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1 Introduction

2 The Basic Matching Model

We consider a standard Mortensen-Pissarides (MP) search-matching framework as in

Shimer (2005), Mortensen and Nagypál (2007), Hagedorn and Manovskii (2008), Hall

and Milgrom (2008) or Pissarides (forth.). Time is discrete and indexed by t ∈ N. The

global state of the economy is described by some ergodic Markov chain with transition

probability matrix Π = (πij). All the jobs in the economy have the same productivity

value yt ∈ {y1, ..., yN}, with yi < yi+1 (with a slight abuse of notation, yt denotes the

stochastic process and yi a realization).

2.1 Search-matching

Let ut denote the number of unemployed workers at the end of period t − 1. At the

beginning of period t, a new productivity state i is realized, a fraction s(1−ut) of current

matches is destroyed, and vacancies are endogenously created or destroyed. Let vt be the

new number of vacancies. A number m(ut + κ(1 − s)(1 − ut), vt) of employer/employee

meetings is then realized, where κ ≥ 0 is the search efficiency of employees relative to

unemployed. We define market tightness as the ratio of vacancies to total search intensity:

θt =
vt

ut + κ(1 − s)(1 − ut)
. (1)

The matching function is increasing, strictly concave and linearly homogeneous. The job

finding rate of unemployed workers is f(θt) ≡ m(1, θt), with f(0) = 0, and the job offer

arrival rate to employees is κf(θt).
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2.2 Equilibrium

We postulate Postel-Vinay and Robin’s (2002) sequential auctions as wage setting mech-

anism. In the basic version that we consider, employers have full monopsony power

unless a credible separation threat is presented (as in Diamond’s (1971) seminal equilib-

rium search model). Unemployed workers are thus offered their reservation wage, and

they take it. Rent sharing accrues later via on-the-job search. As all matches produce

the same output, on-the-job search and Bertrand competition eventually transfer all the

match rent from the employer to the employee (unless exogenous match destruction hap-

pens before). Workers are indifferent between competing employers and we assume for

simplicity that the tie is broken in favour of the poaching employer with probability τ .

For unemployed workers, the value of employment is only marginally better than the

value of unemployment. It follows that the unemployment value only depends on the

productivity index i and is otherwise stationary:

Ui = zi +
1

1 + r

∑

j

πijUj

where zi is the opportunity cost of employment in macroeconomic state i, or, in obvious

matrix notations:

U =

[

I−
1

1 + r
Π

]

−1

z. (2)

Define the match surplus value St as the discounted sum of all future match output

flows plus what the worker and the firm separately get after a separation, minus the value

of unemployment and minus the value of a vacancy (which is equal to zero if free entry).

The expected surplus flow as long as the match continues is yt − zt. On-the-job search

and poaching results in the worker receiving the whole surplus whether she stays with

her current employer or accepts the other job.

Match surplus St only depends on the current productivity value, say yi. Write Si,
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i = 1, ..., N , for the surplus if the productivity state is i. It satisfies the Bellman equation:

Si = yi − zi +
1 − s

1 + r

∑

j

πijSj

that is solved as:

S =

[

I −
1 − s

1 + r
Π

]

−1

(y − z). (3)

At the beginning of period t, would-be employers pay a fee c to participate in the

lottery that generates a contact with a worker with probability q(θt) = f(θt)/θt. A

proportion ut

ut+κ(1−s)(1−ut)
of contacts is with currently unemployed workers. They accept

the job and the firm gets the whole surplus. A proportion κ(1−s)(1−ut)
ut+κ(1−s)(1−ut)

of contacts is

with employed workers who accept the job with probability τ . However, Bertrand

competition gives all the rent to the employee. Hence, if free entry drives the value of

a vacancy to zero, for a given value ut of the unemployment rate, market tightness θt

satisfies the equation:

c = q(θt)
ut

ut + κ(1 − s)(1 − ut)
St ⇔ cvt = f(θt)utSt. (4)

where ut follows the motion process:

ut+1 − ut = s(1 − ut) − f(θt)ut. (5)

The equilibrium is completely described by the fully recursive set of equations (3), (4)

and (5) with unemployment ut and productivity yt+1 as state variables. At the beginning

of period t, a new productivity index is observed, say i. Equation (3) determines St = Si,

equation (4) determines θt given ut and St = Si, and equation (5) then determines ut+1

given ut and θt. The equilibrium path is unique if q(θt) is one-to-one.

