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1 Introduction

We propose a new way to characterize risk price dynamics. In the methods of mathematical

finance, risk prices are encoded using the familiar risk neutral transformation and the in-

stantaneous risk-free rate. In structural models of macroeconomic risk, they are encoded in

the stochastic discount factor process used to represent prices at alternative payoff horizons.

As an alternative, we depict asset pricing dynamics by extending two types of methods:

local risk prices and impulse response functions. Local risk prices give the reward expressed

in terms of expected returns for alternative local exposures to risk such as shocks to the

macro-economy. Impulse response functions characterize how shocks today contribute to

future values of a stochastic process such as macroeconomic growth or future cash flows.

First we develop a related concept but tailored to the pricing of the exposure to macroeco-

nomic risk, and then we extend the concept of a local risk price by asking how the reward to

shock exposure changes as we alter the terminal or maturity date for the payoff. This leads

us to construct shock-exposure and shock-price elasticities as functions of payoff horizons.

Structural asset pricing models feature state dependence in risk premia as well as sensitivity

to the payoff horizon. These risk premia depend on shock exposures and prices, and the

elasticities we propose reflect both dependencies.

We believe that uncertainty about macroeconomic growth has important welfare impli-

cations and major consequences to market valuations of forward-looking assets. To explore

these phenomena requires the simultaneous study of stochastic growth and discounting, in

contrast to the extensive literature on fixed income securities and the term structure of in-

terest rates that abstracts from growth. Previous work has sought to provide informative

characterizations of risk premia for cash flows that grow stochastically over time and to

extract the distinct contributions of risk exposure (the asset pricing counterpart to a quan-

tity) and risk prices. See, for instance, Lettau and Wachter (2007), Hansen and Scheinkman

(2009a,b) and Hansen (2009).

While there have been quantitative and empirical successes through the use of ad hoc

models of stochastic discount factors specified flexibly to enforce the absence of arbitrage,

we continue to be interested in structural models that allow us to truly answer the question

“how does risk or uncertainty get priced?” The promise of such models is that they will allow

researchers to assign values to the shocks identified in macroeconomic models and support

welfare analyses that are linked to uncertainty. While reduced-form models continue to

provide a convenient shortcut for presenting empirical evidence, we aim to provide a dynamic

characterization of risk pricing that will support structural investigations that stretch models

beyond the support of the existing data.

The methods we develop are applicable to models with small shocks, increments to Brow-
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nian motions, as well as large shocks, jumps with Poisson arrivals. We illustrate our approach

with a series of examples. For lognormal models we derive shock exposure elasticities which

coincide with impulse response functions familiar from the VAR literature. In more com-

plicated models, our methodology allows us to characterize nonlinearities in the dynamics

of asset prices. We contrast the habit formation models of Campbell and Cochrane (1999)

and Santos and Veronesi (2008), and we document important differences in the risk price

elasticities across investment horizons. We also derive elasticities for a model with recursive

utility in the spirit of Hansen et al. (2008), and for a model with jump risk where the state

variable evolves as a finite state Markov chain.

2 Markov pricing with Brownian information struc-

tures

We follow the construction in Hansen and Scheinkman (2009a,b) and Hansen (2009). Con-

sider a Markov diffusion that solves:

dXt = µ(Xt)dt+ σ(Xt)dWt.

where W is a multivariate standard Brownian motion. In this model nonlinearity is captured

by the specification of µ and σ. While the state variable X may well be stationary, we will

use it as a building block for processes that grow or decay over time.

2.1 Growth and discounting

In econometric practice we often build models for the logarithms of processes. An example

of such a model is

At =

∫ t

0

β(Xu)du+

∫ t

0

α(Xu) · dWu.

We call the resulting process, denoted by A, an additive functional because it depends

entirely on the underlying Markov process and it is constructed by integrating over the time

scale. Nonlinearity may be present in the specification of β and α.

While it is convenient to take logarithms when building time series models, to represent

values and prices it is necessary to study levels instead of logarithms. Thus to represent

growth or decay, we use the exponential of an additive functional, Mt = exp(At). We will

refer to M as a multiplicative functional parameterized by (β, α). Ito’s Lemma guarantees
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that the local mean of M is

Mt

[

β(Xt) +
|α(Xt)|2

2

]

.

The multiplicative functional is a local martingale if its local mean is zero:

β(Xt) +
|α(Xt)|2

2
= 0.

There are two types of multiplicative functionals that we feature: we use one to represent

stochastic growth and another for decay. For future reference, let G be a stochastic growth

functional parameterized by (βg, αg). The second will be a stochastic discount functional S

parameterized by (βs, αs). The stochastic growth functional grows exponentially over time

and the stochastic discount functional decays exponentially.

2.2 Perturbations

To compute elasticities we construct perturbations to multiplicative functionals. A per-

turbation to M is MH(r) where we parameterize H(r) using a pair (βh(x, r), rαd(x)) with

βh(x, 0) = 0. The function αd defines the direction of risk exposure. Thus

logHt(r) =

∫ t

0

βh(Xu, r)du+ r

∫ t

0

αd(Xu) · dWu.

As r declines to zero, the perturbed process MH(r) collapses to M. Let

βd(x) =
d

dr
βh(x, r)

∣

∣

∣

∣

r=0

and consider the additive functional:

Dt =

∫ t

0

βd(Xu)du+

∫ t

0

αd(Xu) · dWu.



require two steps. First we build a factorization of the multiplicative functional, and then we

construct a nonlinear moving-average representation for a particular function of the Markov

state.

3 Factorization

We obtain an alternative and convenient representation of (1) by applying a change of

measure as in Hansen and Scheinkman (2009a). They provide sufficient conditions for the

existence of a factorization of a multiplicative process M :

Mt = exp(ηt)M̂t
e(X0)

e(Xt)
(2)

where M̂ is a multiplicative martingale and e is a strictly positive, smooth function of the

Markov state. The parameter η is a long-term growth or decay rate. We use the martingale

M̂ to define a new probability measure ·̂ on the original probability space. The multiplicative

property of M̂ insures that X remains Markovian in the new probability space. While this

factorization may not be unique, there is only one such factorization in which the change in

measure imposes stochastic stability and preserves the Markov structure.

This factorization is distinct from that of Ito and Watanabe (1965). The Ito and Watan-

abe (1965) factorization for a multiplicative supermartingale results in the product of a local

martingale and decreasing functional. This factorization delivers the Markov counterpart to

the risk neutral transformation used extensively in mathematical finance when it is applied

to a stochastic discount factor functional. In this case the decreasing functional Md is

Md
t = exp

[

−
∫ t

0

ρ(Xu)du

]

where ρ is the instantaneous interest rate. State dependence in the decreasing component

makes it less valuable as a device to characterize risk price dynamics because even locally

deterministic variation in instantaneous interest rates induces risk adjustments for cash flows

over finite time intervals. This leads us instead to extract a long-term growth or discount

rate η as in (2).

