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Abstract

We study a mixed hitting-time (MHT) model that specifies durations as the first

time a Lévy process— a continuous-time process with stationary and independent

increments— crosses a heterogeneous threshold. Such models are of substantial in-

terest because they can be reduced from optimal-stopping models with heterogeneous

agents that do not naturally produce a mixed proportional hazards (MPH) structure.

We show how strategies for analyzing the MPH model’s identifiability can be adapted

to prove identifiability of an MHT model with observed regressors and unobserved het-

erogeneity. We discuss inference from censored data and give some simple examples of

structural applications. We conclude by discussing the relative merits of the MHT and

MPH models as complementary frameworks for econometric duration analysis.
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1 Introduction

Mixed hitting-time (MHT) models are mixture duration models that specify durations as

the first time a latent stochastic process crosses a heterogeneous threshold. Such models

are of substantial interest because they can be reduced from optimal-stopping models with

heterogeneous agents that do not naturally lead to a Cox (1972)–Lancaster (1979) mixed

proportional hazards (MPH) structure. In this paper, we explore the empirical content of an

MHT model in which the latent process is a spectrally-negative Lévy process, a continuous-

time process with stationary and independent increments and no positive jumps, and the

threshold is proportional in the effects of observed regressors and unobserved heterogeneity.

We show that existing strategies for analyzing the identifiability of the MPH model can be

adapted to prove this model’s identifiability. In particular, we show that the latent Lévy

process, the regressor effect on the threshold, and the distribution of the unobserved hetero-

geneity in the threshold are uniquely determined by data on durations and regressors. Some

assumptions on the long-run behavior of the latent process are required for full identification.

Some conditions for identification that may or may not be satisfied in the analogous MPH

problem here follow from the Lévy structure and do not require additional assumptions.

Continuous-time models involving latent processes crossing thresholds are common in

econometrics. They arise naturally from economic models in which heterogeneous agents

choose optimally from a discrete set of alternatives (see Dixit and Pindyck, 1994; Kyprianou,

2006; Boyarchenko and Levendorskĭı, 2007; Stokey, 2009, for reviews). Jovanovic’s (1979;

1984) model of job tenure is an early example in labor economics and Alvarez and Shimer’s

(2007) model of search and rest unemployment is a recent one. In his classic text book on

econometric duration analysis, Lancaster (1990, Sections 3.4.2, 5.7 and 6.5) reviews a canoni-

cal special case of our model, a reduced-form marginal duration model that specifies durations

as the first-passage times of a Brownian motion with drift, and relates it to Jovanovic’s job
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tenure model. In Lancaster (1972), he applies this model to strike durations, interpreting

the gap between the Brownian motion and the threshold as the level of disagreement. Other

applications include marriage and divorce, firm entry and exit, and lumpy investment.

Statisticians have increasingly been studying continuous-time duration models based on

latent processes, including MHT models that are special cases of this paper’s model (e.g.

Singpurwalla, 1995; Aalen and Gjessing, 2001; Lee and Whitmore, 2004, 2006). This literature

is very informative on the descriptive implications of such models, but is silent about their

identifiability. Our contribution to both the econometrics and the statistics literatures is

a rigorous analysis of the empirical content of a nonparametric class of MHT models with

regressors.

Our analysis also complements the literature on discrete-time discrete choice models pio-

neered by Heckman (1981a,c). In particular, Heckman and Navarro (2007) discuss a general

discrete-time mixture duration model based on a latent process crossing thresholds (see Ab-

bring and Heckman, 2007, 2008, for reviews). They emphasize the distinction between this

model and a discrete-time MPH model and its extensions, and study its identifiability and

its relation to dynamic discrete choice. This paper complements theirs with an analysis in

continuous time. The continuous-time setting facilitates a different approach to the identi-

fication analysis and connects our work to the popular continuous-time MPH model and to

continuous-time economic models.

The paper is organized as follows. Section 2 introduces the MHT model. Section 3 de-

velops the paper’s main ideas for the well-understood, and therefore instructive, special case

in which the latent Lévy process is a Brownian motion with drift. In particular, the MHT

model structure is explored, and the key connection between the analysis of its empirical

content and the MPH identification literature is highlighted. Section 4 presents the general

MHT model’s implications for the data and the main identification results. Section 5 briefly
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discusses estimation from complete and censored data. Section 6 presents some simple ex-

amples of economic models that can be analyzed using the MHT model. Section 7 suggests

three extensions. Finally, Section 8 concludes with a discussion of the relative merits of the

MHT and MPH models as complementary frameworks for econometric duration analysis.

2 The Model

We model the distribution of a random duration T conditional on observed covariates X

by specifying T as the first time a real-valued Lévy process {Y } ≡ {Y (t); t ≥ 0} crosses a

threshold that depends on X and some unobservables V .

A Lévy process is the continuous-time equivalent of a random walk: It has stationary

and independent increments. Bertoin (1996) provides a comprehensive exposition of Lévy

processes and their analysis. Formally, we have

Definition 1. A Lévy process is a stochastic process {Y } such that the increment Y (t +

∆) − Y (t) is independent of {Y (τ); 0 ≤ τ ≤ t} and has the same distribution as Y (∆), for

every t,∆ ≥ 0.

We take {Y } to have right-continuous sample paths with left limits. Note that Definition 1

implies that Y (0) = 0 almost surely.

An important example of a Lévy process is the scalar Brownian motion with drift, in

which case Y (∆) is normally distributed with mean µ∆ and variance σ2∆, for some scalar

parameters µ ∈ R and σ ∈ [0,∞). Brownian motion is the single Lévy process with contin-

uous sample paths. In general, Lévy processes may have jumps. The jump process {∆Y }

of a Lévy process {Y } is a Poisson point process with characteristic measure Υ such that∫
min{1, x2}Υ(dx) <∞, and any Lévy process {Y } can be written as the sum of a Brownian

motion with drift and an independent pure-jump process with jumps governed by such a
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point process (Bertoin, 1996, Chapter I, Theorem 1). The characteristic measure of {Y }’s

jump process is called its L�evy measure and, together with the drift and variance parameters

of its Brownian motion component, fully characterizes {Y }’s distributional properties. Key

examples of pure-jump Lévy processes are compound Poisson processes, which have indepen-

dently and identically distributed jumps at Poisson times. In fact, in distribution, each Lévy

process can be approximated arbitrary closely by a sequence of compound Poisson processes

(Feller, 1971, Section IX.5, Theorem 2).

Let T (y) denote the first time that the Lévy process {Y } exceeds a threshold y ∈ [0,∞),

T (y) ≡ inf{t ≥ 0 : Y (t) > y}.

Here, we use the convention that inf ∅ ≡ ∞; that is, we set T (y) =∞ if {Y } never exceeds y.

For completeness, we set T (∞) =∞. The (proportional) mixed hitting-time (MHT) model

specifies that T is the first time that Y (t) crosses φ(X)V , or

T = T [φ(X)V ] , (1)

for some observed covariates X with support X ∈ Rk, measurable function φ : X 7→ (0,∞),

and nonnegative random variable V , with (X, V ) independent of {Y }.

The hitting times T (y) characterize durations for given thresholds y ∈ [0,∞), and thus

for given individual characteristics (X, V ). Their analysis is particularly straightforward in

the case that {Y } is spectrally negative. In this case, {Y } has no positive jumps; that is,

its Lévy measure Υ has negative support. Because {Y } is continuous from the right, this

implies that {Y } equals the threshold at each finite hitting time: Y [T (y)] = y if T (y) <∞.

In turn, this ensures that T (y) is easy to characterize in terms of the parameters of {Y } (see

Section 4.1). Throughout the paper’s remainder, we assume that {Y } is spectrally negative.
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Note that this includes Brownian motion with drift as a special case.

Variation in φ(X)V corresponds to heterogeneity in individual thresholds. The factor V

is an unobserved individual effect and is assumed to be distributed independently of X with

distribution G on [0,∞]. This explicitly allows for an unobserved subpopulation {V = ∞}

of stayers, on which T = T (∞) = ∞. In addition, there may be defecting movers: For

some specifications of {Y }, T = ∞ with positive probability on {V < ∞}. The distinction

between stayers and defective movers can be of substantial interest (see Abbring, 2002, for

discussion). We exclude the two trivial cases in which T =∞ almost surely, the case in which

the population consists of only stayers (Pr(V < ∞) = 0) and the case in which all movers

defect ({Y } is nonincreasing). Because {Y } has only negative shocks, the latter excludes

that both µ ≤ 0 and σ = 0.