3



Steady-state tightness and unemployment. In a steady-state equilibrium where

the economy remains in state i forever, (ui, vi, θi) are such that

θi =
vi

ui + κ(1 − s)(1 − ui)
,

f(θi)ui = s(1 − ui),

q(θi) =
c

Si

(

1 + κ(1 − s)
1 − ui

ui

)

.

Let fi = s(1−ui)
ui

= f(θi) ∈ R. Then, fi solves

f

(

Si

c

fi

1 + κ(1−s)
s

fi

)

= fi.

The function x 7→ x

1+
κ(1−s)

s
x
being increasing and concave, like f , it is easy to see that

there is a unique solution to this equation if Si

c
f ′
(

Si

c

)

= f
(

Si

c

)

> 1 and no solution

otherwise.

2.2.1 Estimation/Calibration

Matching function. We follow standard practice and specify the job finding rate

function as:

f(θ) = φθη.

From the JOLTS data (Job Openings and Labor Turnover Survey) available from

the BLS website, let V denote total job openings in the total nonfarm sector (seasonally

adjusted), H the number of hires, Q the number of quits and L involuntary separations

(layoffs and discharges). Since March 10, 2009, new series have been released which are

consistent with total employment from the CES (Current Employment Statistics). Let E

denote the CES total employment series. Lastly, let U denote the number of unemployed

(from CPS, Current Population Survey).

First, we note that voluntary quits and hires are procyclical whereas layoffs are coun-

tercyclical (see Figure 1, panel (a)). We therefore think of quits as revealing on-the-job
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search and take them out of total hires to calculate the job finding rate of unemployed

workers. We thus write:

θ =
V

U + κE
,

H − Q

U
= f(θ),

Q

E
= τκf(θ),

∆E = E − E−1 = (H − Q) − L,

where κ is the relative search intensity of employees with respect to unemployed and τ is

the fraction of employees’ contacts with an alternative employers which result in a quit.

Notice, however, that although colinear to a large extent, the quit rate Q

E
seems to

increases slightly in proportion to the job reaccession rate H−Q

U
(see Figure 1, panel

(b)). Using the results in Jolivet, Postel-Vinay, Robin (2006) who estimate a wage

posting/equilibrium search model on PSID data, we estimate the proportion of employees’

contacts with alternative employers resulting in actual mobility to 53%. We thus set

τ = 0.5. Then, we estimate κ as the mean of k ≡ Q

E
U

H−Q
, i.e. κ = 0.14. We finally

estimate φ and η by regressing log H−Q

U
on log θ . We estimate φ = exp(0.277) = 1.32

and η = 0.78. Figure 2 shows how the model fits the data.1

We shall also set the layoff rate s to the mean value of L/E, i.e. s = 1.5%, for the

period.

Productivity. We then turn to the estimation of the productivity process. The source

of identification of St is the free entry condition (4) that we rewrite as:

vt

utf(θt)
=

St

c
,

1Defining market tightness as V/U , we find φ = exp(−0.863) = 0.422 and η = 0.503.
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(a) Matching Function
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Figure 2: Fit of the Matching Function
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where vt

utf(θt)
is easily calculated from the JOLTS data as V

H−Q
(see figure 3, panel (a); the

dotted line is a Markov chain approximation that we shall later use). Hence we know

the series of surplus values up to a scale transformation 1/c.

