D> . Since 

wxsExsE =+ )]([)]([ 2211 λλ  and wxsExsE DD =+ )]([)]([ 2211 λλ , this implies )]([)]([ 11 xsExsE D< . 
 
Proposition 5 shows that bad interim news reduces what agents B and C will trade, since they trade the 
amount Ek[s(x)]<w; and with good interim news agents B and C trade the amount w. Now suppose 
agent C has an endowment wC>w at t=2. As long as wC<EK[sD(x)] debt also (weakly) dominates any 
other security. On the other hand if wC>xH, then any security gives rise to the same expected trading 
capacity. In this case, from the ex ante (t=1) point of view the expected amount agent C can consume 
at t=3 is w, i.e. the expected payoff of the security (that agent A has issued at t=1). 

Note, wxsExsE
K

k
kk ==∑

=
)]([)]([

1
λ . 

 
Intuitively, Proposition 5 shows that even without any adverse selection concern, securities with a high 
variance of resale prices are less attractive than assets with low price fluctuations. Price fluctuation 
(payoff variance), however, is not the same as information-sensitivity as we have defined it. Note,  

∫ ≡−=−=+
Hx

Lx
SB pxsEdxxfpxs πππ )([)()( . Although (total) information-sensitivity π of s(x) 

looks similar to the variance E[(s(x)-p)2] of s(x), we can show that they are not necessarily rank-
correlated. 

If we allow contracts to be non-monotonic, i.e.{s(x): Em[s(x)]=w}, then the contract that maximizes 
agent B’s expected consumption at t=2 is: s(x)=D’ for x≤D’ and s(x)=w for x>D’ and Em[s(x)]=w.  
See Figure 5 (b). This holds for {F} satisfying FOSD. 
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 Figure 5 
(a)                                                         (b) 
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Proposition 5 highlights an interesting point. Even if agents have linear utility function, welfare under 
ignorance (IG) is higher than the welfare in a setting where agents have symmetric and partial or 
perfect information. Suppose that the interim information perfectly reveals the true realization of X at 
t=2 and w∈(xL,xH) and arbitrary F(x). Note, UB=αcB2+cB3 and UC=cC2+cC3. To highlight the intuition, 
suppose w=1.5 and X is binary and either 1 or 2 with equal probability. Consider the allocation that 
maximizes agent B’s utility subject to agent C getting his reservation utility UC=w=1.5. If agents are 
uninformed they trade w for X and EUB(IG)=1.5α. Under perfect information, if x=1, agent B 
consumes one unit at t=2 since agent C is not willing to trade w=1.5 for x=1. If x=2, agent B can 
consume at most w=1.5 at t=1. Thus EUA(PI)=0.5·1α+0.5·(1.5α+0.5)=1.25α+0.25<1.5α=EUA(IG).   

The reason for this observation is that the utility function of agent B has a kink at the endowment level 
w of agent C. Therefore, if x>w, agent B is must consume some x at t=3. Thus for x<w, the utility 
function of agent B has slope α and for x>w, the slope is 1. So although agent B’ intertemporal utility 
function is linear in consumption, the fact that w∈(xL,xH) induces concavity in agent B’s utility 
function. Thus ignorance at the date of trade strictly dominates perfect information or partial 
information if wIxE <][ for some information I. In the example above, the information I reveals the 
true x.  This is reminiscent of Hirshleifer (1971). 
 

7.  Equilibrium Analysis of the Full Game  

As a prelude to the equilibrium analysis, in subsection A we first examine how the interim public 
signal changes the information-sensitivity of debt and alters the strategies of the agents. Then we will 
be in a position to analyze the equilibrium of the full game.  In subsection B we characterize the 
equilibrium of the whole game with public information at t=2 and where agents A and C can produce 
private information. Subsection C briefly discusses the role of agent B in the model. 

A. Information Acquisition, Information-Sensitivity, and Trading at the Interim Date  

In this subsection we first characterize how public information changes the information-sensitivity of 
s(x), and thus the incentive of agent C to produce information at t=2 if the whole s(x) is traded. 
Whether trading the security s(x) at t=2 triggers information acquisition or not depends on the date 2 
information-sensitivity, π(k), of that asset relative to the information cost γ. Since prices p(k)=Ek[s(x)] 
fluctuate with the public signal k, π(k) (i.e., the information-sensitivity after Fk has been revealed 
publicly) also changes with the public signal since:  
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If s(x) is non-decreasing, prices are monotonic in k given the assumption of partitional information (or 
First Order Stochastic Dominance). But the information-sensitivity, π(k), of a security is a complicated 
object.  In particular, even with the assumption of partitional information (or First Order Stochastic 
Dominance), π(k) is typically non-monotonic in k.  See Appendix C.  