For expositional convenience only, we assume that Pr(V = 0) = 0. The model allows for

an unobserved subpopulation {V = 0} of agents using a zero threshold. On this subpopu-

lation, T = T (0) = 0 almost surely, that is Pr(T = 0, V = 0) = Pr(V = 0), because {Y }

visits (0,∞) at arbitrarily small times almost surely (Bertoin, 1996, Chapter VII, Theorem

1). The case in which V , and therefore T , has a mass point at 0 may be of interest in

some applications, but even then data on immediate transitions may not be available. In

applications in which a mass point at 0 is relevant, our analysis under the assumption that

Pr(V = 0) = 0 can be applied to inference about the distribution of V |V > 0 and all other

model components. If data on immediate transitions are available, in addition Pr(V = 0) can

be identified by Pr(T = 0). Thus, our focus on the case in which Pr(V = 0) = 0 is without

loss of generality.

We could extend the model by also allowing for an observed subpopulation of stayers

by taking φ to be a function into (0,∞]. Because such a subpopulation can be trivially

identified from complete data, this extension is of little interest for the purpose of this paper.
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The same is true for an extension with a subpopulation with a zero threshold by including 0

in the range of φ.

We will pay some specific attention to a version of this model without regressors, that is

φ ≡ 1. Such a model can be applied to strata defined by the regressors, without restrictions

across the strata, and can thus be interpreted as a more general, nonproportional MHT

model.

Because the increments of the Lévy process are independent of its history, in particular

its initial condition, an equivalent model arises if we take the initial condition Y (0) to be

heterogeneous, say equal to −φ(X)V , and fix the threshold at a common value of zero.

Similarly, we can redistribute a linear drift µt from {Y } to the threshold without changing

the implications for T . So, we may alternatively interpret T as the first time Y (t)−µt crosses

the affine threshold φ(X)V − µt. In the Lévy-based MHT model, all that matters to the

specification of T is the first time that the distance φ(X)V −Y (t) between the latent process

and the threshold falls below zero. In different applications, different interpretations in terms

of heterogeneous initial conditions and heterogeneous and time-varying thresholds may be

appropriate.

3 Gaussian Example

We illustrate some of this paper’s key ideas with the canonical example in which {Y } is a

Brownian motion with upward drift. In this case, we can write

Y (t) = µt+ σW (t)

for some µ ∈ (0,∞) and σ ∈ [0,∞), with W (t) a standard Brownian motion, or Wiener

process, and W (0) = 0. Note that the Lévy measure Υ = 0 in this example. Recall from (1)
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that the MHT model specifies T as the first time {Y } crosses the heterogeneous threshold

φ(X)V . For expositional convenience, we assume, in this section only, that V < ∞ almost

surely. With µ > 0, T (y) <∞ for y ∈ [0,∞), and this ensures that T <∞ almost surely.

3.1 Characterization

Figure 1 plots two sample paths of {Y } for the case in which µ = σ = 1, with three possible

exit thresholds; 0.3, 0.8, and 1.3. For a given threshold y, the time that each path first crosses

that threshold is a realization of T (y).

If σ > 0, the distribution of T (y), y ∈ [0,∞), is inverse Gaussian with location parameter

y/µ and scale parameter (y/σ)2 (Cox and Miller, 1965). Its survival function is

F (t|y) ≡ Pr [T (y) > t]

= Φ

(
y − µt
σ
√
t

)
− exp

(
2µy

σ2

)
Φ

(
−y + µt

σ
√
t

)
,

(2)

and its Lebesgue density

f(t|y) =
y

σ
√

2πt3
exp

(
−(y − µt)2

2σ2t

)
. (3)

Here, Φ denotes the standard normal cumulative distribution function. In this case, con-

ditional on the observed regressors X only, the MHT model specifies T = T [φ(X)V ] as a

mixture of inverse Gaussian distributions. This is the duration model reviewed by Lancaster

(1990, Sections 4.2 and 5.7), extended with observed and unobserved heterogeneity in its

parameters.

In the polar case with σ = 0, we have that Y (t) = µt, and T (y) = µ−1y is a deterministic

linear function of the threshold y. Then, T = µ−1φ(X)V , and the MHT model reduces

to the accelerated failure time model for T |X: V takes the role of a “baseline” duration
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Figure 1: Two sample paths of Y (t) = t + W (t), three possible thresholds, and the corre-
sponding first hitting times.
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and 1.3, again for the case in which µ = 1 and σ = 1. The hazard paths have a hump-

shaped pattern: They start at 0, rise to a maximum that is attained between y2/(3σ2) =

y2/3 and 2y2/(3σ2) = 2y2/3, and then fall towards a limit µ2/(2σ2) = 1
2
. The hazard

rate corresponding to the lowest threshold (y = 0.3) is falling at most times, whereas that

corresponding to the highest threshold (y = 1.3) is increasing for nearly all plotted times.

Clearly, the hazard rates are not proportional; in this sense, the MHT model is substantially

different from the MPH model.

By mixing over thresholds, a wide variety of distributions of T |X can be generated. In the

polar case with σ = 0, for example, for given X each distribution of T can be generated by

picking the appropriate distribution G of V . Consequently, even in this special case in which

{Y } is degenerate upward drift, the model does not impose restrictions on the duration data

if no variation with the regressors X is available or used (that is, if φ = 1). It does however

restrict the effect of any regressors to rescaling T .

3.2 Identifiability

This takes us to the question whether the model’s structural determinants; µ, σ, φ, and G;

can be uniquely determined (“identified”) from large-sample data, the distribution of T |X.

The latter is uniquely characterized by its Laplace transform,

LT (s|X) ≡ E [exp (−sT ) |X] , s ∈ [0,∞).

In turns out to be particularly convenient, both in this Gaussian example and in the general

case, to study identification of the model’s determinants in terms of LT (·|X).

This requires that we express LT (·|X) in the model determinants µ, σ, φ, and G; and

check whether the latter are uniquely determined by LT (·|X). To this end, note that the
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(unconditional) Laplace transform of T (y) is given by

LT (y)(s) = exp [−yΛ(s)] , with Λ(s) ≡


√
�2+2�2s−�

�2 if σ > 0;

s/µ if σ = 0.
(4)

so that

LT (s|X, V ) = exp [−φ(X)V Λ(s)] .

Here, LT (y) and LT (·|X, V ) are defined analogously to LT (·|X). The Laplace transform of the

data; in terms of the model determinants µ, σ, φ, and G; follows by taking the expectation

of LT (·|X, V ) conditional on X:

LT (s|X) = LG [φ(X)Λ(s)] . (5)

Here, LG the Laplace transform of the distribution G of V .

One trivial identification problem requires our attention upfront. Take the time T im-

plied by (1) if {Y } is a Brownian motion with parameters µ and σ, for a threshold φ(X)V .

Clearly, the process {κνY }, a Brownian motion with parameters κνµ and κνσ, and threshold

(κφ(X))(νV ), with κ, ν ∈ (0,∞), produce the same time T and are observationally equiva-

lent, in terms of the distribution of T |X or, equivalently, its Laplace transform LT (·|X). Like

the latent error and index in static discrete-choice models, the latent process and threshold

in the MHT model are only identified up to scale. At best, we can hope for identifiability of

the distribution of {Y }, φ, and G up to two innocuous scale normalizations.

Key to this paper’s identifiability analysis is an analogy with the analysis of the MPH

model. To appreciate this, note that the right-hand side of (5) equals the survival function—

rather than the Laplace transform— of T |X in an MPH model with integrated baseline hazard
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Λ, regressor effect φ(X), and unobserved-heterogeneity distribution G. It is easily checked

that, in the MHT model, Λ is an increasing function such that lims→∞ Λ(s) = ∞ and that,

in this example, Λ(0) = 0. We can therefore borrow insights from the MPH identification

literature pioneered by Elbers and Ridder (1982), Heckman and Singer (1984a), and Ridder

(1990), exploiting the structure imposed by the MHT model on, in particular, Λ.

Consider the case that φ(X) = exp(X ′β) for some parameter vector β ∈ Rk. Note

that Λ is differentiable on (0,∞) and that 0 < lims↓0 Λ′(s) = µ−1 < ∞. Thus, Ridder

and Woutersen’s (2003) Proposition 1 implies that µ, σ, β, and G are uniquely determined

from LT (·|X) under support conditions on the regressors X and up to the two innocuous

scale normalizations discussed earlier. In the next section, we extend this result to general

spectrally-negative Lévy processes and general distributions G. Doing so, we rely on the key

insight that the representation (5) of the data in terms of the model primitives continues

to hold, but with a more general, semiparametric specification of Λ. We show that the

special structure of Λ facilitates sharper identification results than those available for the

MPH model.

Note that, even in the Gaussian special case, regressor variation is crucial to identifiability.