Equation (3) establishes a correspondence between the support of St and the support

of (y−z)t. We shall assume that matrix
[

I − 1−s
1+r

Π
]

−1
monotonically transforms{yi−zi}

into {Si}. It follows that processes vt

utf(θt)
, St and (y − z)t have exactly the same ranks

in their respective marginal distributions. Figure 3, panel (b) displays the scatterplot

and the marginal histograms of
(

St−1

c
, St

c

)

and panel (c) shows the marginal and joint

distributions of the ranks of St−1

c
and St

c
.

The distribution of the cdfs of two variables X and Y is called a copula. We use

a t-copula with parameters ρ and ν. Fitting this parametric copula using maximum

likelihood, we obtain the following estimates: ρ = 0.90 and ν = 10.65.

Next we discretize the marginal distribution of St

c
using the midpoints of N = 50

equally spaced bins exactly covering the set of observed values of St

c
. The respective

probability pi of each bin is computed using a smooth kernel estimator of the cdf. Let F

be such a kernel cdf estimator. Let [ai, bi] denote the limits of the ith bin with Si

c
= ai+bi

2
.

Then pi = F (bi) − F (ai). We also calculate a discrete approximation of the transition

probability matrix across productivity states as

πij =
C(F (bi), F (bj)) − C(F (ai), F (bj)) − C(F (bi), F (aj)) + C(F (ai, F (aj))

pi

Finally, we estimate y−z

c
= (yi−zi

c
) as

yi − zi

c
=

Si

c
−

1 − s

1 + r

∑

j

πij

Sj

c
. (6)

Figure 4, panel (a) shows the support {Si/c} used for surplus states together with

the associated marginal probabilities pi in the form of a histogram. The normal density

plot shows how different this distribution is from a normal density. Panel (b) shows
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(a) Evolution
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the discrete approximation of the marginal density of surplus values that we use in the

estimation. Figure 5 displays the estimated surplus flow values yi−zi

c



(a) Marginal Distribution of Vacancy-Hires Ratio
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(b) Surplus States and Marginal Probabilities
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Figure 4: Marginal Distribution of Vacancy/Hires Ratio and State-Space Discretization
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Figure 5: Estimated Surplus Flows yi − zi from Present Values Si

Assume that zt = z0 is fixed. Then, we find that z0 = 1.313 generates an elasticity of

unemployment exit rate to productivity (a regression coefficient) of 7.56, which is the

number found by Shimer. Increasing z0 increases the elasticity by reducing the surplus

flow as a share of z0. Hence, we obtain the right elasticity with a surplus flow that lies

indeed between −0.9% and 6.9% of the opportunity cost of working z0. We also obtain

an elasticity of unemployment to productivity of −4.35, which is also close to the −3.88

computable from Shimer (2005, Table 1).

Note that the dependence of unemployment to productivity seems to have changed

over time. Using Hodrick-Prescott filtered series (with a smoothing parameter of 105 as

in Shimer) of log unemployment rates and log labor productivity (lagged one quarter),

we find an elasticity of −6.18 (std: 0.57) for the period 1947q1-1986q4 for an Rsquare of

43% and an elasticity of +1.93 (std: 1.39) for an Rsquare of 2% for the remaining period

1987q1-2008q4. Figure 8 shows how the fit has worsened after 1987.
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Figure 6: Model fit – Filtering Productivity Shocks
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3 Wages

3.1 Present Values

Let Wt(w) denote the present value of a wage contract w to the worker at time t. We

write Wt(w) ≡ Wi(w; ut) if the productivity state at the beginning of period t is i and

market tightness is θt. The Bellman equation for Wt(w) is:

Wt(w) = w +
1

1 + r

∑

j

πij

[

sUj + (1− s)

(

κf(θt+1)(Sj + Uj) + [1− κf(θt+1)]W
∗

t+1(w)

)]

.