If M is parameterized by (βm, αm), Girsanov’s Theorem assures that the increment dWt

can be written as:

dWt = [αm(Xt) + ν(Xt)] dt+ dŴt. (3)
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Here ν is the exposure of log e(x) to dWt:

ν = σ′
[

∂ log e

∂x

]

(4)

and Ŵ is a Brownian motion under the alternative probability measure ·̂.
To use this factorization in practice, we must compute e and η. Hansen and Scheinkman

(2009a) show how to accomplish this. Solve

E [Mte(Xt)| X0 = x] = exp(ηt)e(x)

for any t where e is strictly positive. This is a (principal) eigenfunction problem, and since

it holds for any t, it can be localized by computing

lim
t→0

E [Mte(Xt)| X0 = x] − exp(ηt)e(x)

t
= 0 (5)

which gives an equation in e and η to be solved. The local counterpart to this equation is

Be = ηe (6)

where

Be(x) =
d

dt
E [Mte(Xt)| X0 = x]

∣

∣

∣

∣

t=0

It can be shown that for a diffusion model, if f is smooth,

Bf =

(

βm +
1

2
|αm|2

)

f + (σαm + µ) · ∂f
∂x

+
1

2
trace

(

σσ′ ∂
2f

∂x∂x′

)

We illustrate this computation in two examples that we develop throughout the text into

stylized economic models. The first example features lognormal dynamics commonly used

in VAR analysis. The second example specifies a state variable that forms the basis of the

consumption externality model of Santos and Veronesi (2008).

Example 3.1. Suppose that

dXt = µ̄Xtdt+ σ̄dWt,

where µ̄ and σ̄ are matrices of size n×n and n×k, respectively. The multiplicative functional

M is parameterized by

βm(x) = β̄ ′
mx

αm(x) = ᾱm.
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Conjecturing that the function e(x) satisfies log e(x) = λ′x, equation (6) yields:

η = β̄ ′
mx+ λ′µ̄x+

1

2
|σ̄′λ+ ᾱm|2 .

Thus λ = −(µ̄′)−1β̄m. Under the change of measure,

dXt = µ̄Xtdt+ σ̄(ᾱm + σ̄′λ)dt+ σ̄dŴt.

2

Consider now the second example. In this example the process for X is a member of Wong

(1964)’s class of scalar Markov diffusions built to imply stationary densities that are in the

Pearson family.1

Example 3.2. Let the univariate Markov state X evolve as:

dXt = − µ̄1(Xt − µ̄2)dt− σ̄XtdWt, Xt > 0

where µ̄1, µ̄2, and σ̄ are positive constants.

Rather than specifying the multiplicative functional M and then calculating the factoriza-

tion, we construct the multiplicative components directly as

Mt =exp (ηt) M̂t

(

1 +Xt

1 +X0

)

M̂t =exp

[

−1

2
(α̂m)2t+ α̂m(Wt −W0)

]

where α̂m is a constant.

Then formula (3) implies that the evolution of X under the change of measure is given

by

dXt = − [σ̄α̂mXt + µ̄1(Xt − µ̄2)] dt− σ̄XtdŴt,

and the risk exposure for logM is

αm(x) = α̂m − σ̄
x

1 + x
.

By construction, the eigenfunction is e(x) = (1 + x)−1 with eigenvalue η. 2

1See process F in Wong (1964).
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We use the alternative probability measure to absorb the martingale component of the

multiplicative functional in our formula (2). The derivative of interest is:

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
Ê [ê(Xt)Dt|X0 = x]

Ê [ê(Xt)|X0 = x]

where ê = 1
e
. Moreover,

Dt =

∫ t

0

βd(Xu)du+

∫ t

0

αd(Xu) · [αm(Xu) + ν(Xu)]du+

∫ t

0

αd(Xu) · dŴu.

For our analysis, we will seek a related representation without resort to stochastic inte-

grals. Prior to achieving this, we will present a nonlinear moving-average representation for

ê(X).

4 Nonlinear moving-average representation

We build a nonlinear moving-average representation for a particular function of the Markov

state. This formula can be viewed as a special case of the Haussmann-Clark-Ocone formula

that holds under additional smoothness conditions. For example see Haussmann (1979). Let

Tτ denote the conditional expectation operator under the change in probability measure over

an interval of time τ . The process {Tt−uê(Xu) : 0 ≤ u ≤ t} is a martingale since

Tt−uê(Xu) = Ê [ê(Xt)|Fu]

where Fu is the σ-algebra generated by the Brownian motion until date u. This martingale

can be represented as a stochastic integral against the Brownian motion, and, in particular,

there exists an adapted process R such that:

ê(Xt) =

∫ t

0

Ru · dŴu + Ttê(X0). (7)

The following assumption and our Markov specification allows us to characterize Ru.

Assumption 4.1. Tt−uê(x) has a continuous second derivative with respect to x and a

continuous first derivative with respect to u.

It is an immediate application of Ito’s lemma that in this case,

Ru = σ(Xu)
′
[

∂

∂x
Tt−uê(Xu)

]

.
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This construction motivates a definition of a nonlinear version of an impulse response func-

tion as

σ(x)′
[

∂

∂x
Ttê(x)

]

,

the response of ê(Xt) to a shock dŴ0.
2

Recall that e (and hence ê) is strictly positive, and construct

φ(x, t) = σ(x)′
[

∂

∂x
log Ttê(x)

]

=
σ(x)′

[

∂
∂x

Ttê(x)
]

Ttê(x)
.

Note in particular that

ν(x) = −φ(x, 0)

where ν is given by (4). With this construction, we may represent (7) equivalently as:

ê(Xt) =

∫ t

0

[Tt−uê(Xu)]φ(Xu, t− u) · dŴu + Ttê(X0). (8)

The function φ will play a central role in our representation of elasticities.

4.1 Examples

We now apply these calculations and compute the impulse response of ê(x) for the lognormal

example introduced earlier.

Example 4.2. Consider again Example 3.1. Recall ê(x) = exp (−λ′x) for λ = −(µ̄′)−1β̄m,

and conjecture that

Ttê(x) = exp [a0(t) + a1(t)
′x] .