For example, take again the polar case with σ = 0. Suppose that φ = 1 and µ = 1, so that

T = V . Clearly, if V has an inverse Gaussian distribution with location parameter µ̃−1

and scale parameter σ̃−2, with µ̃, σ̃ ∈ (0,∞), then an alternative specification with a latent

process {Ỹ } such that Ỹ (t) = µ̃t+σ̃W (t) and a homogeneous unit threshold is observationally

equivalent.

Finally, the analogy between the MHT and the MPH models should not be mistaken for

a substantial similarity. In the MPH model, the (mixed) exponential form arises from the

exponential formula for the survival function. In the MHT model, it arises from the infinite

divisibility of the law characterizing the latent Lévy process, which, with the assumption
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that {Y } is spectrally negative, ensures that T (y) is infinitely divisible. ‘

4 Empirical Content

We now return to the general framework of Section 2. So, suppose that {Y } is a spectrally-

negative Lévy process, but not necessarily a Brownian motion, and that G is general, with

possibly Pr(V <∞) < 1.

4.1 Characterization

We first characterize the hitting-time process {T} ≡ {T (y); y ≥ 0} implied by {Y }. Its

distribution can be characterized in terms of its Laplace transform, which we now define as

LT (y)(s) ≡ E
[
exp [−sT (y)] · I [T (y) <∞]

]
, s ∈ [0,∞),

with I(·) = 1 if · is true, and 0 otherwise. The factor I [T (y) <∞] makes explicit the

possibility that the distribution of T (y) is defective. Note that the defect has mass 1 −

Pr [T (y) <∞] = 1− LT (y)(0).

Before we can derive LT (y), we first have to introduce a common probabilistic charac-

terization of the latent Lévy process. Recall from Section 2 that {Y } can be decomposed

in a Brownian motion with drift and an independent pure-jump process with jumps {∆Y }

following a Poisson point process. Therefore, {Y } is fully characterized by the drift and

dispersion coefficients µ and σ of its Brownian motion component and the characteristic

(Lévy) measure Υ of {∆Y }. The latter satisfies
∫

min{1, x2}Υ(dx) < ∞ and, because we

exclude positive jumps, has negative support. It follows (Bertoin, 1996, Section VII.1) that

E [exp (sY (t))] = exp [ψ(s)t], for s ∈ C : <(s) ≥ 0, with the Laplace exponent ψ given by the
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Lévy-Khintchine formula,

ψ(s) = µs+
σ2

2
s2 +

∫
(−∞;0)

[esx − 1− sxI(x > −1)] Υ(dx). (6)

The Laplace exponent, as a function on [0,∞), is continuous and convex, and satisfies

ψ(0) = 0 and lims→∞ ψ(s) = ∞. Therefore, there exists a largest solution Λ(0) ≥ 0 to

ψ(Λ(0)) = 0 and an inverse Λ : [0,∞) → [Λ(0),∞) of the restriction of ψ to [Λ(0),∞).

Theorem 1 of Bertoin (1996, Chapter VII) implies that

LT (y)(s) = exp [−Λ(s)y] . (7)

In fact, {T} is a killed subordinator with Laplace exponent Λ. That is, it is a nondecreasing

Lévy process with Laplace exponent Λ−Λ(0), forced to equal ∞ (the graveyard state) from

some random threshold level EΛ(0) up if Λ(0) > 0. Here, EΛ(0) has an exponential distribu-

tion with parameter Λ(0), and is independent from ({Y }, X, V ). Note that the probability

Pr(EΛ(0) ≤ y) = 1 − exp [−Λ(0)y] that {T} has been killed at or below threshold level y

equals the share 1 − LT (y)(0) of defecting movers at threshold level y. The fact that {T} is

a killed subordinator will allow us to draw from the extensive literature on subordinators in

the next section’s analysis of identifiability.

If, for example, {Y } is a Brownian motion with general drift coefficient µ ∈ R and disper-

sion coefficient σ ∈ (0,∞), we have that ψ(s) = µs+σ2s2/2, so that Λ(0) = min{0,−2µ/σ2}

and Λ(s) =
[√

µ2 + 2σ2s− µ
]
/σ2. If µ ≥ 0, then Λ(0) = 0, T (y) is nondefective, and sub-

stituting in (7) gives the Laplace transform (4) of Section 3’s Gaussian example. If µ < 0,

on the other hand, Λ(0) = −2µ/σ2 > 0 and the distribution of T (y) has a defect of size

1− exp(2yµ/σ2). Note that in this case, σ = 0 is excluded to avoid the trivial outcome that

T (y) = ∞ almost surely. Either way, {T} is an inverse-Gaussian subordinator, killed at an
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independent exponential rate Λ(0) if Λ(0) > 0.

Now define LT (·|X, V ) and LT (·|X) analogously to LT (y). From (1) and (7), it follows

that

LT (s|X, V ) = exp [−Λ(s)φ(X)V ] , (8)

so that

LT (s|X) = LG [Λ(s)φ(X)] , (9)

where LG is again the Laplace transform of the unobservable’s distribution G. Note that

this expression for the Laplace transform of T |X is the same as that for Section 3’s Gaussian

example in (5). However, in the general case here, we do not require that Λ has equation (4)’s

inverse Gaussian two-parameter specification. Instead, we have semiparametrically specified

Λ as the inverse of the latent process’s Laplace exponent ψ in (6). This way, we now also

allow for defecting movers, if Λ(0) > 0. Moreover, there can be a mass of stayers, if G has a

mass point at ∞.

4.2 Identifiability

The distribution of T |X implied by the MHT model only depends on its primitives (µ, σ2,Υ)

and (φ,G) through the triplet (Λ, φ,LG). In this section, we study the fundamental question

under what conditions the model triplet (Λ, φ,LG) can be uniquely determined from a “large”

data set that gives the distribution of T |X.

Because there is a one-to-one relation between (Λ, φ,LG) and the MHT model’s primitives,

the identification analysis applies without change to these primitives. In particular, G can

be uniquely determined from LG by the uniqueness of the Laplace transform (Feller, 1971,
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Section XIII.1, Theorem 1). The Laplace exponent ψ of {Y } is uniquely determined from Λ

by inversion and, if Λ(0) > 0, analytic extension from [Λ(0),∞) to [0,∞). Subsequently, the

parameters (µ, σ2,Υ) of the latent Lévy process can be uniquely determined from ψ by the

uniqueness of the Lévy-Khintchine representation (Bertoin, 1996, Chapter I, Theorem 1).

We focus on the “two-sample” case that X = {0, 1} and φ(x) = βx, for some β ∈ (0,∞).

This assumes minimal regressor variation and thus poses the hardest identification problem

(Elbers and Ridder, 1982, use a similar approach in their analysis of the MPH model). We

assume that β 6= 1, so that there is actual variation with the regressors. This assumption

can be tested, because F0 6= F1 if and only if β 6= 1. Note that we have also fixed φ(0) = 1,

which is an innocuous normalization because the scale of V is unrestricted at this point.

Denote the distribution of T |X = x by Fx. We have the following result on the identifia-

bility of (Λ, β,LG) from (F0, F1).

Proposition 1 (Identifiability of the MHT Model). If two MHT triplets (Λ, β,LG) and

(Λ̃, β̃, L̃G) imply the same pair of distributions (F0, F1), then

β̃ = β�,

Λ̃ = κΛ�, and

L̃G(κs�) = LG(s) for all s ∈ [0,∞),

for some κ ∈ (0,∞) and ρ ∈ [1/2, 2].

Proposition 1 establishes identification up to a power transformation, indexed by ρ, and an

innocuous normalization, indexed by κ. Its proof, given in the Appendix, exploits an anal-

ogy with the analysis of the two-sample MPH model. Recall that the right-hand side of (5)

equals the survival function— rather than the Laplace transform— of T |X in a two-sample

MPH model with integrated baseline Λ, regressor effect βX , and unobserved-heterogeneity

16



distribution G. We can therefore follow a strategy of proof pioneered by Elbers and Ridder

(1982) and Ridder (1990). Doing so, we need to address the fact that defective duration

distributions naturally arise in the context of an MHT model. Proposition 1 explicitly enter-

tains the possibilities that there are stayers and defecting movers. The latter, a defect in the

distribution of T |(X, V ), arises if Λ(0) > 0 and creates an identification problem similar to a

left-censoring problem in the MPH model. To solve it, we use the analyticity of the Laplace

transform.

Proposition 1 implies that LG(0) = L̃G(0) for any two observationally equivalent MHT

triplets (Λ, β,LG) and (Λ̃, β̃, L̃G). Because Pr(V < ∞|X) = Pr(V < ∞) = LG(0), Pr(T =

∞, V <∞|X) = LT (0|X)− LG(0), and LT (0|X) is data, this gives

Corollary 1 (Identifiability of the Mover-Stayer Structure). The conditional proba-

bilities Pr(V = ∞|X = x) of stayers and Pr(T = ∞, V < ∞|X = x) of defecting movers,

x = 0, 1, are uniquely determined by (F0, F1).