Suppose agent B bought a security s(x) from agent A at t=1. Now at t=2, agent B makes a take-it-or-
leave-it contract offer to agent C who can produce private information. We allow for complete 
contracting, i.e. agent B can take s(x) as the underlying asset to create a new contract ),(ˆ ys  where 
y=s(x). Agent B can then sell the redesigned contract to agent C for agent C’s t=2 good. For example, (i) 
if )(ˆ ys =y than agent B proposes to sell the whole s(x) that he bought from agent A to agent C; (ii) if 

]ˆ,min[)(ˆ Dyys = , then agent B proposes to sell a debt contract with face value D̂  taking s(x) as 

collateral. If the initial contract s(x) is debt with face value D, then agent B writes down debt to D̂ <D. 
More generally, agent B chooses two elements (p, )(ˆ ys ), a price and a security where { )(ˆ ys : )(ˆ ys ≤y , 
y=s(x)} to maximize his expected payoff. 

 

Lemma 6: Suppose agent B purchased debt with E[sD(x)]=w from agent A at t=1. If, (a), 

)]([)]([ xsExsE D
m

D
k ≥ (i.e., good news), or (b), )]([)]([ xsExsE D

m
D

k <  and γπ ≤)(kD , (i.e., bad 
news, but not so bad as to trigger information production), then trading at t=2 results in an efficient 
consumption allocation between agents B and C.  

Proof: (a) In this case, there was good news. There are two sub-cases: (i) If γπ ≤)(kD , i.e., 
information production is not profitable, then one best response of agent B is to sell the fraction 

)]([ xsE
w
D

k

=κ
 
of his debt for the price w (a vertical strip). This is because the good news has caused 

the bond to rise in value so that it is worth more than w.  Agent B offers to sell a strip that is just worth 

w.  Agent C buys without information acquisition since .)()( γπκπ ≤< kk DD  (ii) If γπ >)(kD , then 
information production is profitable.  As a result, agent B will offer to sell a new debt contract with 

face value DD <ˆ  and price w, taking the original debt contract as the underlying collateral (a 
horizontal slice).  Agent B wants to design the new bond so as not to trigger information production by 
agent C. Agent C buys the horizontal slice without information acquisition since 

γππ ≤< )()(
ˆ

mk DD . Note, wmpkp DD == )()(
ˆ

 and m
SD

k FF f  (i.e., stochastically dominates) 

imply that )()(
ˆ

mk DD ππ < . In both these sub-cases, Agent B consumes w at t=2 and has an expected 

consumption of wxsE D
k −)]([ at t=3; and at t=2, agent C has no consumption at t=2 and an expected 

consumption of w at t=3. 

   
(b) In this case there was bad news, but not so bad that information production is triggered.  Agent B 

sells the whole debt for the price )]([ xsE D
k . Agent C buys without information acquisition 
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since γπ ≤)(kD . Agent B consumes the amount )]([ xsE D
k  of goods at t=2; agent C consumes 

)]([ xsEw D
k−  at t=2 and )]([ xsE D

k at t=3.  // 
 
Lemma 6 (a) part (i) of the proof shows how a pro rata reduction (a vertical strip) in the amount of 
debt traded can keep agent C from having an incentive to produce information. The cost of 
information production is a fixed amount, so reducing the amount of debt traded can eliminate the 
incentive to produce information. Part (ii) of the proof is different in that trading a vertical strip may 
not suffice to prevent information acquisition. The agent B needs to issue a new debt contract, where 
agent B retains a junior equity tranche relative to what agent C is willing to accept — the senior 
tranche. Horizontal slicing is more powerful because it introduces seniority: agent B retains the equity 
piece of the newly issued (redesigned) bond. Any information produced would be wasted because it 
mostly concerns the residual (the junior equity tranche) which agent B will keep in any case. 
 