In period t + 1, the new productivity level j is first realized. Then, the separation

shock is drawn. If the match is not destroyed, the employee draws an alternative offer

with probability κf(θt+1). In this case, Bertrand competition between the incumbent

employer and the poacher drives the wage contract to their common reservation value

and the worker gets the whole surplus, Sj. If no outside offer has been drawn, the

current contract w is continued if 0 ≤ Wt+1(w) − Uj ≤ Sj. If, however, the productivity

shock moves the current contract outside the bargaining set, i.e. Wt+1(w) − Uj < 0 or

Wt+1(w) − Uj > Sj, then the contract must be renegotiated. We follow McLeod and

Malcomson (1993) and Postel-Vinay and Turon (forth.) and assume that renegotiation

takes the worker’s surplus Wt+1(w)−Uj to the closest point in the bargaining set [0, Sj].

That is, if Wt+1(w) − Uj < 0, the contract is readjusted to 0 and if Wt+1(w) − Uj > Sj ,

it is readjusted to Sj . So the continuation value is:

W ∗

t+1(w) ≡ W ∗

j (w; ut+1) = min{max{Wj(w; ut+1), Uj}, Sj + Uj}.

Using equation (2), we can derive the worker’s surplus as:

Wt(w) − Ui = w − zi +
1 − s

1 + r

∑

j

πij

[

κf(θt+1)Sj + [1 − κf(θt+1)](W
∗

t+1(w) − Uj)

]
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with

W ∗

t+1(w) − Uj = min{max{Wt+1(w) − Uj , 0}, Sj}.

Define wi(u) such that Wi(wi; u) − Ui = 0 and wi(u) such that Wi(wi; u) − Ui =

Si. At any point in time, the support of the wage distribution lies inside the set Ω =

{wi(u), wi(u), i = 1, ..., N, u ∈ [0, 1]}. Let gt(w) denote the measure of workers employed

at wage w ∈ Ω at the end of period t − 1.

3.2 Wage distribution

Let i be the productivity state of the economy in period t − 1. Conditional on the state

of the economy not changing between t − 1 and t, the measure of wages is updated as

follows. The measure gt+1(wi(ut)) of employees paid wi(ut) at the end of period t is equal

to the measure of employees paid that wage in the preceding period who have not been

laid off or poached plus the flow measure of previously unemployed workers who receive

a job offer:

gt+1(wi(ut)) = (1 − s)[1 − κf(θt)]gt(wi(θt)) + f(θt)ut

where θt = q−1
(

c
Si

(

1 + κ(1 − s)1−ut

ut

))

. The measure of employees paid wi(ut) is equal

to stock that is reconducted in absence of any shock plus the flow of employees who

receive an outside offer:

gt+1(wi(ut)) = (1 − s)[1 − κf(θt)]gt(wi(ut)) + κf(θt)(1 − s)(1 − ut),

and, for all w ∈ Ω\{wi(ut), wi(ut)}, only the employees who were already paid w and

were not laid off or poached remain in the stock of workers paid w:

gt+1(w) = (1 − s)[1 − κf(θt)]gt(w).

Note that summing up these three equations yields the law of motion for the unem-
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ployment rate:

1 − ut+1 = (1 − s)[1 − κf(θt)](1 − ut) + f(θt)ut + (1 − s)κf(θt)(1 − ut)

= (1 − s)(1 − ut) + f(θt)ut,

If, however, the state of the economy changes between t − 1 and t, from i to j 6= i,

then the renegotiation process has to be taken into consideration. Employees paid w

such that Wj(w; ut) − Uj < 0 renegotiate their wages to wj(ut). Hence,

gt+1(wj(ut)) = (1 − s)[1 − κf(θt)]
∑

w∈Ω

1 {Wj(w; ut) − Uj < 0} gt(w) + f(θt)ut,

where θt = q−1
(

c
Sj

(

1 + κ(1 − s)1−ut

ut

))

. Employees paid w such that Wj(w; ut)−Uj > Sj

are forced to accept wage wj(ut). Hence,

gt+1(wj(ut)) = (1 − s)[1 − κf(θt)]
∑

w∈Ω

1 {Wj(w; ut) − Uj > Sj} gt(w)

+ (1 − s)κf(θj)(1 − ui).