Intuitively, the two types of defect can be distinguished because the share of defecting movers,

if positive, varies between the two samples and, by the assumed independence of V and X,

the share of stayers does not. Abbring (2002) proves a similar result for the MPH model,

but relying on an additional assumption on G.

The observational equivalence characterized by Proposition 1 can be given an appealing

stochastic interpretation. The factor κ simply corresponds to a common rescaling of the

threshold and latent process. For expositional clarity, we set κ = 1, and focus on the inter-

pretation of ρ. Without loss of generality, let ρ ∈ [1/2, 1). Let {S�} be a stable subordinator

of index ρ; that is, {S�} is an increasing Lévy process such that S�(y) has Laplace transform

E [exp(−sS�(y))] = exp (−sy�) (Bertoin, 1996, Section 3.1). Then, if {T} is the hitting-time

process characterized by Λ, the process {T [S�(y)] ; y ≥ 0}, has Laplace exponent Λ̃ (Feller,

1971, Section XVII.4(e)). Consequently, for each given threshold level y, Λ̃(y) corresponds
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to a positive-stable mixture T [S�(y)] over {T}. Thus, we can interpret (Λ̃, β̃, L̃G) as re-

assigning some of the threshold heterogeneity in (Λ, β,LG) to the individual hitting time

process. Indeed, |β̃ − 1| = |β� − 1| < |β − 1|, so that there is less observed variation in the

thresholds between the two samples. There are also various ways in which we can interpret

G̃ as specifying less unobserved heterogeneity than G. Suppose, for example, that G̃ is an

infinitely-divisible distribution, such as the inverse-Gaussian, Gamma, compound-Poisson, or

positive-stable distributions. Then, G exhibits more variation than G̃ in the sense that it is

the distribution of Ṽ S�, where Ṽ has distribution G̃, and S� is an independent positive-stable

random variable of index ρ (Feller, 1971, Section XVII.4(e)).

The restriction of ρ to [1/2, 2] in Proposition 1 relies on the special structure of Λ. Suppose

that Λ corresponds to the hitting-time process of a spectrally negative Lévy processes with

Laplace exponent ψ. On the one hand, recall from the discussion of the Lévy-Khintchine

formula (6) that ψ is convex and ψ(s) → ∞ as s → ∞. On the other hand, Bertoin

(1996, Chapter I, Proposition 2) shows that the behavior of ψ at infinity is dominated by the

quadratic term, σ2s2/2. Now suppose that Λ̃ = κΛ� characterizes the hitting-time process of

a latent process with Laplace exponent ψ̃. From the fact that Λ and Λ̃ are the inverses of ψ

and ψ̃, respectively, it follows that ψ̃(s) = ψ
[
(s/κ)1=�

]
. Because ψ̃ should at least be of linear

order and at most of quadratic order at ∞, just like ψ, it is necessary that 1/2 ≤ ρ ≤ 2.

Note that Λ� is a (possibly killed) subordinator if Λ is a subordinator, for all ρ ∈ (0, 1),

and not just for ρ ∈ [1/2, 1]. Thus, the requirement that Λ corresponds to the hitting-time

process of a spectrally-negative Lévy process imposes structure beyond requiring that Λ is the

Laplace exponent of a (killed) subordinator. On the one hand, this suggests that any strategy

for point identification of Λ that does not exploit this structure, such as the application of

Proposition 2, provides overidentifying restrictions that can be used in testing the MHT

structure. On the other hand, when estimating the MHT model, it is more convenient to
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parameterize the model in terms of ψ, rather than specifying Λ directly. We will come back

to this in Section 5.

Identification of the power transformation ρ requires further assumptions on either LG

or Λ. In their pioneering work on the MPH model, Elbers and Ridder (1982) have proved

identifiability of the two-sample MPH model, up to scale, under the assumption that the un-

observed factor has a finite mean. Within the context of an MPH model, this is an arbitrary

normalization with substantive meaning (Ridder, 1990). In some cases, the corresponding

assumption on the MHT model, E[V I(V < ∞)] < ∞, may follow naturally from optimal

stopping models in which threshold heterogeneity is reduced from primitive unobserved het-

erogeneity (see Section 6). In other cases, it will be a similarly arbitrary normalization. It

yields identification, up to scale and without conditions on Λ, because two Laplace trans-

forms L̃G and LG such that L̃G(s) = LG((s/c)1=�) for all s ∈ [0,∞) can only both correspond

to positive random variables V with E[V I(V < ∞)] < ∞ if ρ = 1 (Ridder, 1990). We

summarize in

Proposition 2 (Identifiability of the MHT Model Under a Finite-Mean Assump-

tion on G). Suppose that E[V I(V <∞)] <∞. If two MHT triplets (Λ, β,LG) and (Λ̃, β̃, L̃G)

imply the same pair of distributions (F0, F1), then β̃ = β, Λ̃ = κΛ, and L̃G(κs) = LG(s) for

all s ∈ [0,∞), for some κ ∈ (0,∞).

In cases in which there is no substantial justification for a finite-mean assumption, the

special structure of Λ offers a more attractive approach to point identification in the MHT

model. In particular, note that lims↓0 Λ′(s) > 0. So, we can achieve identification for the

(identified) case without defecting movers by requiring that lims↓0 Λ′(s) <∞: If Λ(0) = 0 and

0 < lims↓0 Λ′(s) < ∞, then 0 < lims↓0 dΛ(s)�/ds < ∞ if and only if ρ = 1. The assumption

that lims↓0 Λ′(s) < ∞ is equivalent to the assumption that {Y } does not oscillate, that

is that it either drifts to ∞; that is, limt→∞ Y (t) = ∞ almost surely; or to −∞; that is,

19



limt→∞ Y (t) = −∞ almost surely (see Bertoin, 1996, Chapter VII, Corollary 2). An example

of a Lévy process that oscillates is the (driftless) Wiener process {W}. For the case with

defecting movers, that is Λ(0) > 0, a similar argument can be developed. The latent process

always drifts to −∞ in this case, but we need the additional assumption that E[Y (1)] > −∞

(note that we also have that E[Y (1)] < ∞ by the assumption that {Y } has no positive

jumps). This involves some analysis of the Laplace exponent ψ underlying Λ. We relegate

this analysis to the Appendix, where we prove

Proposition 3 (Identifiability of the MHT Model Based on Conditions on {Y }).

Assume that {Y } does not oscillate and that E[Y (1)] > −∞. If two MHT triplets (Λ, β,LG)

and (Λ̃, β̃, L̃G) imply the same pair of distributions (F0, F1), then β̃ = β, Λ̃ = κΛ, and

L̃G(κs) = LG(s) for all s ∈ [0,∞), for some κ ∈ (0,∞).

We pin down the power transformation ρ in Proposition 1 by restricting the class of inverse

Laplace exponents so that it is not closed under power transformation. In their analysis of

the semiparametric identifiability of the MPH model, Ridder and Woutersen (2003) use an

analogous assumption on the baseline hazard. Unlike their assumption for the MPH model,

however, ours can be related to more primitive assumptions, on the latent stochastic process

{Y }. In particular, lims↓0 Λ′(s) > 0 follows without further assumptions on the MHT model;

Ridder and Woutersen’s analogous condition on the baseline hazard in the MPH model is an

arbitrary restriction on this hazard’s behavior near time 0.

Next, we revisit Section 3’s Gaussian example Y (t) = µt + σW (t), but with µ ∈ R,

σ ∈ [0,∞), σ ∈ (0,∞) if µ ≤ 0 (to avoid the trivial case in which {Y } is nonincreasing), and

general G. In this case,

Λ(s) =


√
�2+2�2s−�

�2 if σ > 0 and

s/µ if σ = 0,
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so that we have

Corollary 2 (Identifiability of the Gaussian MHT Model). If two Gaussian MHT

triplets (Λ, β,LG) and (Λ̃, β̃, L̃G) imply the same pair of distributions (F0, F1), then either

one of the following is true:

(i). β̃ = β, Λ̃ = κΛ, and L̃G(s) = LG(κs) for all s ∈ [0,∞), for some κ ∈ (0,∞);

(ii). β̃ = β2 and, for all s ∈ [0,∞). Λ̃(s) = κΛ(s)2 = νs and L̃G(κs2) = LG(s), for some

κ, ν ∈ (0,∞); or

(iii). β̃ = β1=2 and, for all s ∈ [0,∞), Λ̃(s) = κΛ(s)1=2 = ν
√
s and L̃G(κs1=2) = LG(s), for

some κ, ν ∈ (0,∞).