B. Equilibrium Debt Issuance and the Possible Collapse of Debt Trading  
 
Now we are in the position to characterize the set of Perfect Bayesian Nash equilibria (BNE) in the 
full game with interim public news arrival about the distribution of x and the possibility of information 
acquisition by agents A and C. 

Proposition 6 (Debt Equilibrium): Consider the economy { }K
iFw 1}{,,, =γα  and suppose )(mπγ ≥ .  

All BNE are outcome equivalent in terms of consumption and have the following properties:  
At t=1, agent B buys debt with p=E[sD(x)]=w from agent A who does not produce information.  
At t=2, there is efficient trade between agents B and C,, if: 

(a) )]([)]([ xsExsE D
m

D
k ≥  or (b) )]([)]([ xsExsE D

m
D

k <  and γπ ≤)(k .  
(b)  If )]([)]([ xsExsE D

m
D

k <  and γπ >)(k  then depending on the revealed distribution 
Fk, the best response of agent C is to choose either: 

      (i) Strategy I (maximum write down; agent C does not produce information); 
      (ii) Strategy II (adverse selection; agent C produces information). 
      There is insufficient trade.  
At t=3, agents who own a claim on X consume the goods delivered by the claim. 
 

Proof: See Appendix A. 

Proposition 6 has the interpretation that at t=2 if there is good news )]([)]([ xsExsE D
m

D
k ≥ , then 

there is efficient debt trading between agents B and C.  With bad news that causes the information-
sensitivity of the original debt contract to rise, there is insufficient debt trading.  For example, there is 
a collapse of debt trading in the sense that agents B and C trade less than the (new) market value of 
agent B’s debt. In the numerical example below, if there is bad news agents B and C trade a senior 
tranche of 20% of the market value of agent B’s debt, i.e. there is a 80% write-down of the original 
debt contract. This corresponds to “systemic risk” because the outcome is worse than that caused only 
by the fundamentals. The “fundamentals” corresponds to the bad shock k. Instead of trading at the new 
expected value of the debt, agents trade much less than they could or even not at all. In this sense there 
is a collapse of trade. 
 
Proposition 6 is perhaps best understood with an example.  Suppose F1 ∼u[0, 0.8], F2∼u[0.8, 1.2], 
F3∼u[1.2, 2] and ελλ == 21 , and ελ 213 −= . Then: fm=5ε/4 for x∈[0, 0.8], fm=5ε/2 for x∈[0.8, 1.2], 
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fm=5(1−ε)/4 for x∈[1.2, 2]and fm=0 else. That is, these are the prior densities (for the mixture 
distribution) over the different intervals corresponding to the k-distributions. Suppose 00001.0=ε , 

1=w , 001.0=γ , and  1.1=α . The subsequent numbers are exact up to the fourth decimal. 

In this example, agent B buys debt with face value 1=D  and price 1=D
mp . Agent A sells without 

producing information.13 Equilibrium outcomes at t=2 are as follows. 

(i) If F1 is the true distribution, then 4.0)1( =Dp , 1.0)1( =π .  (I) If agent B chooses to 
avoid information acquisition and does not give agent C any surplus (Strategy I), then 

04.0)]([)1( == xsEp II  and 0411.0)1( =ID , and 004.1)1( =+−= II
C ppEU α . 

(II) If agent B chooses to sell at a higher price and induces information production by 

agent C, then the best offer is 4.01 =IIp . Agent C buys when )1(IIpx ≥  and 

]))([()( IIIIII
B pxxsEppxprobwEU ≥−⋅≥+= α )407.04.01.1(5.01 −⋅+=

 
=1.217. 

All other IIp1 -type prices yield lower utilities. Thus agent B chooses Strategy II 

(adverse selection). There is no trade if x<0.4.  
 

(ii) If F2 is the true distribution, then 95.0)2( =Dp , 0281.0)2( =Dπ . If agent B chooses 

Strategy I, then 8283.0)2( =Ip  and 0828.1)1( =+−= II
C ppEU α . If agent B 

chooses Strategy II, then 95.0)2( =IIp  and 98.0)1( =IID . Agent C buys if 

)2(IIpx ≥   and 0467.1)97.095.01.1(1 8
5 =−⋅⋅+=BEU . Consequently, the best 

response of agent B is also to propose maximum write-down of debt. Although agent 
C has enough endowment agent B chooses not to sell the whole debt. Instead agent B 

sells a new debt contract, i.e. 872.0ˆ
95..0

8283.0ˆ
=== D

kp

D
kp

κ  or 87.2% percent of expected 

cash flow as a senior tranche. 