2The existing econometrics literature contains many definitions of nonlinear impulse response functions.
Koop et al. (1996) and Potter (2000) examine four definitions used with linear series and assess the merits
of the nonlinear analogue of each. They work in discrete time and argue that the most sensible definition is
one motivated by the linear updating function used for linear series. In the Markov case their construction
is based on

Tt−ǫê(Xǫ) − Ttê(X0)

over a prediction interval ǫ. In our continuous time limit, this increment becomes:

[

∂

∂x
Ttê(X0)

]′

σ(X0)dŴ0

where we take the vector multiplying the shock dŴ0 as the state-dependent impulse response.
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Under this conjecture, a0(0) = 0, a1(0) = −λ, and

d

dt
Ttê(x) = exp [a0(t) + a1(t)

′x]

[

da0(t)

dt
+

(

da1(t)

dt

)′

x

]

. (9)

Alternatively, from Ito’s Lemma the drift of Ttê(x) is given by:

d

dt
Ttê(x) = exp [a0(t) + a1(t)

′x]

[

a1(t)
′µ̄x+ a1(t)

′σ̄(ᾱm + σ̄′λ) +
1

2
a1(t)

′σ̄σ̄′a1(t)

]

(10)

Equating (9) and (10) gives

a1(t) = − exp(µ̄′t)λ

a0(t) =

∫ t

0

{

1

2
λ′ exp(µ̄u)σ̄σ̄′ exp(µ̄′u)λ− λ′ exp(µ̄t)σ̄(ᾱm + σ̄′λ)

}

du

Thus,

φ(x, u) = σ̄′ exp(µ̄′u)(µ̄′)−1β̄m

since the nonlinear moving-average coefficient for ê(x) is:

Ttê(x)φ(x, t) = exp [a0(t) + a1(t)
′x] σ̄′ exp(µ̄′t)(µ̄′)−1β̄m.

2

To further illustrate these methods, let us develop Example 3.2.

Example 4.3. For notational simplicity rewrite the evolution of X under the change of

measure as

dXt = − µ̂1 (Xt − µ̂2) dt− σ̄XtdŴt.

µ̂1 =µ̄1 + σ̄α̂m

µ̂2 =
µ̄1µ̄2

µ̂1

Use the distorted evolution equation and expression for ê(x) to calculate

Tuê(x) = 1 + µ̂2 + exp(−µ̂1u)(x− µ̂2).

As a consequence,

φ(x, u) = − σ̄ exp(−µ̂1u)

1 + µ̂2 + exp(−µ̂1u)(x− µ̂2)
x (11)
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Figure 1: Plot of φ(x, t) in Example 4.3 at the 25th, 50th, and 75th quantile values of x. The
parameterization is µ̄1 = 0.04, µ̄2 = 2.28, σ̄ = 0.6853, γ̄ = 0.0054.

Thus, the nonlinear moving-average representation for ê(x) is

ê(Xt) =

∫ t

0

Tt−uê(Xu)φ(Xu, t− u)dŴu + 1 + µ̂2 + exp(−µ̂1t)(X0 − µ̂2)

= −
∫ t

0

exp [−µ̂1(t− u)] σ̄XudŴu + 1 + µ̂2 + exp(−µ̂1t)(X0 − µ̂2)

Notice that unlike in the lognormal model of Example 3.1, the function φ is state-dependent.

Figure 1 displays the function at each quartile of the stationary distribution for X, with

parameterization given in the figure.

2

4.2 Malliavin derivative

There is an alternative way to construct the nonlinear moving-average representation that

is both more general and of interest in its own right. This construction is based on the

Malliavin derivative, which we develop in this subsection. It is not necessary to understand

this section in order to follow the remainder of our paper. We include this discussion because

Malliavin differentiation is prevalent in mathematical finance.
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Consider the following perturbations to the Brownian motion between date zero and

date t. Let q be a function in Ln
2 [0, t] that is,

∫ t

0

|q(v)|2dv <∞.

The perturbed process is:

Ŵu + rQu, 0 ≤ u ≤ t

where Qu =
∫ u

0
q(v)dv,



of the matrix σ. Then, for u ≤ t, the n× n matrix

DuXt = YtY
−1
u σ(Xu). (14)

In addition, if ê has bounded first derivatives, then Φ is in the domain of the Malliavin

derivative and

DuΦ = ∇ê(Xt)
′DuXt. (15)

where ∇ is used to denote the gradient. The Haussmann-Clark-Ocone formula provides a

representation of the integrator R in equation (7) in terms of a Malliavin derivative:4

Ru = Ê
[

DuΦ(Ŵ )|Fu

]

,

and thus5

ê(Xt) =

∫ t

0

Ê
[

DuΦ(Ŵ )|Fu

]

· dŴu + Ê [ê(Xt)|X0 = x] .

Furthermore, it follows directly from equations (13)–(15) that

Ê
[

DuΦ(Ŵ )|Fu

]

= Ê
[

DuΦ(Ŵ )|Xu

]

.

When the smoothness required by Assumption 4.1 is not satisfied, we may as an alternative

write the function φ via

φ(y, t− u) =
Ê

[

DuΦ(Ŵ )|Xu = y
]

Ê [ê(Xt)|Xu = y]
(16)

where we have initialized X0 at x and Φ depends implicitly on t.6

5 Representing elasticities

We now have the core ingredients for representing the elasticities that interest us. These

ingredients include:

i) the coefficient αm used in the construction of the multiplicative functional M ;

4For a statement of this formula and the results concerning the Malliavin derivative of functions of a
Markov diffusion see, for instance, Fournié et al. (1999), pages 395 and 396.

5Haussmann (1979) gives formulas for Markov dynamics for more general functions Φ.
6Gourieroux and Jasiak (2005) suggest basing impulse response functions on the pathwise contribution

to changing a shock at a given date. This leads them to explore more general distributional consequences
of a shock. The Malliavin derivative is the continuous-time counterpart and depends on the entire shock
process up to date t.
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ii) the coefficients βd and αd used in the construction of the additive functional D;

iii) a change of probability measure and function ê from factorization (2);

iv) the function φ(x, t) constructed from the state-dependent coefficients in a moving-

average representation for ê(Xt) given in (16).

The integral representation of the logarithmic derivative is given by:

Proposition 5.1. (Hansen and Scheinkman (2009b))

d

dr
logE [MtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=

=
Ê

[

ê(Xt)
∫ t

0
(βd(Xu) + αd(Xu) · [αm(Xu) + φ(Xu, t− u) − φ(Xu, 0)]) du|X0 = x

]

Ê [ê(Xt)|X0 = x]
.