Thus, if two Gaussian MHT triplets are observationally equivalent, then they are either the

same, up to an innocuous scale normalization, or one triplet corresponds to a degenerate

upward drift and the other to a driftless nondegenerate Brownian motion. Note that iden-

tification was ensured in Section 3’s example by excluding the latter specification. More

generally, identification, up to scale, can be achieved by either requiring a nondegenerate

latent process (σ > 0) or drift (µ 6= 0).

Finally, it is important to note that the analogy with the MPH literature stretches beyond

the set of basic results exploited so far. For example, consider the case in which we have

multiple-spell data. In particular, suppose that we have stratified data, with one shared value

of V and observations on two durations, T1 and T2, in each stratum. The two durations may

concern a single agent’s consecutive spells, or the single spells of two agents who are known to

have the same value of V . Formally, suppose we observe the joint distribution of (T1, T2); for

now, suppress covariates X. Let T1 = inf{t ≥ 0 : Y1(t) > V } and T2 = inf{t ≥ 0 : Y2(t) > V },

with {Y1} and {Y2} independent spectrally-negative Lévy processes; and V a nonnegative

random variable, distributed independently from ({Y1}, {Y2}) with distribution G. Denote
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the Laplace exponent of the hitting-time process corresponding to {Yk} with Λk; k = 1, 2.

Then, analogously to Section 4.1’s analysis for the single-spell case, it can be shown that

LT1;T2(s2, s2) ≡ E [I(T1 <∞, T2 <∞) exp (−s1T1 − s2T2)] = LG [Λ1(s1) + Λ2(s2)] .

A similar expression again appears in the MPH literature, for the joint survival function of

(T1, T2). Honoré’s (1993) Theorem 1 for the MPH model translates directly into

Proposition 4 (Identifiability of the MHT Model from Stratified Data). If two two-

spell MHT triplets (Λ1,Λ2,LG) and (Λ̃1, Λ̃2, L̃G) imply the same joint distribution of (T1, T2),

then Λ̃1 = κΛ1, Λ̃2 = κΛ2, and L̃G(κs) = LG(s) for all s ∈ [0,∞), for some κ ∈ (0,∞).

Note that this identification result for multiple-spell data, unlike Propositions 2 and 3 for

the single-spell case, does not require additional assumptions on Λ or G. Moreover, it does

not rely on external variation with covariates X. Consequently, Proposition 4 also provides

identification in a model extended with covariates X that interact in an unrestricted way

with {Y1}, {Y2}, and V .

4.3 Censoring

The identification analysis so far assumes that the distribution of T |X is known. In practice,

duration data are often censored. With independent censoring (Andersen et al., 1993, Section

II.1), the distribution of T |X is identified, provided that obvious support conditions are met.

In that case, this paper’s identification results carry over to censored data without change.

A common example is right-censoring at times C that are independent of T given X, and

that have unbounded support.

The identification analysis does not immediately carry over to censoring mechanisms

that obstruct the identification of the distribution of T |X. However, the specific structure
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implied by the Lévy assumption suggests that identifiability may continue to hold under

similar conditions with independent right-censoring, subject to some support qualifications.

For example, take the case that Y (t) = t and β = 1, so that T = V . From complete data

on the marginal distribution F of T , G = F is trivially identified. Now, suppose that all

durations are censored at some fixed C ∈ (0,∞), so that only the restriction of F to [0, C] is

known. Then, only the restriction of G to [0, C] is identified.

5 Estimation

So far, we have ignored sampling variation. This section briefly discusses estimation of

the MHT model, based on its characterization in Section 4.1, and standard likelihood and

moment methods. Abbring and Salimans (2009) provide a full development of the estimators,

their distributional properties, and their computation. They also develop and illustrate their

implementation in Matlab/KNITRO.

Let Λ, φ andG be specified up to a finite vector of unknown parameters α ∈ A. We assume

that this parameterization is one-to-one, so that α is uniquely determined by (Λ, φ,LG). In

the two-sample specification φ(X) = βX , it is sufficient that X = {0, 1}. More generally,

if we have multivariate and continuous regressors, we can specify φ(X) = exp(X ′β). Then,

we require the “rank condition” that the support X of X contains a nonempty open set in

RK . Note that this excludes an intercept from ln [φ(X)] = X ′β, and thus embodies a scale

normalization on φ similar to that in the two-sample specification.

Suppose that we have a complete random sample ((T1, X1), . . . , (TN , XN)) from the “true”

distribution of (T,X), which corresponds to the distribution of T |X induced by the paramet-

ric MHT model with “true” parameter vector α0 ∈ A, and some marginal distribution of X.

Our objective is to estimate the parameters α0 of the distribution T |X. The marginal dis-
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tribution of X is taken to be ancillary, so that we can ignore it and focus on the distribution

of T |X in our pursuit of an efficient estimator of α0.

5.1 Maximum Likelihood

First, consider Section 3’s Gaussian special case: {Y } is a Brownian motion with drift µ > 0,

so that, by the analysis in the previous section, T |X has a mixed (nondefective) inverse

Gaussian distribution. Assume that φ(X) is nondegenerate; that is, the threshold varies

with the observed covariates. Then, Corollary 2 ensures that α0 is uniquely determined from

the distribution of T |X, provided that we impose scale normalizations on two of the three

functions Λ, φ, and LG. In this case, we can normalize φ as discussed before, and add a

normalization on Λ such as µ = 1. Alternatively, we may drop one of these normalizations

and fix a scale parameter of LG.

In this special case, it is very easy to estimate α0 by maximum likelihood. A condi-

tional likelihood LN(α) of (T1, . . . , TN)|(X1, . . . , XN) can be constructed using the explicit

expression for the density of T (y) in (3): LN(α) =
∏N

i=1

∫
f [Ti|φ(Xi)v] dG(v). Here, the

dependence of f (through µ and σ), φ, and G (or LG) on the parameter vector α is kept

implicit. Under standard regularity conditions, the maximizer of LN(α) is a consistent and

asymptotically normal estimator of α0. It is also efficient under the assumption that the

marginal distribution of X carries no information on α0.

A finitely discrete specification of G is popular in duration analysis because of its versatil-

ity and computational convenience, and appears in Heckman and Singer’s (1984b) influential

work on semiparametric estimation of the MPH model. Alternatively, a gamma specification

of G combines naturally with the MHT model’s mixture-of-exponentials specification of LT |X

(Abbring and Van den Berg, 2007).

The Gaussian special case can be estimated by maximum likelihood because it comes
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with explicit expressions for the density and survival function of T |X. This feature it shares

with many of the models studied in the statistics literature (Lee and Whitmore, 2006). In

the general Lévy case, however, such expressions are not available, and maximum likelihood

cannot be directly implemented. In these cases, a generalized method-of-moments (GMM)

estimator can be based on the Laplace transform characterization of the distribution of T |X

in (9).

5.2 Generalized Method of Moments

The expression (9) of the Laplace transform of T |X in terms of the model’s primitives provides

a continuum of conditional moment conditions, one for each point s at which the Laplace

transform can be evaluated. Abbring and Salimans (2009) develop a GMM estimator based

on these moment conditions.

Define h(t, x; s, α) ≡ exp(−st)− LG [Λ(s)φ(x)]. Recall that α0 denotes the “true param-

eter”, the parameter that gives the data generating process. Then, it follows from (9) that

E[h(T,X; s, α0)|X] = 0 for all s ∈ (0,∞). In our estimation procedure, we will specify an

(M × 1)-vector Z of instruments, and use the unconditional moment conditions

E[h(T,X; s, α0)Z] = 0, s ∈ (0,∞). (10)

The canonical example takes M = K + 1 and Z ′ = [1 X ′], which gives K + 1 unconditional

moment conditions, E[h(T,X; s, α0)] = 0 and E[h(T,X; s, α0)X] = 0, for each s. We assume

that the set of moment conditions (10) uniquely determines α0.

We first construct a consistent GMM estimator with naive weighting of the moments.

This estimator is easy to compute; it can serve as the first step in a more efficient two-step

estimator, and may be of interest in its own right. Denote the empirical analog to the moment
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vector in the left-hand side of (10) with

hN(s, α) ≡ N−1

N∑
i=1

h(Ti, Xi; s, α)Zi. (11)

We define a feasible (one-step) GMM estimator α̂N of α0 as the value of α that minimizes

the quadratic GMM objective function

HN(α;WN , w) ≡
∫ ∞

0

hN(s, α)′QNhN(s, α)WN(ds).