 (iii)  If F3 is the true distribution, then 13 =Dp , 0)3( =π . Agent C buys the (whole) debt of 

agent B for the price 1. 
 

To summarize this example, if there is good news (i.e., F=F3), there is efficient trade between agents B 
and C at t=2. If there is bad news (i.e., F=F2), then the market price of debt drops from 1 to 0.95 and 
agent C buys a senior tranche of 87.2% of agent B’s debt. This can be interpreted as a haircut of 
11.6%.  If there is very bad news (i.e., F=F1), then the market price of debt is 0.4. Agent B offers to 
sell debt for that price. If x<0.4, there is no trade.  
 
A financial crisis is an event where the outcome (in terms of the amount traded, and hence utility) is 
worse than what would happen purely based on the “fundamentals”, i.e. agents trade less than the 
expected value of the bond conditional on the new public information.  Bad news can arrive and the 

                                                 
13 Note, π(m)=0.  If equity with 8

5≈β  and 1=E
mp  is issued, then 0625.0)( ≈mEπ  and this triggers 

information acquisition at t=1. 
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information-sensitivity of the bond can increase.  In the numerical example, the amount traded and 
consumed drops dramatically. In the worse case news is so bad that agent B chooses Strategy II and 
there is adverse selection. 
 
In general, public news that triggers a reduction in trade and consumption is a signal that results in  
 γπ >)(k . We assume that the cost of producing information is a fixed amount, γ.  Once the threshold 

,)( γπ >k  is crossed agents are concerned about potential adverse selection. This is the “loss of 
confidence” and the source of the suddenness of the financial crisis when information-insensitive debt 
becomes information-sensitive. 
 
Proposition 7: Suppose {F} satisfies the assumption of a partition. The debt equilibrium is a second 
best outcome, i.e., it is constrained efficient. 
 
Proof:  Propositions 5 and 6 state that debt is optimal for facilitating trade between agents B and C.  

We have to prove that for )]([)]([ xsExsE D
m

D
k <  and γπ >)(k , from the point of view of agents B 

and C, issuing debt at t=1 also weakly dominates any other contract s. 

Suppose contract s has been issued at t=1. Note, Proposition 5 states that )]([)]([ xsExsE k
D

k ≥ .  

There are two cases to consider, (a) and (b). 

(a) Suppose γπ ≤)(kS , i.e., trading the whole contract s does not trigger information acquisition. 
Here is a “replication strategy” given debt has been issued: Agent C can propose to buy a new debt 

contract with face value DD <ˆ  (taking the original debt contract as the underlying collateral) and 

where the price equals the market value of contract s, i.e. )]([)]([
ˆˆ

xsExsEp k
D

k
D == . In this case 

γππ ≤< )()(
ˆ

kk SD . (Proposition 1 states that debt is a least information-sensitive security given 
two securities with the same expected payoff.) Debt is at least as good as any contract s. 

(b) Suppose γπ >)(kS , i.e., trading the whole contract s triggers information acquisition. Since 

)]([)]([ xsExsE k
D

k ≥ , with a date 1 debt contract agent C can replicate any new contract s’ that 

takes contract s as the underlying collateral. Thus )]('[)]([
ˆˆ

xsExsEp k
D

k
D ==   and 

)()( 'ˆ
kk SD ππ ≤ . More precisely, for x≤D, by redesigning the original debt contract, sD(x)=x, agent 

C can replicate the payoff of any contract s(x) or any redesign contract s’(y) with y=s(x). For x>D, 
contract s(x) may generates a higher repayment in states where s(x)>sD(x)=D. But in these states, the 
privately informed agent B only sells if agent C offers at least p=s(x)>D. But under the debt contract 
sD(x), if agent C proposes the price p=D, agent B sells in all states and agent C’s expected 
consumption at t=3 is Ek[sD(x)]. Under the contract s, agent C does not always sell, if s(x)>D for some 
x. Thus issuing debt at t=1 is optimal.   // 

Proposition 7 states that issuing a debt contract at date 1 is as good as any contract if 

)]([)]([ xsExsE D
m

D
k ≥ , and allows agents B to replicate the payoff of any contract at date 2 when 

)]([)]([ xsExsE D
m

D
k < . In other words, debt issuance at t=1 maximizes the flexibility to redesign 

contracts at t=2. A graphical illustration is given in Figure C1 (b) in Appendix C, that compares debt 
and equity. 
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C. Model Assumptions 
 
We assume that agent B cannot produce information. This assumption is meant to capture the idea that 
not all agents are equally sophisticated and able to produce private information which is realistic in 
financial markets, in particular in the market for securitized assets. This paper highlights how the 
design of security can avoid adverse selection to facilitate trade and efficient consumption and how 
public information about fundamentals and the (mere) concern of uninformed agents about potential 
adverse selection can cause a collapse of trade. 
 