Exchanging orders of integration, the date u contribution to the integrand is:

Ê [ê(Xt)ψ(Xu, t− u)|X0 = x]

Ê [ê(Xt)|X0 = x]

where ê(Xt) is an extra weighting function and

ψ(x, τ)
.
= βd(x) + αd(x) · [αm(x) + φ(x, τ) − φ(x, 0)]. (17)

In formula (17), αd parameterizes the local exposure to risk that is being explored and

βd is determined as a consequence of the the nature of the perturbation. The coefficient

αm is the local exposure to risk of the baseline multiplicative functional. To interpret the

logarithmic derivative as an elasticity, we restrict |αd(Xt)|2 to have a unit expectation in

order that αd · dWt has a unit standard deviation. The dependence of ψ on the horizon to

which the perturbation influences, that is the dependence on τ , is only manifested in the

function φ.

The function ψ captures the impact of the shock that occurs in the next instant. The

impact of a shock at a future date will be realized through a distorted conditional expectation:

Ê [ê(Xu+τ)ψ(Xu, τ)|X0 = x]

Ê [ê(Xu+τ)|X0 = x]
(18)

for u ≥ 0 and τ ≥ 0. Specifically, this formula captures the date zero impact of a shock at

date u on the logarithmic derivative for date u+ τ = t. Since the process X is stochastically
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stable under the change of measure, the limiting version of formula (18) as the shock date t

is shifted off to the future is
Ê [ê(Xu+τ )ψ(Xu, τ)]

Ê [ê(Xu+τ )]
(19)

which is independent of u but continues to depend on τ .

We now add some structure to perturbations in order to produce formulas for βd.

5.1 Martingale perturbations

Suppose that

βh(x, r) = −1

2
r
2|αd(x)|2.

Thus H(r) is a local martingale for any r and

βd = 0.

In this case the date zero contribution is:

ǫ(x, t)
.
= αd(x) · [αm(x) + φ(x, t) − φ(x, 0)], (20)

which we refer to as a shock elasticity function (of M in the direction αd) when viewed

as a function of t. It gives a nonlinear counterpart to an impulse response function by

characterizing the (local) impact of a shock today on the expected future values of the

multiplicative functionals. When the process X is stationary, this function will typically

have a well defined limit given by

ǫ(x,∞)
.
= αd(x) · [αm(x) − φ(x, 0)].

This nonzero limit reflects the fact that shocks are permanent.

To see the connection between our elasticity and an impulse response function, consider

again Example 3.1.

Example 5.2. Use φ(x, t) as computed in Example 4.2 in equation (20) to get the shock

elasticity function:

ǫ(x, t) = ᾱd ·
(

ᾱm − σ̄′[I − exp(µ̄′t)](µ̄′)−1β̄
)

This coincides with the impulse response function for A = logM where the vector ᾱd selects

the shock combination of interest.

In this example the shock elasticity function is not state dependent, but this outcome
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is special. Nonlinearity in the growth rate or stochastic volatility alter this conclusion. We

analyze such examples in Section 6.

5.2 Pricing growth-rate risk

Following Hansen et al. (2008), Hansen and Scheinkman (2009a), and Hansen (2009) we

consider the pricing of exposure to growth-rate risk. We study the pricing of cash flows that

are multiplicative martingales in order to feature the pricing dynamics. We investigate the

pricing of what is sometimes referred to as zero coupon equity (see Wachter (2005) or Lettau

and Wachter (2007)), that is a claim to a single random payoff at a point in time t.

To feature price dynamics, suppose that the growth functional G and each perturbation

GH(r) are multiplicative martingales:

βg(x) + βh(x, r) = −1

2
|αg(x) + rαd(x)|2.

The price of cash flow G is

E (StGt|X0 = x) .

Since Gt has conditional expectation equal to one,

−1

t
logE (StGt|X0 = x) ,

is the expected rate of return.

Given a direction αd, construct the additive functional:

Dt = −
∫ t

0

αd(Xu) · αg(Xu)du+

∫ t

0

αd(Xu) · dWu

Then the growth-rate risk price for direction αd is defined to be the marginal change in

the negative logarithm of the price (logarithm of the expected return) with respect to the

exposure to a shock αd(Xt) · dWt. Formally it is given by

ρt = −
1
t
E (StGtDt|X0 = x)

E (StGt|X0 = x)
. (21)

We take the negative because risk exposure is typically unwelcome to investors. We make ρt

an elasticity by normalizing the long-run riskiness of the exposure to be one per unit time.

Specifically we restrict

E[|αd(Xt)|2 = 1.
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We decompose this risk price by applying Proposition 5.1. The shock-price elasticity

function

π(x, t) = −αd(x) · [αs(x) + φ(x, t) − φ(x, 0)] (22)

represents the time u = 0 contribution to the risk price. We call the price elasticities to

shocks at intermediate dates u risk-price increments. These intermediate contributions are

of the form (18) and Proposition 5.1 shows how to write the growth-rate risk price (21) as

the integral of the incremental prices over the lifetime of the cash flow.

5.3 Alternative perturbations

In order to focus exclusively on price elasticities, in section 5.2 we structured our perturba-

tions so that GH(r) is a martingale for each r. Suppose instead we follow the approach in

section 5.1, by constructing a martingale perturbation:

logHt(r) = −r
2

2

∫ t

0

|αd(Xu)|2du+ r

∫ t

0

αd(Xu) · dWu.

Typically GH(r) will not be a martingale, and as a consequence in our study of returns we

must also take account of how the perturbation alters the expected payoff.

The return of interest is given by:

GtHt(r)

E [StGtHt(r)|X0 = x]
.

In our study of the dynamics of expected rates of return we have to consider contributions

from both the expected payoff and from the price:

1

t
logE [GtHt(r)|X0 = x] − 1

t
logE [StGtHt(r)|X0 = x] .

In light of these two contributions, we compute two elasticity functions: the shock-

exposure elasticity of G in the direction αd and the shock-exposure elasticity of SG in the

same direction. The first elasticity imitates our earlier calculation with

d

dr
logE [GtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=
Êg

[

∫ t

0
êg(Xt)ǫg(Xu, t− u)du|X0 = x

]

Êg [êg(Xt)|X0 = x]

where

ǫg(x, τ)
.
= αd(x) · [αg(x) + φg(x, τ) − φg(x, 0)], (23)
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This gives the exposure contribution over an interval t and its decomposition using dis-

counted shock-exposure elasticities for shocks at intermediate dates u. In this formula we

use the subscript g because we chose M = G, and the elasticity measures how a shock today

influences the growth functional in future time periods.

The second elasticity is entirely analogous except that M = SG
.
= V and measures value

responses:

Êv

[

∫ t

0
êv(Xt)ǫv(Xu, t− u)du|X0 = x

]

Êv [êv(Xt)|X0 = x]

where

ǫv(x, τ)
.
= αd(x) · [αv(x) + φv(x, τ) − φv(x, 0)].