Here, QN is a positive-definite M ×M random matrix that converges in probability to a

positive-definite fixed matrix Q. For given s, the matrix QN weights the various moments

corresponding to the M instruments, with weights independent of s. Examples include the

M ×M identity matrix and
(
N−1

∑N
i=1 ZiZ

′
i

)−1

. The function WN is a random probabil-

ity measure that converges to a nonrandom measure W . It weights the various moment

conditions corresponding to the evaluation points s of the Laplace transform, identically

across the instruments in Zi. It could be finitely discrete, and selecting only a finite num-

ber of Laplace evaluation points, or absolutely continuous. Examples of the latter include

WN(s) = exp(−ζNs) for either a fixed or a random (data-dependent) positive ζN .

The analysis of Carrasco and Florens (2000) can be adapted to prove that, under ap-

propriate regularity conditions, α̂N is
√
N -consistent and asymptotically normal. Moreover,

Carrasco and Florens’s (2002) method for efficient estimation based on empirical characteris-

tic functions can be adapted to produce an GMM estimator of the MHT model that efficiently

weights across evaluation points of LT |X , for given finite instrument vector Z. This estimator

is a two-step estimator that uses α̂N as a first-stage estimator.
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5.3 Censoring

Section 5.1’s maximum likelihood estimator for the Gaussian special case can be straight-

forwardly applied to independently censored data. For example, an observation i that is

independently right-censored at Ti would contribute a factor
∫
F [Ti|φ(Xi)v] dG(v) to the

likelihood, which can be easily computed using the explicit expression (2) for F .

The generalization of the GMM estimators to independently censored data is not covered

by Abbring and Salimans (2009), but feasible. In the two-sample case; or more generally, in

the case that the support X of X is finite; the GMM estimator can be readily adapted to

allow for independent censoring, by nonparametrically correcting the empirical moments in

(11) for censoring. To this end, first estimate the distribution of T in each sample using the

Nelson-Aalen estimator or, in special cases, the Kaplan-Meier estimator (see e.g. Andersen

et al., 1993, Section IV.1). Then, compute the empirical analogue of the moment condition

(10) using these nonparametric estimators of the distribution of T ; instead of the empirical

distribution function, as in (11). Provided that the censoring mechanism is such that the

distribution of T is identified in each sample, its nonparametric estimator is consistent and

asymptotically Gaussian, and the properties of the censoring-corrected GMM estimator can

be derived in a standard manner.

In the case that φ(X) = exp(X ′β), with X general, we cannot rely on repeated application

of the Nelson-Aalen estimator to each sample. Instead, we need a semiparametric estimator

of the distribution of T |X to compute the empirical analogue of the moment condition (10).

6 Structural Examples

The MHT model can be applied to the empirical analysis of heterogeneous agents’ opti-

mal stopping decisions. Dixit and Pindyck (1994) and Stokey (2009) analyze and review
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various models based on Brownian motions and their applications. Kyprianou (2006) and

Boyarchenko and Levendorskĭı (2007) review recent extensions to general Lévy processes.

This section presents some simple examples of such models. With payoffs that are mono-

tonic in a Lévy state variable, threshold rules routinely arise. We primarily focus on the

way primitive heterogeneity generates heterogeneous threshold rules, and how this squares

with the MHT model. We first study the optimal timing of an irreversible investment. This

well-studied problem— it is closely related to the analysis of American options in finance—

is a good vehicle to introduce the relation between optimal stopping models and the MHT

framework. We then study two simple models of optimal transitions between unemployment

and employment. By not only modeling the transitions out of the state of interest, but also

the transitions into it, we specify the initial conditions for the analysis of durations in the

state. This fixes some unwanted free parameters, and conveniently structures the dependence

of the threshold rules on primitive heterogeneity.

6.1 Investment Timing

McDonald and Siegel (1986) study the optimal timing of an investment in an irreversible

project of which the log value follows a Brownian motion. Their paper is an early and influ-

ential example of the large “real options” literature that applies insights from the literature

on pricing financial derivatives— in this case, a perpetual American call option— to real in-

vestments (Dixit and Pindyck, 1994). Here, we discuss an extension due to Mordecki (2002),

in which log project values follow a Lévy process.

Consider an agent with the option of investing an amount K > 0 in a project at a

nonnegative time of his choice. If the agent invests at time t, the project returns a gross

payoff of U(t) ≡ U0 exp [Y (t)] to the agent, where U0 > 0 is the project’s initial value.

Mordecki allows {Y } to be a general Lévy process; we continue to assume it is spectrally

28



negative. Recall that this includes the Brownian motion case originally studied by McDonald

and Siegel. The agent chooses a random investment time T that maximizes expected net

payoffs, discounted at a rate R,

vM(T ) ≡ E
[
exp(−RT ) (U(T )−K)+

]
,

where (·)+ ≡ max{0, ·} and the dependence of vM(T ) on (K,U0, R) is kept implicit. The

agent’s choice is restricted to investment times T that are feasible given the information

available to the agent, which, at time t, we take to be {Y (τ); 0 ≤ τ ≤ t}, K, U0, and

R. Formally, if {F} is the filtration generated by these variables, then {T ≤ t} should be

adapted to {F}.

Suppose that R > ln E [exp(Y (1)] = ψ(1), so that Λ(R) > 1. For example, in the

Brownian motion case, this requires that R > µ + σ2/2. Denote Y (t) ≡ sup�∈[0;t] Y (t). Let

ER be an independent exponential time with parameter R. Then, because {Y } is spectrally

negative, Y (ER) has an exponential distribution with parameter Λ(R) (Bertoin, 1996, Section

VII.1). Using this, Theorem 1 in Mordecki (2002) implies that the agent will invest if {Y }

crosses

y = ln

[
K

U0

Λ(R)

Λ(R)− 1

]
+

, (12)

where we again keep the dependence of y on (K,U0, R) implicit.

A closely-related class of models, due to Novikov and Shiryaev (2005), alternatively spec-

ifies the payoffs to T as

vn(T ) ≡ E
[
exp(−RT ) (U0 + Y (T )−K)n+

]
, n ∈ Z+.
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Here, we can interpret U0 + Y (t) as a project’s value at time t, with K again the investment

cost. Theorem 2 in Kyprianou and Surya (2005) gives optimal investment thresholds for all

n ∈ Z+. Again applying the simplifications brought by the absence of positive shocks, these

thresholds reduce to

y
1

=

[
K − U0 +

1

Λ(R)

]
+

and y
2

=

[
K − U0 +

2

Λ(R)

]
+

,

for n = 1 and n = 2, respectively.

In both specifications, primitive heterogeneity in investment costs K, initial project values

U0, and discount rates R generates heterogeneity in the investment thresholds. Suppose that

we have data on investment times T and covariates X, and that (K,U0, R) is fully determined

by X and an unobserved heterogeneity factor V . Then, we can apply any of Propositions

1–3 if we assume that the threshold is proportional in the effects of X and of V .

Without further data or assumptions on the model’s primitives, such a direct assumption

on the reduced-form dependence of the threshold on X and V needs be made; log-linearity is

a natural first choice. Typically, this implies that the primitive heterogeneity in (K,U0, R) de-

pends on the parameters of Λ, which is unattractive. For example, in Novikov and Shiryaev’s

specification, with n = 1 and U0 = K, we get y
1

= φ(X)V if R = Λ−1
[
{φ(X)V }−1]. Note

though that, following the discussion at the end of Section 4.2, we can invoke alternative

identification results, yielding identification of more attractive specifications, if we impose

more structure or use more information. For example, if data stratified on V are available,

with multiple durations per stratum, Proposition 4 can be applied to establish identification

of a model in which X enters in an unrestricted way. This accommodates any specification

of the primitive dependence of (K,U0, R) on X and V .

Either way, under an appropriate set of identifying assumptions, we can separately mea-

sure agent-level investment value dynamics, coded into Λ, and investment threshold het-
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erogeneity. This provides an empirical distinction of state dependence and heterogeneity in

the timing of investment that is consistent with theory. The results can further be used to

explore the primitives underlying the investment decision rule. Obviously, without further

information on these primitives, or strong assumptions, they can typically not be fully iden-

tified. For example, in Novikov and Shiryaev’s specification with U0 = K and heterogeneous

R, the cases with linear and quadratric utility give different estimates of the distribution of

R, even if the distribution of the threshold and Λ are known. Nevertheless, the MHT iden-

tification results provide a useful first stage for exploring second-stage identification of the

deeper parameters, and their implications. For example, in Novikov and Shiryaev’s example

with U0 = K and n = 1, the investment option’s value is v1[T (y
1
)] = exp(−1)y

1
. Thus, from

the MHT analysis, not only the distribution of R, but also the distribution of option values

is identified up to scale if we assume linear utility.

From an empirical perspective, one unattractive feature of this section’s models is that

they take the project’s initial value U0 and the investment size K as primitives. In theory, one

would expect these quantities to depend on the way agents ended up with their investment

option to begin with. This is an instance of the initial-conditions problem studied by Heckman

(1981b). In the next section, we address this issue by explicitly modeling entry into the state

of interest along with exit from this state.