From a technical point of view, if agent B can also produce information, then we have to analyze a 
much more complicated game since the proposer can be informed and in that case he can signal both 
with prices and contracts. In a standard signaling game, the informed agent is endowed with an asset X 
and only chooses a price p to signal his type x (i.e. the realization of X). Here both the price p as well 
as the function s(x) are endogenous variables and X is a continuous random variable. This is a 
complicated signaling problem and to our knowledge an unexplored one.  For example, DeMarzo and 
Duffie (1999) and Biais and Mariotti (2005) assume that the issuer designs a security before he obtains 
private information but at the date of sale there is asymmetric information. 
 
Conceptually, agent A can calculate whether it would pay for agent B as the proposer to produce 
information at t=1. If it pays for agent B to learn then there is no pure strategy equilibrium. Seeing a 
low price and some s(x), equilibrium requires agent A to first randomize his information production 
decision. If he does not produce information then he will also randomize his acceptance decision. See 
Dang (2008) for a discussion of this issue. In any mixed strategy equilibrium there is a (strictly) 
positive probability that no trade occurs. Therefore, if all agents can produce information, the adverse 
welfare implications are more severe.  
 
 
8. Discussion and Extensions 

A. Security Design and Complexity 

In the financial crisis, many bonds of securitized assets (asset-backed securities) were used as 
collateral for repo.  These bonds are complicated.  The internal workings of the cash flows from the 
underlying portfolios of loans are allocated in complicated ways, and the underlying loans themselves 
are complicated. See Gorton (2008). These asset-backed securities were also used as the assets in other 
structures, such as collateralized debt obligations and structured investment vehicles.  

Why such were complicated structures used? Our model sheds light on this issue. If complexity raises 
the cost of producing information, raises γ, this can be welfare improving.  Suppose that agent B could 
choose a level of complexity for the security designed at t=1.  This corresponds to choosing some γ 
less than a given maximum.  For large w, agent B would always choose to issue the most complex 
security, the one with the maximum γ because this maximizes the amount of debt. 

Asset complexity can facilitate trade as long as uninformed agents commonly and correctly believe 
that this makes information production by sophisticated agents unprofitable. But if public information 
about fundamentals makes the assets information-sensitive and thus information production profitable, 
then we argue that uninformed agents face difficulty in reselling these assets and this has a negative 
feedback effect on trade even between two agents that are known not to able to produce any 
information. There is a trade-off between creating liquidity for a sequence of trades and a sudden 
collapse of trade in a financial crisis. In our model assets are designed to minimize adverse selection 
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concerns so as to facilitate intertemporal trade, but when these assets become information-sensitive 
less sophisticated agents are only willing to buy at very low prices or have no demand at all. 

B. Rating Agencies 

Rating agencies are a puzzle. Why do they exist?  Equities are not rated. The standard version of 
“efficient markets” in equities has agents becoming privately informed and trading on their 
information. Prices are informative and there is no need for rating agencies.  Why are debt markets 
different?  Also, why do rating agencies only produce coarse signals, when as the critics have pointed 
out, risk is multi-dimensional?  Our model can address these questions. 

One of the possible equilibrium outcomes is the possibility that agent B produces information and 
trade is reduced.  A rating agency can minimize this welfare-reducing outcome, possibly by enough to 
justify the fee of γ charged by the rating agency for information production.  In this subsection we 
sketch how this would work, but for brevity we do not present formal results. 

The rating agency is a firm which commits to announce ratings just after the realization of the interim 
aggregate signal.  For each possible distribution k that could be realized, the rating agency commits at 
date 1 to a set of partitions {I(k)} of the support of distribution Fk.  These are the ratings.  Upon the 
realization of distribution k, the agency truthfully announces the rating (partition that contains x). 