In this formula,

αv = αs + αg

Combining these two integral contributions, we obtain a risk price elasticity that takes into

account the predictability of G and its perturbed counterpart:

d

dr
logE [GtHt(r)|X0 = x] − logE [StGtHt(r)|X0 = x]

∣

∣

∣

∣

r=0

=

Êg

[

∫ t

0
êg(Xt)ǫg(Xu, t− u)du|X0 = x

]

Êg [êg(Xt)|X0 = x]
−
Êv

[

∫ t

0
êv(Xt)ǫv(Xu, t− u)du|X0 = x

]

Êv [êv(Xt)|X0 = x]
.

From the instantaneous contribution to these integrals, we construct an alternative shock-

price elasticity function:

π(x, t) = −αd(x) · [αs(x) + (φv − φg)(x, t) − (φv − φg)(x, 0)]. (24)

When G is a multiplicative martingale, φg is identically zero and this coincides with our

previous construction of a shock price elasticity. The integral contributions, or risk-price

increments, will still be different because G and V are associated with two different changes

in measure.

6 Example economies

To illustrate the methods we developed, we provide the elasticity calculations for several

models from the existing asset pricing literature. First we contrast the price elasticities

implied by two models in which investors have preferences that reflect external habits or

consumption externalities. Next we postulate consumption dynamics that contain a small
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predictable component in macroeconomic growth and stochastic volatility. We investigate

how the price elasticities change when we alter the investors’ preferences from a baseline

power utility specification to a recursive utility counterpart.

6.1 External habit models

The class of external habit models includes a variety of specifications that strive to explain

empirical characteristics of the asset price dynamics. One important aspect, analyzed in

Santos and Veronesi (2008) and other papers, are the differences in returns on cash flows of

alternative maturities. We share a similar interest and focus on the implied pricing dynamics

as reflected in the term structure of shock-price elasticities. We calculate these elasticities for

the models of Campbell and Cochrane (1999) and Santos and Veronesi (2008) (abbreviated

as CC and SV, respectively) and highlight important differences. We start with the SV model

for which there are closed-form solutions for the shock-price elasticities. For comparison we

use a continuous-time version of the CC model and rely on numerical calculations similar to

those in Wachter (2005).

Both models specify the stochastic discount factor as a multiplicative functional

St = exp(−δt)
(

Ct − C∗
t

C0 − C∗
0

)−γ

= exp(−δt)
(

Ct

C0

)−γ
e (X0)

e (Xt)
.

C∗ is an external consumption reference process and C is aggregate consumption, evolving

as a geometric Brownian motion

d logCt = β̄cdt+ ᾱcdWt.

The growth functional of interest is the aggregate consumption process itself, G = C.

Santos and Veronesi (2008) specify the transitory component as

e (Xt)
−1 =

(

1 − C∗
t

Ct

)−γ

= 1 +Xt ≥ 1,

where the process X evolves as in Example 3.2. Then M = SC is a multiplicative functional

of the form in Example 4.3, where ᾱm = (1 − γ)ᾱc. Additionally, the loading of X on the

shock, σ̄, is expressed as a factor of ᾱc, σ̄ = χᾱc. The local risk price (identical to the local

shock-price elasticity) is

γᾱc + χᾱc
Xt

1 +Xt
.
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In Campbell and Cochrane (1999), the transitory component is given by

e (Xt)
−1 = exp (γ (Xt + b))

and the process X follows

dXt = −ξ (Xt − µx) dt+ λ (Xt) σcdWt

with the volatility factor λ(x) = 1− (1 + ζx)1/2 and ζ = 2ξ/(γ |ᾱc|2). This implies the local

shock-price elasticity

γᾱc − γλ(x)ᾱc = γ(1 + ζx)1/2ᾱc.

The SV and CC models thus amplify the local shock-price elasticities in the power utility

model, γᾱc, by a state-dependent factor.

To facilitate comparisons between the SV and CC specifications, we fix γ = 2 for both

models but set the parameters of the SV model so that the distribution of local risk prices is

similar to that in the CC model. Formally, the parameters µx and χ are chosen to minimize

the Kullback-Leibler divergence (the log-likelihood ratio) with respect to the local risk price

density of the CC model.7 Figure 2 reports the stationary densities for the local risk prices

in the two models. The densities have rather different shapes even after we have adjusted

the SV parameter values to make them look as similar as possible.

For simplicity we consider only the single shock case and set αd to unity. We use formula

(22) to calculate the following shock-price elasticity function, which in this example is state-

dependent:

π(x, t) = γᾱc +
exp(−µ̂1t)

1 + µ̂2 + exp (−µ̂1t) (x− µ̂2)
χᾱcx

For the CC model we do not have quasi-analytical formulas at our disposal and instead rely

on numerical methods to compute the function.

The top panel of Figure 3 displays the elasticity function for the quartiles of the stationary

distribution of the state variable X, and the bottom panel compares with the shock-price

elasticity function implied by Campbell and Cochrane (1999). The elasticity function of the

SV model decays relatively quickly and is near its limiting value by about 50 quarters.8 On

the other hand, that of CC remains relatively flat for 100 quarters and does not approach its

7When the original SV parameterization is used the local risk prices in CC are roughly twice as large
as those of SV. For the SV specification, it is tricky to change γ. If the specification of the consumption
externality is held fixed the convenient functional form for the state evolution is lost.

8This limiting value as the maturity t → ∞ is equal to the elasticity from the power utility model, γᾱc.
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Figure 2: The top panel displays the stationary density of local risk prices in the Santos
and Veronesi (2008) model. The 25th, 50th, and 75th quantiles are marked with circles. The
parameterization is χ = 126.9, µ1 = 0.04, µ2 = 2.280, ᾱc = 0.0054, γ = 2. The bottom panel
compares with the model of Campbell and Cochrane (1999) as outlined in Hansen (2009)
with parameter values ξ = 0.035, µx = 0.4992, ᾱc = 0.0054, and γ = 2.

limiting value until about 300 quarters. Thus, the SV model implies a much less persistent

impact of exposure to a current shock on the prices of cash flows further in the future.