6.2 Unemployment Durations and Heterogeneous Entry and Exit

Costs

Consider a labor market in which workers continuously choose between unemployment and

employment. A worker earns a flow B when unemployed, and

U(t) ≡ U0 exp [µt+ σW (t)]
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when employed. Note that U(t) is a geometric Brownian motion with drift, and that

E[U(t)] = U0 exp [(µ+ σ2/2)t]. Workers incur a lump-sum cost K ≥ 0 when they leave their

job; and pay K ≥ 0 when they enter a job. They maximize expected earnings, discounted at

a rate R > µ+ σ2/2.

This setup is equivalent to Dixit’s (1989) model of firm entry and exit, and has many

alternative applications, for example to marriage and divorce. From Dixit’s analysis, it

follows that an unemployed worker enters employment when U(t) increases above U , and

resigns when U(t) falls below U ; where U = U if K = K = 0, and U > U otherwise.

The MHT model can be applied to an inflow sample of unemployment durations. Nor-

malize the start time of each unemployment spell in the sample to 0. Then, unemployed start

the sampled unemployment spell with earnings U(0) = U , and end their unemployment spell

when earnings hit the exit threshold U ≥ U . Define Y (t) ≡ lnU(t) − lnU , and note that

Y (t) is a Brownian motion with drift term µt. Then, we can equivalently say that workers

initially have normalized log earnings Y (0) = 0, and leave for employment when {Y } hits

y ≡ Y ≡ lnU − lnU . From Dixit’s (1989) analysis it follows that y varies on [0,∞) with

observed and unobserved determinants of K and K.

Interestingly, if K <∞, then y <∞ even if K →∞. This provides an example of a case

in which unrestricted primitive heterogeneity leads to bounded threshold heterogeneity. In

this case, threshold heterogeneity has a finite mean, E[V ] < ∞, and Proposition 2 provides

point identification.

6.3 Job Separations and Heterogeneous Search

In Dixit’s (1989) model, transaction costs are modeled as lump-sum entry and exit costs.

Alternatively, we may assume that workers face heterogeneous search frictions when they

leave employment.
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Again consider a labor market in which workers are either employed or unemployed.

Unemployed search sequentially for jobs, earning a flow utility B. For simplicity, assume

that they encounter jobs at an exogenous Poisson rate A. Moreover, suppose that all jobs

are identical, yielding utility U(t) ≡ U0 exp [−αY (t)] at job tenure t, with {Y } a Lévy process,

U0 > 0, and α > 0; and that B ≤ U0, so that workers accept the first job they encounter.

Finally, suppose that {Y } is a compound Poisson process with negative jumps and positive

drift. In particular, let Y (t) = µt + ∆Y (t), with µ > 0 and ∆Y (t) shocks that arrive at

a Poisson rate λ > 0 and have an independent exponential distribution on (−∞, 0) with

parameter ω > 0.

The expected discounted utility when unemployed is time-invariant; denote it with W .

The value of employment in state Y satisfies the Bellman equation

(R + λ) v(Y ) = U0 exp (−αY ) + λ

∫ ∞
0

v(Y − e)ω exp(−ωe)de+ µv′(Y ).

We now assume that ω > α, and that R > λα/(ω−α)−µα. From a standard analysis; using

a no-bubble condition, value matching (v(y) = W ), and smooth pasting (limy↑y v
′(y) = 0);

we can solve for v and y given W :

v(Y ) = γ exp(−αY ) + δ(W ) exp(τY ) and y = (τ + α)−1 ln

(
αγ

δ(W )τ

)
,

where γ > 0 and τ > 0 are parameters depending only on model primitives. The parameter

δ(W ) depends on the endogenous value W of unemployment, which is given by

W =
B + AV (0)

A+R
=
B + A [γ + δ(W )]

A+R
.

It can be shown that that a unique solution (V,W, y) exists; such that |V (0) −W | and y
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decrease with A, and |V (0)−W | → 0 and y → 0 as A → ∞. As A → 0, W → B/R and y

may either diverge to ∞ or converge to a finite limit.

Heterogeneity in A generates heterogeneity in the job separation threshold y. As before,

under assumptions that ensure that y = φ(X)V , the MHT model can be applied to employ-

ment duration data to learn about job separations. The fact that y is, under some conditions,

bounded may be exploited to justify the assumption that E[V ] < ∞, so that Proposition 2

can be applied.

As in Section 6.1, deeper parameters can possibly be identified if more data are available.

In particular, note that the model specifies that unemployment durations conditional on A are

exponential, so that the distribution of A is identified from a random sample of unemployment

durations by the uniqueness of the Laplace transform (Feller, 1971, Section XIII.1, Theorem

1).

A similar analysis can be developed for the case that {Y } is a Brownian motion with

drift, along the lines of Stokey (2009, Section 6.4). In fact, the results extend to more

general Lévy processes (Boyarchenko and Levendorskĭı, 2007, Chapter 11). Here, we have

focused on the compound Poisson case to connect to the search-matching literature in labor

economics, which often relies on Poisson processes. Mortensen and Pissarides’s (1994) model

with endogenous job separations, for example, assumes that new match-specific productivity

values are drawn independently from a fixed distribution at Poisson times. This specification

is typical of the way much of the search literature models transitions, and ensures a stationary

environment in which agents only leave their jobs at the time of a shock, if that shock brings

a sufficiently low payoff to employment. It directly implies a separation hazard, which is the

product of the arrival rate of new productivity draws times the time-invariant probability

that such a draw is below the separation threshold.

This can be contrasted with the specification studied here, which involves persistent
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idiosyncratic shocks that improve the payoffs in employment, combined with a common

continuous drift towards separation. Because shocks can only improve payoffs to employment,

separations do not take place at Poisson times, and a hazard specification is not directly

implied. Because shocks are persistent, the model implies that individual workers, with

given thresholds, have time-varying rates of leaving their jobs.

7 Extensions

This section suggests three extensions that are important, but beyond the scope of this paper.

7.1 Time-Varying Covariates

Following most of the duration-model identification literature, we have ignored time-varying

covariates. Time-varying covariates can be introduced in the MHT model as determinants of

a time-varying threshold. However, both the characterization of the corresponding hitting-

time process, and its structural interpretation as a reduced form of an optimal stopping

model are hard. This suggests that we alternatively treat time-varying covariates as noisy

measurements of the latent state process, as in Abbring and Campbell’s (2005) discrete-time

model of industry dynamics. This complicates the analysis with a filtering problem, but

respects much of the current model’s structure.

It is well known that time variation in observed covariates can be exploited to relax

some of the more controversial identifying assumptions for the MPH model, such as Elbers

and Ridder’s (1982) finite-mean assumption (see e.g. Heckman and Taber, 1994). From

this perspective, the case of time-invariant regressors, and in fact a single binary one, can

be seen as informing us what can be learned with minimal regressor variation. Additional

time-variation in the regressors can only aid identification, as with the MPH model.
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7.2 Nonstationary Increments

Aalen and Gjessing (2001) show that hitting-time models based on Brownian motions exhibit

quasi-stationarity: The distribution of Y (t)|T ≥ t converges to a gamma distribution and

hazard rates corresponding to different thresholds converge to a common limit as time t

increases. Similar results hold for more general models. This both suggests that the MHT

model may be too restrictive in some applications and that models with richer time effects

may be identifiable. One such model specifies T ≡ ξ(U), for an increasing time transformation

ξ : [0,∞] 7→ [0,∞] and the distribution of U |X given by the MHT model. If ξ is linear, this

simply gives the MHT model for T |X; any nonlinearities correspond to additional duration

dependence.

One structural source of nonstationarity that may be captured this way is Bayesian learn-

ing, as in Jovanovic’s (1979; 1984) model of job tenure. Lancaster (1990, Section 6.5) suggests

that we approximate job tenure T predicted by Jovanovic’s theory by ξ(U), with

ξ(u) ≡


�2u

1−�u if u ∈ [0, η−1) and

∞ if u ∈ [η−1,∞].