How could this help?  Imagine that the distribution that is realized is one for which agent B would 
choose to produce information.  If the agency has chosen its partitions correctly, then conditional on 
the announcement of the partition/rating, the value of information to agent B can decline sufficiently 
so that he does not find it optimal to produce information; welfare is improved.  This is the mechanism 
by which the ratings can help. 

The rating agency’s optimization problem, however, is very complicated.  On the one hand, partitions 
cannot be too fine because information destroys trade. On the other hand, partitions cannot be too 
coarse or else agent B will still have an incentive to produce information when we would prefer that he 
not produce information. 

C. Lender-of-Last-Resort 

What exactly is the role of the lender-of-last resort?  In our set-up this is clear.  The lender-of-last-
resort’s role is to exchange information-sensitive debt for information-insensitive debt, possibly at a 
subsidized price to prevent information production, or, to make the private debt, which has become 
information-sensitive, information-insensitive. This prevents the crisis from being worse than the 
shock k.  A lender-of-last-resort can prevent the deleterious effects of the switch to adverse selection.  
If the lender-last-resort were to purchase agent B’s bond by issuing a riskless bond to agent B in 
exchange, such that there was no incentive to produce private information, adverse selection could be 
avoided.  Or, if the central bank simply guaranteed the bond at a value such that agent C did not 
produce information then the same goal would be accomplished.  In any case, the central bank would 
have to have some ability to tax at the final date as the proceeds from agent A’s project might not 
cover the central bank’s debt or guarantee.  But, as presently constituted the model has no agents to tax 
at the final date. 
 

9. Conclusion 

In the stock market it is clear that the securities are information-sensitive, so there are many analysts 
producing information, and trade is centralized in a stock market. Debt is different. Even before 
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deposit insurance, checks changed hands without due diligence be participants about the banks’ assets 
backing them. Today billions of dollars are traded in sale and repurchase (repo) markets overnight, 
very quickly, every day, without extensive due diligence (i.e., information production) on the bonds 
used as collateral. Much corporate debt is purchased and traded based only on ratings. Trade in 
decentralized debt markets is facilitated by a lack of information, in fact, by symmetric ignorance.  

Debt is the optimal contract for providing liquidity.  It is optimal in three senses. First, with respect to 
public signals, it retains the most value and so produces the most intertemporal carrying capacity. 
Second, when costly private information can be produced, causing adverse selection, debt minimizes 
the incentive to produce private information and so reduces the adverse selection.  Finally, when there 
is adverse selection, debt is optimal in maximizing the amount of consumption that can be achieved 
via trade.  In the first two cases, debt is optimal because it is least information-sensitive.  In the third 
case, debt is optimal because it maximizes the amount traded. 

We propose a measure of information-sensitivity which is a kind of measure of tail risk. For a buyer, it 
is defined as the expected overpayment in “bad” states, i.e. the expected sum of overpayment in all 
states where s(x)<p. Analogously, for a seller information-sensitivity is the expected loss due to 
charging too little in “good states, i.e. the expected total loss in all states where s(x)>p. By taking this 
ex ante interpretation of potential ex post realized losses, we can use this definition as measure of 
liquidity. With respect to this measure debt is the optimal security for liquidity provision. 

Systemic crises concern debt.  The crisis that can occur with debt is due to the fact that the debt is not 
riskless. A bad enough shock can cause information insensitive debt to become information-sensitive, 
causing a collapse of trade as agents seek to avoid adverse selection. Instead of trading at the new and 
lower expected value of the debt given the shock, agents trade much less than they could or even not at 
all. There is a collapse of trade.  
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Appendix A: Proofs 

 
Proof of Lemma 3 (Portfolio Information-sensitivity) 

We prove part (ii) first. Note that p<E[x]=0.5 and for X uniformly  distributed on [0,1], f(x)=1. 
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Proof of Proposition 4 There are three types of potential best responses. (i) Strategy I, agent B avoids 
information acquisition by reducing the face value and chooses p=E[s(x)]. (ii) Strategy II, agent B 
avoids information acquisition by reducing the face value and giving agent A some surplus so as to 
reduce his incentive to become informed, i.e. p>E[s(x)]. (iii) Strategy III, agent B triggers information 
acquisition by agent A.  
 