Recall that the shock-price elasticities depict the impact for valuation of shock exposure

that occurs over the next instant. We now shift forward the date of the exposure to be u

periods into the future. This gives the risk-price increments which are a distorted conditional

expectation of the shock-price elasticity function reported in Figure 3:

− Ê [ê(Xu+τ) [αs(Xu) + φ(Xu, τ) − φ(Xu, 0)] |X0 = x]

Ê [ê(Xu+τ )|X0 = x]
(25)

= γᾱc + exp (−µ̂1τ)χ
µ̂2 + exp(−µ̂1u)(x− µ̂2)

1 + µ̂2 + exp(−µ̂1(u+ τ))(x− µ̂2)
ᾱc

where u+ τ = t is the investment horizon. These curves (indexed by u) have a well defined
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Figure 3: The top panel displays the shock-price elasticity function in the Santos and Veronesi
(2008) model, while the bottom panel compares with the Campbell and Cochrane (1999)
model. The solid curve conditions on the median state, while the dot-dashed curves condition
on the 25th and 75th quantiles. Both parameterizations are as in Figure 2.

limit as u→ ∞ given by formula (19), which in the case of the SV model is

γᾱc + exp (−µ̂1τ)
µ̂2

1 + µ̂2
χᾱc

For the CC model counterpart we again rely on numerical calculations.

Figure 4 compares the limiting shock-price elasticities in the SV and CC models. The

upper panel shows that in Santos and Veronesi (2008) the limiting shock-price elasticity

decays exponentially, and it sits somewhat higher than the local elasticity conditioned on

the upper quartile. This upward pull is due to the heaviness of the upper tail of the stationary

distribution of X.

The bottom panel shows that in the CC model, this upward pull on the limiting elasticity

is extreme — the limiting local contribution is higher by a factor of 30 compared to the local

elasticity at the median state.9 The limiting elasticity curves sharply contrast what the SV

9To elucidate the calculation, consider the numerator of the limiting contribution in formula (19) for
τ = 0: Ê [ê(Xu)π(Xu, 0)] = −

∫

q̂(x)ê(x)αm(x)dx where q̂(x) denotes the stationary density for the state
variable under the change of measure. Hansen (2009) shows that the large x approximation of q̂(x)ê(x) is
exp(−k

√
x) with a small coefficient k while −αm(x) behaves as

√
x for large x. The slow decay of q̂(x)ê(x)

combined with the unboundedness of the local risk price function leads to the high limiting contributions
displayed in the bottom panel of Figure 4.
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Figure 4: A comparison of the limiting shock-price elasticities of the Santos and Veronesi
(2008) model (top panel) with the Campbell and Cochrane (1999) model (bottom panel).
Both parameterizations are as in Figure 2.

and CC models imply about how tail risk affects the prices of cash flows with long maturities.

So far, we have analyzed the shock-price elasticity π(x, t) and its limiting counterpart.

We now consider pricing growth rate risk as in Hansen and Scheinkman (2009a) and Hansen

(2009) where we parameterize the exposure to risk to occur over the entire investment hori-

zon. These growth-rate risk prices are integrals of the price elasticities discussed previously

as depicted in Section 5.1 and scaled by the investment horizon t. Hansen (2009) discusses

the computation of the risk prices in more detail.

We plot the risk prices for the two models in Figure 5 as functions of the investment

horizon. The top panel shows that the risk prices in the SV model show a similar decaying

pattern as the shock-price elasticities. The decay rate for the risk prices is slower relative to

the elasticity function because risk prices aggregate the elasticity contributions at intermedi-

ate shock dates. In the CC model, the growth-rate risk prices increase with maturity up until

about 200 quarters. This is consistent with the dramatic upward shift in the shock-price

elasticity function for the CC model as we move forward the exposure date, thus approaching

the limit curve depicted in Figure 4. It is only after 200 quarters that the growth-rate risk

prices start to decrease. Thus the risk price dynamics are very different for the SV and CC
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Figure 5: The top panel displays risk prices as a function of investment horizon in the Santos
and Veronesi (2008) model. The solid curve conditions on the median state, while the dot-
dashed curves condition on the 25th and 75th quantiles. The bottom panel compares with
the Campbell and Cochrane (1999) model. Both parameterizations are as in Figure 2.

models even though they were designed to capture similar empirical phenomenon, larger risk

prices in bad times than good times.

6.2 Breeden-Lucas and Epstein-Zin preferences

The literature on “long-run risk” features models with a small predictable component in the

growth rate of consumption and investors endowed with recursive utility preferences for which

the intertemporal composition of risk matters. Stochastic volatility in the macroeconomy

is included in part as a mechanism for risk prices to fluctuate over time. Hansen et al.

(2007) and Hansen (2009) present an example that is the continuous-time counterpart to

the model of Bansal and Yaron (2004). This example generalizes the log-normal dynamics

introduced in Examples 3.1 and 4.2 by the inclusion of a square root process for the evolution

of macroeconomic volatility.
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6.2.1 State dynamics

In line with the example in Hansen (2009), we specify the dynamics for the state vector

Xt = (X
[1]
t , X

[2]
t )′ as

µ(x) =

[

µ̄1x
[1]

µ̄2(x
[2] − 1)

]

σ(x) =
√
x[2]

[

σ̄1

σ̄2

]

and consider a multiplicative functional for consumption parameterized by

β(x) =β̄0 + β̄1x
[1] + β̄2(x

[2] − 1) α(x) =
√
x[2]ᾱ. (26)

This specification of the dynamics contains a predictable component in the multiplicative

functional modeled byX [1], and allows for stochastic volatility modeled by the scalar variance

process X [2]. Our variance process stays strictly positive, and we prevent it from being pulled

to zero by imposing the restriction µ̄2 + 1
2
|σ̄2|2 < 0. To guarantee stationarity, assume that

µ̄1 has eigenvalues with strictly negative real parts.

6.2.2 Investors’ preferences

We compare the shock-price elasticities for two specifications of investors’ preferences. In the

Breeden (1979) and Lucas (1978) specification, investors have time-separable power utility

with relative risk aversion coefficient γ. In the second case, we endow investors with recursive

preferences of the Kreps and Porteus (1978) or Epstein and Zin (1989) type, analyzed in

continuous time by Duffie and Epstein (1992). We refer to the first model as the BL model

and the second as the EZ model.

In the BL model, we immediately have the stochastic discount factor as:

St = exp(−δt)
(

Ct

C0

)−γ

.

In the EZ model the stochastic discount factor requires more calculation. Let {Vt} denote

the continuation value for the recursive utility specification, and denote the inverse of the

elasticity of intertemporal substitution by ̺. The continuous-time recursive utility evolution

is restricted by:

0 =
δ

1 − ̺

[

(Ct)
1−̺ − (Vt)

1−̺
]

(Vt)
̺ +

[

λt

(1 − γ)(Vt)1−γ

]

Vt
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where λt is the local mean:

λt = lim
ǫ↓0

E [(Vt+ǫ)
1−γ − (Vt)

1−γ |Ft]

ǫ
.