And for all w ∈ Ω\{wj(ut), wj(ut)},

gt+1(w) = (1 − s)[1 − κf(θt)]1 {0 ≤ Wj(w; ut) − Uj ≤ Sj} gt(w),

3.3 An approximating equilibrium

Although the equilibrium process of (ut, vt, θt) can be easily calculated, wages depend

on productivity and continuously updating unemployment. We therefore develop an

approximating equilibrium where θt jumps to its steady-state value θi after a productivity

shock.

Let Wi(w) denote the present value of a wage w in state i. If θt jumps to θj immedi-

18



ately after a shock to productivity yj,

Wi(w) − Ui = w − zi +
1 − s

1 + r

∑

j

πij

[

κf(θj)Sj + [1 − κf(θj)](W
∗

j (w) − Uj)

]

with

W ∗

j (w) − Uj = min{max{Wj(w) − Uj, 0}, Sj}.

Let wi and wi be such that Wi(wi) − Ui = 0 and Wi(wi) − Ui = Si. Then, for all k,

Wk(wi) − Uk − (Wi(wi) − Ui) = Wk(wi) − Uk

= zi − zk +
1 − s

1 + r

∑

j

(πkj − πij)

[

κf(θj)Sj

+ [1 − κf(θj)](W
∗

j (wi) − Uj)

]

and

Wk(wi) − Uk − (Wi(wi) − Ui) = Wk(wi) − Uk − Si

= zi − zk +
1 − s

1 + r

∑

j

(πkj − πij)

[

κf(θj)Sj

+ [1 − κf(θj)](W
∗

j (wi) − Uj)

]

.

Having determined Wk(wi) − Uk and Wk(wi) − Uk, wages then follow as

wi = zi −
1 − s

1 + r

∑

j

πij

(

κf(θj)Sj + [1 − κf(θj)](W
∗

j (wi) − Uj)

)

and

wi = Si + zi −
1 − s

1 + r

∑

j

πij

(

κf(θj)Sj + [1 − κf(θj)](W
∗

j (wi) − Uj)

)

⇔ wi = yi −
1 − s

1 + r

∑

j

πij [1 − κf(θj)](W
∗

j (wi) − Uj − Sj).

19



We use a simple fixed point algorithm (of the form xn = Txn−1) to determine surpluses

Wk(wi) − Uk and Wk(wi) − Uk, and then wages wi and wi.

3.3.1 Wage distribution.

The support of the wage distribution is the set Ω = {wi, wi, i = 1, ..., N}. Let gt(w|i)

denote the measure of workers employed at wage w ∈ Ω at time t and given that the

state of the economy is i.

Conditional on the state of the economy not changing between t and t + 1, the wage

distribution is updated as:

gt+1(wi|i) = (1 − s)[1 − kf(θi)]gt(wi|i) + f(θi)ut,

gt+1(wi|i) = (1 − s)[1 − kf(θi)]gt(wi|i) + (1 − s)kf(θi)(1 − ut),

and, for all w ∈ Ω\{wi, wi},

gt+1(w|i) = (1 − s)[1 − kf(θi)]gt(w|i).

Note that, summing over all w ∈ Ω yields the law of motion for unemployment:

ut+1 = ut − f(θi)ut + s(1 − ut).

Tightness jumps but not unemployment.

If, however, the productivity state moves from i to j 6= i at the beginning of period

t, then,

gt+1(wj |j) = (1 − s)[1 − kf(θj)]
∑

w∈Ω

1 {Wj(w) − Uj ≤ 0} gt(w|i) + f(θj)ut,
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and

gt+1(wj|j) = (1 − s)[1 − kf(θj)]
∑

w∈Ω

1 {Wj(w) − Uj ≥ Sj} gt(w|i)

+ (1 − s)kf(θj)(1 − ut),

and, for all w ∈ Ω\{wj, wj},

gt+1(w|j) = (1 − s)[1 − kf(θj)]1 {0 < Wj(w) − Uj < Sj} gt(w|i).