(i) Corollary 3 states that the maximal amount that agent B can buy at t=1 where p=E[s(x)] and that 
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With this strategy agent B consumes )]([ xsEp II =  at t=2 and has an expected consumption of 
)]([ xsEw I−  at t=3. Thus )].([)]([)( xsExsEwIEU II

B α+−= .
  (ii) A second potential best response is for agent B to propose a contract such that agent A acquires 

information. If Φ+= III pp  (where 0>Φ ) and 
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>∫ ∫+=  while agent B pays the same price 

for both contracts. This shows that a contract that induces information acquisition by agent A is 
strictly dominated by Strategy II. Note, Lemma 5 shows that if agent A is informed, the best response 
of agent B is to ask for a contract with price equals to face value. But if such a contract is to be traded, 
agent A does not acquire information. 

(iii) So a third potential best response of agent B is to choose a surplus sharing offer, i.e. an offer that 
gives agent A some of the trading surplus by proposing a price )]([ xsEp IIIIII > . This is another 
strategy that can avoid information acquisition by agent A.  Consider any two contracts with the same 
expected payoff. Proposition 1 shows that debt is least information-sensitive, i.e. has the lowest π, thus 
it is least costly to bribe agent A with a debt contract. Suppose agent B offers the price 

)()]([ γπ −+= IIIIIIIII xsEp  to buy this debt contract, then agent A does not acquire information 

and γπ −+= III
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Consequently, only Strategies I and III are potential best responses. Agent B compares 
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where )]([)]([ xsExsE IIII >  and chooses the one with the higher expected utility. The following 
arguments show that Strategy I is not necessarily dominated by Strategy III. Note, if the face value 

DIII=DI, then  )()( IEUIIIEU BB =  since γππ == IIII .  Increasing d at dI, increases 
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IIII πππ −=Δ  as well as )]([)]([)]([ xsExsExsE IIIIIII −=Δ . For α small (and there is a lot of 

probability mass on the left tail), then IIIIII xsE πα Δ<Δ )]([ and thus Strategy I dominates Strategy III. 

Alternatively, Strategy I is not dominated by Strategy III if for all IIII DD > ,we have: 
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Proof of Proposition5: Suppose that at t=1 agent B buys debt or a security s, where 
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Proof of Proposition 6: At t=1, issuing debt maximizes the payoff of agent A and thus is a best 
response. Agent B does not acquire information since )(mπγ ≥ . At t=2, the following cases arise: 

Case (i): There is efficient trade at t=2. 

(a) Suppose )]([)]([ xsExsE D
m

D
k ≥ . Proposition 6(a) shows there is always efficient trade. 

(b) Suppose )]([)]([ xsExsE D
m

D
k < . There is efficient trade if  

(bi) )(kDπγ ≥ , see Proposition 6(b); or  
(bii) )()( IEUIIEU CC ≥ , i.e. agent C chooses Strategy II with pII>Ek[sII(x)]= Ek[sD(x)]  and 
pII≤w; (agent C buys the whole debt for a price premium). See Proposition 3(ii); or 
(biii) )()( IEUIIEU CC ≥ , i.e. agent C chooses Strategy II with pII=w and pII>Ek[sII(x)] but 
Ek[sII(x)]<Ek[sD(x)]. (Agent C spends all his w to buy a new debt contract with dII<D) See 
Proposition 3(ii). 

Case (ii): There is inefficient trade, if agent C chooses strategy I or II and has positive consumption at 
t=2.  // 
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Appendix B: Optimality of Debt When Information Production Results in Partial Information 

In the main text we consider the case where agents either obtain perfect information or are ignorant. 
Now we suppose that the information that agents learn does not reveal the true realization of X.  
Instead, the agents receive a signal that is informative, but it provides less than perfect information.  
We discuss two types of signals: (i) a mean preserving spread; that is, an agent receives a noisy signal 
of the type φ=x+ε, where ε is a random with E[ε]=0; and (ii) an agent learns information about which 
distribution is relevant, where x initially can be drawn from more than one distribution. Debt remains a 
least information-sensitive security. 

Proposition B1: If the agent receives a noisy signal, then Propositions 2 and 3 hold. 
 