Here, U the first time a Brownian motion crosses a threshold that decreases linearly from a

positive initial value, which is equivalent to the first time a Brownian motion with upward

drift crosses a positive threshold. The probability Pr(U ≥ η−1) equals the defect Pr(T =∞)

that arises because some agents will eventually learn that they are in a good match and

never leave it. We can extend this framework to include observed and unobserved covariates

by replacing the marginal specification of U by a Gaussian MHT model for the distribution

of U |X. The resulting model is a simple, one-parameter extension of the MHT model that

allows for nonstationary increments.
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7.3 Generalized Ornstein-Uhlenbeck Processes

Lévy processes are a key component in many process-based duration models in econometrics

and statistics. Another frequent choice is the Ornstein-Uhlenbeck process (e.g. Aalen and

Gjessing, 2004). This process allows for mean reversion and may be more appropriate in

some applications. A specification for {Y } that includes both as special cases is the Ornstein-

Uhlenbeck process driven by a Lévy process. Such a process satisfies

dY (t) = −%Y (t)dt+ dZ(t),

with % ∈ [0,∞) and {Z} a Lévy process. The usual Ornstein-Uhlenbeck process arises if {Z}

is a Brownian motion and % > 0. We explicitly include the boundary case % = 0, in which

{Y } is a Lévy process. The Laplace transform of the distribution of T |X in a MHT model

generalized this way can be derived from Novikov (2004), who provides explicit expressions

for the Laplace transform of the hitting-time distribution of an Ornstein-Uhlenbeck process

driven by a spectrally-negative Lévy process. However, even though the generalized model

adds only one parameter, %, Novikov’s results suggest that an analysis of its identifiability

requires more than just a simple variation of the present paper’s analysis.

8 Conclusion

This paper’s main contribution is to provide fundamental insight in the empirical content

of a framework for econometric duration analysis, the MHT model, that is connected to

an important class of dynamic economic models with heterogeneous agents. It does so by

highlighting and exploiting an analogy with the identification analysis of the MPH model,

thus extending the relevance of the MPH literature to a much wider class of models.
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The MHT model studied in this paper complements the MPH model; it by no means

substitutes for it. The MPH model is arguably the most popular framework for econometric

duration analysis (Van den Berg, 2001). In labor economics, it is most often justified as the

reduced form of a job-search model. However, proportionality of the hazard rate between

a duration factor on the one hand and heterogeneity factors on the other hand is hard to

generate from nonstationary search models; for all we know, very special assumptions on

agents’ expectations and functional forms are needed (Van den Berg, 2001). Our analysis

does not seek to resolve this issue; it rather offers a candidate reduced form for a class of

dynamic economic models that is distinct from the search models usually associated with the

MPH model. The MHT model’s convenient proportional structure arises from assumptions

on its primitives, notably the Lévy assumption on the latent process, and may be easier to

defend in applications.

The MHT model is also a rich descriptive framework, which imposes restrictions only on

the variation of durations with the regressors, not on marginal duration distributions. It

includes the accelerated failure time model as a special case, and interprets this as a polar

specification in which all variation in duration outcomes is due to ex ante heterogeneity. More

generally, the Lévy structure on the latent process to great extent fixes agent-level time effects;

heterogeneity is key to generating rich observed dynamics. We have discussed extensions of

the framework that allow for more direct control of agent-level time effects, as through the

baseline hazard in the MPH model. Justifying such time effects from dynamic economic

theory will, however, not be any easier than justifying the MPH model’s proportional time

effects.
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Appendix

Proof of Proposition 1. Denote Lx(·) ≡ LT (·|X = x) and note that L0 and L1 are uniquely

determined by F0 and F1. Without loss of generality, let β < 1.

First, note that observational equivalence implies that

LG ◦ (βL−1
G ) = L1 ◦ (L−1

0 ) = L̃G ◦ (β̃L̃G
−1

)

on (0,L0(0)]. Without loss of generality, let LG(0) ≤ L̃G(0). Because L0(0) > 0 and

LG ◦ (βL−1
G ) and L̃G ◦ (β̃L̃G

−1
) are analytic on (0,LG(0)) (Kortram et al., 1995), this equality

extends to (0,LG(0)). Iterating n times, this implies that

LG ◦ (βnL−1
G ) = L̃G ◦ (β̃nL̃G

−1
)

on (0,LG(0)). With K ≡ L̃G
−1
◦ LG, this gives K(βns) = β̃nK(s) and therefore

K ′(s)

K(s)
=

K ′(βns)

K(βns)/βn

for s ∈ (0,∞) and n ∈ N. This implies that K ′(s)/K(s) = ρ/s for some ρ ∈ (0,∞), so that

K(s) = κs� and LG(s) = L̃G (κs�), for some κ ∈ (0,∞). With observational equivalence, in

particular LG ◦ Λ = L̃G ◦ Λ̃, this implies that Λ̃ = κΛ�. And, with LG ◦ (βΛ) = L̃G ◦ (β̃Λ̃),

this implies β̃ = β�.

Finally, let ψ and ψ̃ be the Laplace exponents of the latent processes corresponding to

Λ and Λ̃ respectively. Then, both ψ and ψ̃ should satisfy the Lévy-Khintchine formula

(6). Because ψ is convex and ψ(s) → ∞ as s → ∞ (Bertoin, 1996, Chapter VII, Section

1), s−1ψ(s) either converges to a strictly positive constant or diverges to ∞ as s → ∞.

Moreover, s−2ψ(s) → σ2/2 < ∞ (Bertoin, 1996, Chapter I, Proposition 2). Obviously, the
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same asymptotic behavior is displayed by ψ̃. From ψ [Λ(s)] = s = ψ̃
[
Λ̃(s)

]
, s ∈ [0,∞), it

follows that ψ̃(s) = ψ
[
(s/κ)1=�

]
. Therefore, if ρ > 2, then

lim
s→∞

s−1ψ̃(s) = lim
s→∞

(s/κ)−�ψ(s) = 0.

Consequently, ρ ≤ 2 and, by symmetry, ρ ≥ 1/2.

Proof of Proposition 3. Let (Λ, β,LG) and (Λ̃, β̃, L̃G) be any two observationally-equivalent

MHT triplets. Without loss of generality, let Λ(0) ≥ Λ̃(0). Let ψ : [0,∞) → R and

ψ̃ : [0,∞) → R be the Laplace exponents corresponding to both MHT triplets. Note that

ψ = Λ−1 and ψ̃ = Λ̃−1 on [Λ(0),∞). By Proposition 1, we have that Λ̃ = κΛ�, so that

ψ̃(s) = ψ(κ−1=�s1=�), s ∈ [Λ(0),∞).

Because ψ̃ and s 7→ ψ(κ−1=�s1=�) are analytic on (0,∞) and Λ(0) <∞, this equality extends

to (0,∞). The assumptions that {Y } does not oscillate and E[Y (1)] > −∞ imply that

0 < lims↓0 |ψ′(s)| <∞ and 0 < lims↓0 |ψ̃′(s)| <∞. Because

lim
s↓0
|ψ̃′(s)| = ρ−1κ−1=� lim

s↓0
s(1−�)=�|ψ′(κ−1=�s1=�)|,

these bounds only hold jointly if ρ = 1.
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Honoré, B. E. (1993). Identification results for duration models with multiple spells. Review

of Economic Studies 60, 241–246. 22

Jovanovic, B. (1979). Job matching and the theory of turnover. Journal of Political Econ-

omy 87, 972–990. 1, 36

Jovanovic, B. (1984). Matching, turnover, and unemployment. Journal of Political Econ-

omy 92, 108–122. 1, 36

Kortram, R., A. Lenstra, G. Ridder, and A. van Rooij (1995). Constructive identification of

the mixed proportional hazards model. Statistica Neerlandica 49, 269–281. 39

Kyprianou, A. E. (2006). Introductionary Lectures on Fluctuations of L�evy Processes with

Applications. Berlin: Springer-Verlag. 1, 28

Kyprianou, A. E. and B. A. Surya (2005). On the Novikov-Shiryaev optimal stopping prob-

lems in continuous time. Electronic Communications in Probability 10, 146–154. 30

Lancaster, T. (1972). A stochastic model for the duration of a strike. Journal of the Royal

Statistical Society Series A 135 (2), 257–271. 2

Lancaster, T. (1979). Econometric methods for the duration of unemployment. Economet-

rica 47, 939–956. 1

Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge: Cambridge

University Press. 1, 7, 36

44



Lee, M.-L. T. and G. A. Whitmore (2004). First hitting time models for lifetime data. In

N. Balakrishnan and C. Rao (Eds.), Handbook of Statistics, Volume 23, Chapter 30, pp.

537–543. Amsterdam: Elsevier. 2

Lee, M.-L. T. and G. A. Whitmore (2006). Threshold regression for survival analysis: Mod-

eling event times by a stochastic process reaching a boundary. Statistical Science 21 (4),

501–513. 2, 25

McDonald, R. and D. Siegel (1986). The value of waiting to invest. Quarterly Journal of

Economics 101 (4), 707–728. 28, 29

Meyer, B. (1990). Unemployment insurance and unemployment spells. Econometrica 58,

757–782. 9

Moffitt, R. and W. Nicholson (1982). The effect of unemployment insurance on unemploy-

ment: The case of federal supplemental benefits. Review of Economics and Statistics 64 (1),

1–11. 9

Mordecki, E. (2002). Optimal stopping and perpetual options for Lévy processes. Finance
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