Unemployment is updated as:

ut+1 = ut − f(θj)ut + s(1 − ut).

3.4 Simulations

At the cost of renormalizing c = 1−α, we may as well assume that the opportunity cost

of employment is

zi = z0 + α(yi − z0)

for the same calibrated value of 1.313 for z0 and α ∈ [0, 1). Then, yi−zi = (1−α)(yi−z0)

and everything holds with 1−α
c

in lieu of 1
c

as unidentified scale factor. This looks as an

innocuous change. However, with α > 0, zi is increasing with yi. If α = 0 then zi = z0 is

constant and unemployed workers’ reservation wages decrease with productivity as they

accept a lower initial wage if future prospects improve. Figure 9 illustrates this point

by showing how the wage bounds vary with productivity for two choices of α: 0 and

0.65.2 The main result is that the cross-sectional wage variance always increases with

productivity. The distribution is strongly skewed to the right, as can be seen by the

relative proximity of the median (D5) with the 9th decile (D9).

2We burn 200 initial time periods to reach a stationary state.
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Figure 10: Wage Simulation - α = 0
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4 Worker heterogeneity

Suppose that there are M types of workers, and ℓm workers of each type (with
∑

m ℓm =

1). Each type is characterized by a time-invariant characteristic xm, m = 1, ..., M , with

xm < xm+1, such that the per-period output of a match (xm, yi) is Q(xm, yi) ≡ yi(m). We

assume that firms cannot direct their search to specific worker types. Let Si(m) denote

the corresponding surplus:

Si(m) = yi(m) − zi(m) +
1 − s

1 + r

∑

j

πijSj(m)+

with an obvious notation for zi(m) and where x+ = max(x, 0). After a productivity

shock from i to j all matches yielding negative surplus are destroyed. Similarly, the value

of uneployment is

Ui(m) = zi(m) +
1

1 + r

∑

j

πijUj(m).

Market tightness is still defined as θt = vt

ut+κ(1−s)(1−ut)
where

ut =
M
∑

m=1

ut(m)ℓm

is the aggregate unemployment rate, ut(m) denoting the fraction of unemployed within

group m of workers. We assume for simplicity the same κ and s for each group of workers.

Let i be the state at the begining of period t. The free entry condition becomes:

cvt = f(θt)
M
∑

m=1

ut(m)ℓmSi(m)+.

as only workers whose production generates a positive surplus can find a job. The law of

motion of individual-specific unemployment rates is

ut+1(m) = 1 − [(1 − s)(1 − ut(m)) + f(θt)ut(m)]1{Si(m) > 0}.
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Notice the disymmetry of match creation and match destruction. If Si(m) ≤ 0, all active

matches are destroyed. But if Si(m) > 0, only a fraction of unemployed workers fnd a

job by the end of the period.

4.1 Steady-state

If the economy remains in state i for ever, the unemployment rate in group m is

ui(m) =
s

s + fi

1{Si(m) > 0} + 1{Si(m) ≤ 0},

with fi ≡ f(θi). The aggregate unemployment rate is:

ui =

M
∑

m=1

ui(m)ℓm =
s

s + fi

Li + 1 − Li = 1 −
fi

s + fi

Li,

where Li =
∑M

m=1 ℓm1{Si(m) > 0} is the number of employable workers. Total search

effort becomes

ui + κ(1 − s)(1 − ui) =
s + [1 − Li + κ(1 − s)Li]fi

s + fi

The free entry condition finally takes the following form:

cθi = fi

M
∑

m=1

ui(m)ℓm

ui + κ(1 − s)(1 − ui)
Si(m)+

=
sfi

s + [1 − Li + κ(1 − s)Li]fi

Si

with Si =
∑M

m=1 ℓmSi(m)+ being the aggregate surplus value. Therefore, the exit rate

from unemployment is the following fixed point:

fi = f

(

sfi

s + [1 − Li + κ(1 − s)Li]fi

Si

c

)

.
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4.2 Wages

Assuming as previously that θt jumps to its steady-state value θi after a productivity

shock to i. Let Wi(w, m) denote the present value of a wage w in state i to a worker of

type m:.