Notice that this recursion is homogeneous of degree one in consumption and the continuation

value process. The limiting version for ̺ = 1 is given as:

0 = δ (logCt − log Vt)Vt +

[

λt

(1 − γ)(Vt)1−γ

]

Vt. (27)

In what follows we impose the unitary elasticity of substitution restriction as a device to

obtain quasi-analytical solutions.10 The stochastic discount factor is then:

St = exp(−δt)
(

Ct

C0

)−1

S̃t (28)

where S̃t is the multiplicative martingale component of

(

Vt

V0

)1−γ

(29)

given by the Ito and Watanabe (1965) decomposition described previously.11 This martingale

component inherits the forward-looking features of the continuation value process.

Hansen (2009) shows that both stochastic discount factors share the same martingale

component when δ ց 0, and thus the long-term pricing implications for both the BL and

EZ models coincide in this limiting case.

Given the state dynamics, constructing this martingale component is straightforward.

The necessary calculations to arrive at the stochastic discount factor are detailed in Ap-

pendix A. Appendix C provides an alternative derivation.

6.2.3 Elasticities

This model specification implies two useful properties in calculating shock elasticities. First,

for a multiplicative functional parameterized by (26), the principal eigenfunction associated

with the martingale decomposition is loglinear in the state variables, e(x) = exp(λ′x). Note

then that {e(Xt)/e(X0) : t ≥ 0} is also a multiplicative functional of form (26). Second, con-

ditional expectations of such a multiplicative functional are loglinear in the state variables,

10The impact of the intertemporal elasticity on the risk prices vanishes as we let the subjective rate of
discount approach unity.

11The martingale contribution is well known to support an interpretation of a model in which beliefs are
distorted as a device to enforce a concern about model misspecification or a preference for robustness.
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with time-varying coefficients given as solutions to a set of first-order ordinary differential

equations. See Appendix A for details.

Using the two properties of process (26) mentioned above,

Ttê(x) = exp
{

θ0(t) + θ1(t) · x[1] + θ2(t)x
[2]

}

where the coefficients θ(t) are given in Appendix A. This implies

φ(x, t) = [σ̄′
1θ1(t) + σ̄′

2θ2(t)]
√
x[2]

The shock-price elasticities follow, and are displayed in Figure 6 for both the BL and EZ

models. The growth functional that we use is the martingale component of the multiplicative

factorization (2) of consumption.

The calculation is parameterized such that the innovations to logC, X [1], and X [2] are

mutually uncorrelated. We interpret these innovations as consumption, growth-rate, and

volatility shocks, although a structural model of the macro-economy would, among other

things, lead to more interesting labels assigned to shocks. We plot the shock-price elasticities

for the volatility shock with opposite sign because a surprise increase in volatility is bad for

agents.

Since the consumption shock has only a permanent impact on consumption, the asso-

ciated risk price elasticities coincide for the two utility specifications. In contrast, local

elasticities for the growth-rate and volatility risk in the BL model are zero, while in the

forward-looking EZ model the elasticities for arbitrarily short investment horizons remain

bounded away from zero. The shock price elasticities for the BL model mirror closely the

shock exposure elasticities for aggregate consumption scaled by γ. The exposure elasticities

are reported in Figure 7. This close link reflects the underlying time separability in prefer-

ences. In the EZ model exposure of future consumption to growth-rate and volatility risk

induces fluctuations in the continuation utility. As a consequence both the growth-rate state

and volatility state evolution directly influence the equilibrium stochastic discount factor

in the EZ model with recursive utility investors. The corresponding shock-price elasticity

function is close to flat for this model with the limits being essentially the same as for the

BL model.12 This reflects the importance of the martingale component S̃ in the stochastic

discount factor process. Notice that overall the shock-exposure elasticities are larger for

exposure to growth rate risk than volatility risk.

12They are identical in the limiting case in which the subjective rate of discount is zero.
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Figure 6: Shock-price elasticities under both the BL (dashed) and EZ (solid) preference
specifications. The parameterization is β̄c,0 = 0.0015, β̄c,1 = 1, β̄c,2 = 0, µ̄1 = −0.021,
µ̄2 = −0.013, ᾱc = [0.0078 0 0]′, σ̄1 = [0 0.00034 0], σ̄2 = [0 0 0.038].

7 Incorporating jump risk

So far, we have analyzed models formulated under Brownian information structures. In this

section, we develop formulas that incorporate jumps in levels of the stochastic processes. We

focus on a discrete state space specification with a finite number of states, where jumps are
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Figure 7: Shock-exposure elasticities for the aggregate consumption process parameterized
as in Figure 6.

modeled as Poisson arrivals.
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7.1 Basics

Consider a functional M of the form

logMt =
∑

0<u≤t

(Zu−)′κZu +

∫ t

0

(Zu−)′βdu+

∫ t

0

(Zu−)′αdWu. (30)

Here Z evolves as an n-state Markov chain with intensity matrix A and the realizations of

Z are identified by a coordinate vector in R
n. We write Zt− for the pre-jump (left) limit at

date t. Abusing notation a bit, we now let β be an n-dimensional vector and α an n × k

matrix. The functional is now parameterized by the triplet (β, α, κ), representing the local

mean conditional on no jumps, the local diffusive volatility and the jumps in the functional.

In this specification, the local trend and volatility depend (linearly) on the Markov state.

In our calculations in this section we use the following notational conventions. dvec{·}
applied to a square matrix returns a column vector with the entries given by the diagonal

entries of the matrix, and diag{·} applied to a vector produces a diagonal matrix from a

vector by placing entries of the vector on the corresponding diagonal entries of the con-

structed matrix. The symbol × used in conjunction with two matrices forms a new matrix

by performing multiplication entry by entry. exp∗(·) when applied to a vector or matrix

performs exponentiation entry by entry. Finally, a real-valued function on the state space of

coordinate vectors can be represented as a vector.

7.1.1 Multiplicative martingales

We construct a multiplicative martingale decomposition by computing an eigenfunction of

the form e · z where the vector e has all positive entries. The vector e must solve the

eigenvalue problem:13

Be = ηe (31)

where

B
.
= diag

{

β +
1

2
dvec {αα′}

}

+ A× exp∗ (κ)

Then

Mt = exp(ηt)M̂t

(

e · Z0

e · Zt

)

(32)

and we can represent the martingale M̂ as

log M̂t =
∑

0<u≤t

(Zu−)′κ̂Zu +

∫ t

0

(Zu−)′βdu+

∫ t

0

(Zu−)′αdWu − ηt (33)

13Details on the construction of the eigenvalue problems can be found in Appendix B.1.
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where

κ̂ = κ+ 1n(log e)′ − (log e) 1n
′. (34)

We use the multiplicative martingale M̂ to change the probability measure. This measure

change leads to a Brownian motion Ŵ under the new measure that satisfies

dWt = (Zt−)′ αdt+ dŴt.