Proof: Upon observing φ, the expected payoff of the security is ]|)([ φxsE . The buyer does not buy 
the security s(x), if he observes ]|)([ φxsE <w. Since xxE =]|[ φ , the same arguments as given in the 
proof of Proposition 2 show that debt gives rise to the smallest set of states where information has 

value to the buyer and for any of these states ]|)([]|)([ φφ xsEpxsEp D −≤− . Consequently, 
Propositions 2 and 3 hold under this information structure. // 

Proposition B2: Suppose the signal induces a posterior distribution where the support of each 
posterior distribution is a partition of the state space X. (See Section 4 for details.) Consider the 
feasible set of securities S={s: s(x)≤x, p=E[s(x)]=w}. Then debt is the least information-sensitive 
security in the set S, i.e. S
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Appendix C: The Non-Monotonicity of the Value of Information 

 
The value of information is in general non-monotonic in the distribution k. Basically, the issue 
concerns the tail of the distributions, Fk. Stochastic dominance and even partitional information 
structures do not put enough structure on the (left) tail, but this is the relevant part of the distribution 
with regard to the information-sensitivity of debt. The value of information at t=2 is given by:  
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The intuition is the following: Bad news (a distribution with more mass in the left tail) reduces the 
price of the security, and thus the “area” between price and s(x). But on the other hand that smaller 
area is evaluated with more probability mass. The overall effect is ambiguous. Similarly, good news 
increases the price but there is less probability mass on the left tail. For example, if we add an 
additional posterior distribution to the numerical example in section 5, such that F1∼u[0,0.2], F2 
∼u[0.2, 0.8], F3 ∼u[0.8, 1.2], F4 ∼u[1.2, 2], then prices are increasing in k but, π(4)<π(1)<π(3)<π(2). 

The following example (satisfying FOSD), which includes both debt and equity, illustrates that )(kπ
 

is a complicated object. Suppose F1 ∼u[0, 0.05], F2 ∼u[0, 0.1],   F3∼u[0, 0.15],.., F59 ∼u[0, 2.95], F60 
∼u[0, 3], F61∼u[0.05, 3],...., F119∼u[2.95, 3], and 119

1=iλ , 6
5=w .  Then: Fm ∼u[0,3],  fm=1/3 for x∈[0, 

3] and fm=0 else. At t=1, if debt with face value D=1 is issued then  6
5=D

mp , 116.0)( ≈mDπ  and if 

equity( 9
5=β ) with  price 6

5=E
mp  is issued, then 2083.0)( ≈mEπ . At t=2: if Fk=F30∼u[0,1.5], then 

3
2)30( ==kp D , 1482.0)30( ≈=kDπ  and 12

5)30( ==kp E , 1042.0)30( ≈=kEπ .  Note that for 

F60, for example, the value of information for equity (0.1042) is lower than the value of information 
for debt (0.1482) but so does the price of equity (and the amount that can be potentially traded).  
Furthermore, in each case the value of information is non-monotonic in k. Figure B1 (a) plots price 
and information-sensitivity as a function of the posterior distribution k. Figure C1 (b) plots the 
information-sensitivity in the (p,π) space. 

Figure C1 

(a) (b) 

 
 

w    30             60      80    
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As Figure C1 (a) illustrates, depending on the distribution, the information-sensitivity of debt can be 
larger or smaller than the information-sensitivity of equity. Stochastic dominance does not imply an 
ordering for the date 2 information-sensitivity of a security as well as the information-sensitivity 
across securities.  

Furthermore, information-sensitivity is non-monotonic in prices since the price function is weakly 
increasing in k. See Figure B1(b) which also shows that )()( pp ED ππ ≤  for any given price. Note 

for k<m, E
k

D
k pp '=  only if k<k’. In this example, there exist prices such that )()( pp ED ππ = since 

for k<20, the posterior distribution k only has positive support on [0,D] with D=1 and in this range 
debt has a slope of one and is “equity”. 
  
Figure B1 (a) also shows that for a debt contract with face value D, if distribution k has support such 

that Dxk
L ≥ (i.e. k≥80 where F80∼u[1, 3]), then 0)( =kDπ . Note, Dxk

L ≥  implies that debt is 

riskless, i.e. sD(x)=D and DpD
k = .  This observation is one of the results in Gorton and Pennacchi 

(1990). In contrast to debt, the information-sensitivity of equity is 0)( >kEπ  for any distribution k 
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k ββ =<  and ][xEx k<  for ]][,[ xExx L∈ . Thus 0>E

kπ . 
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