Wi(w, m) − Ui(m) = w − zi(m) +
1 − s

1 + r

∑

j

πij1{Sj(m) > 0}

[

κf(θj)Sj(m)

[+[1 − κf(θj)](W
∗

j (w, m) − Uj(m))

]

with

W ∗

j (w, m) − Uj(m) = min{max{Wj(w, m) − Uj(m), 0}, Sj}.

Let wi(m) and



and

W k,i(m) − Si(m) = zi(m) − zk(m) +
1 − s

1 + r

∑

j

(πkj − πij)1{Sj(m) > 0}×

[

κf(θj)Sj(m) + [1 − κf(θj)]W
∗

j,i(m)

]

.

Having determined W k,i(m) and W k,i(m) for all k, i and m, wages then follow as

wi(m) = zi(m) −
1 − s

1 + r

∑

j

πij1{Sj(m) > 0}

(

κf(θj)Sj(m) + [1 − κf(θj)]W
∗

j,i(m)

)

and

wi(m) = Si(m)+zi(m)−
1 − s

1 + r

∑

j

πij1{Sj(m) > 0}

(

κf(θj)Sj(m)+[1−κf(θj)](W
∗

j,m(m)

)

.

4.3 Wage distribution

The support of the wage distribution is the union of all sets Ωm = {wi(m), wi(m), ∀i}.

Let gt(w|i, m) denote the measure of workers employed at wage w ∈ Ω at time t and

given that the state of the economy is i and the worker type is i.

Conditional on the state of the economy not changing between t and t + 1, the wage

distribution is updated as:

gt+1(wi(m)|i, m) = [(1 − s)[1 − kf(θi)]gt(wi(m)|i) + f(θi)ut(m)]1{Si(m) > 0],

gt+1(wi(m)|i, m) =

[

(1 − s)[1 − kf(θi)]gt(wi(m)|i, m)

+ (1 − s)kf(θi)(1 − ut(m))

]

1{Sj(m) > 0},
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and, for all w ∈ Ω\{wi(m), wi(m)},

gt+1(w|i, m) = (1 − s)[1 − kf(θi)]gt(w|i, m)1{Sj(m) > 0}.

If, however, the productivity state moves from i to j 6= i at the beginning of period

t, then,

gt+1(wj(m)|j, m) =

[

(1 − s)[1 − kf(θj)]
∑

w∈Ωm

1 {Wj(w, m) − Uj(m) ≤ 0} gt(w|i, m)

+ f(θj)ut(m)ℓm

]

1{Sj(m) > 0},

where Wj(w, m) − Uj(m) = W j,k(m) or W j,k(m) depending on whether w = wk(m) or

wk(m). Moreover,

gt+1(wj(m)|j) =

[

(1 − s)[1 − kf(θj)]
∑

w∈Ωm

1 {Wj(w, m) − Uj(m) ≥ Sj(m)} gt(w|i, m)

+ (1 − s)kf(θj)(1 − ut(m))ℓm

]

1{Sj(m) > 0},

and, for all w ∈ Ω\{wj(m), wj(m)},

gt+1(w|j) = (1 − s)[1 − kf(θj)]1 {0 < Wj(w, m) − Uj(m) < Sj} gt(w|i, m)1{Sj(m) > 0}.

4.4 Application

We specify a CES production function:

Q(xm, yi) = yi(m) =
(

x
σ−1

σ
m + y

σ−1
σ

i

)

σ
σ−1

.

Then,
∂2Q(x, y)

∂x∂y
=

1

σ
x

−1
σ

m y
−1
σ

i

(

x
σ−1

σ
m + y

σ−1
σ

i

)

2−σ
σ−1
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