Under the new measure, the process Z has intensity matrix

Â = −ηI + diag (ê)Bdiag (e)

where e and η are given by the solution of the eigenvalue problem (31), and ê is the vector

of reciprocals of the entries in e.

7.1.2 Additive martingales

In order to construct perturbations corresponding to permanent shocks, we will extract the

martingale component of an additive functional. Consider the martingale decomposition of

the additive functional logM in (30)

logMt = ρt+ log M̄t − h · Zt + h · Z0. (35)

To find the martingale component log M̄ , let q denote a vector with positive entries that

sum to one and satisfy

q′A = 0. (36)

The long-run growth trend of the process is then given by

ρ = q′dvec {κA′} + q′β. (37)

The vector h determining the transient component can be found as the solution to

Ah = −dvec {κA′} − β + 1nρ. (38)

Notice that the vector on the right-hand side is orthogonal to q, which is consistent with the

fact that vectors in the image of A are orthogonal to q (see (36)). We solve equation (38)

for h restricting ourselves to the n− 1 dimensional subspace of vectors that are orthogonal
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to q. The martingale component is then given by

log M̄t =
∑

0<u≤t

(Zu−)′κ̄Zu +

∫ t

0

(Zu−)′β̄du+

∫ t

0

(Zu−)′αdWu (39)

where

β̄ = β − 1nρ

κ̄ = κ+ 1nh
′ − h1′

n.

Observe that κ̄ has again zeros on the main diagonal. The permanent component of the

jump risk is thus given by

(Zt−)′κ̄Zt + (Zt−)′β̄dt.

We will also directly construct martingales. Consider an n × n matrix κ̃ with zeros on

the diagonal, and build the additive martingale

log M̃t =
∑

0<u≤t

(Zu−)′ κ̃Zu −
∫ t

0

(Zu−)′ dvec {κ̃A′} du.

For instance, we could specify all of the entries of κ̃ to be zero except for a single one.

Additive martingales scaled by the 1√
t

obey the Central Limit Theorem. To deduce the

variance ς2 associated with the normal approximation, the conditional second moment of

the increment (per unit of time) is:14

z′(κ̃× κ̃)A′z.

Using the stationary distribution to average over alternative realizations of z,

ς2 = q · dvec {(κ̃× κ̃)A′} . (40)

By scaling the matrix κ̃ by the scalar 1
ς
, we obtain an additive martingale with a unit variance

per unit of time.

14Locally the second moment and variance coincide.
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7.1.3 Jump-risk perturbations

Our jump-risk perturbations of a functional M are of the form MH (r) where

logHt (r) =
∑

0<u≤t

(Zu−)′ (rκd)Zu +

∫ t

0

(Zu−)′ βh (r) du (41)

where the direction matrix, κd, is the appropriately scaled (say 1
ς
κ̃) jump risk component in

the direction of the desired perturbation, and βh (r) is a vector that induces H (r) or GH (r)

to be a martingale, depending on the application. For the former, βh (r) needs to satisfy

0 = βh (r) + dvec {exp∗ (rκd)A
′} .

Defining βd analogously to the diffusion case, we have

βd =
dβh(r)

dr

∣

∣

∣

∣

r=0

= −dvec {κdA
′}

For the latter, recall that G is parameterized by (βg, αg, κg). Since the coefficients are

additive, the appropriate martingale restriction determining βh (r) is

0 =
1

2
dvec {αα′} + β + βh (r) + dvec {exp∗ (κg + rκd)A

′} .

Differentiating with respect to r and evaluating this derivative at zero, we have

βd = −dvec {[exp∗ (κg) × κd]A
′} .

7.1.4 Constructing the nonlinear moving-average representation

We perform a direct calculation of the nonlinear moving-average coefficients needed for

computing the elasticities that interest us. Recall that ê is the vector of reciprocals of the

entries of e. Then

ê · Zt =
∑

0<u≤t

(Zu − Zu−)′ exp
[

Â(t− u)
]

ê−
∫ t

0

(Zu−)′ Â exp
[

Â(t− u)
]

êdu (42)

+ (Z0)
′ exp

(

Ât
)

ê

where Â is the intensity matrix under the change in measure. The new information at time

u is

(Zu − Zu−)′ exp
[

Â(t− u)
]

ê− (Zu−)′ Â exp
[

Â(t− u)
]

êdu,
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and the first two terms in the decomposition (42) form a martingale.

Next we scale by ζ(t− u)′Zu− where

ζ(t− u) = exp
[

Â(t− u)
]

ê

and produce a new representation that will be useful in our elasticity calculations. We do

this in two steps:

1. First construct the matrix Ξ(t− u) such that

z′ [Ξ (t− u)] z∗ =
ζ(t− u)′z∗

ζ(t− u)′z
− 1

2. Second construct the vector ξ(t− u) by dividing each entry of Âζ(t− u) by the corre-

sponding entry of ζ(t− u).

Then write

ê · Zt =
∑

0<u≤t

[ζ(t− u)′Zu−]
[

(Zu−)′ Ξ(t− u)Zu

]

− (43)

−
∫ t

0

[ζ(t− u)′Zu−] [ξ(t− u)′Zu−] du+ ζ(t)′Z0. (44)

7.1.5 Shock-price elasticities

The moving-average representation for ê · Zt derived in Section 7.1.4 allows us to state a

counterpart of Proposition 5.1 for the jump risk case.

Proposition 7.1. Let M be a multiplicative functional parameterized by (β, α, κ) with mar-

tingale decomposition outlined in Section 7.1.1, H(r) a jump perturbation of the form (41)

parameterized by (βh(r), 0, rκd), and βd = dβh(r)/dr|r=0. Then

d

dr
logE [MtHt(r)|Z0 = z]

∣

∣

∣

∣

r=0

= (45)

=
Ê

[

(ê · Zt)
∫ t

0
(Zu−)′

(

βd + dvec
{

κdÂ
′
}

+ dvec
{

(Ξ(t− u) × κd) Â
′
})

du|Z0 = z
]

Ê [ê · Zt|Z0 = z]

The proof is deferred to Appendix B.2. Switching the order of integration in the nu-

merator of formula (45), the shock elasticity function for a direction κd is the time u = 0

contribution to the integral across the time dimension, viewed as a function of the maturity

date t. As in the Brownian case, we obtain the shock-price elasticity function in the special
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case when M = SG and both G and GH(r) are martingales, attaching a minus sign by

signing convention. We write the shock-price elasticity function as a vector

π(t) = −βd − dvec
{

κdÂ
′
}

− dvec
{

[Ξ(t) × κd] Â
′
}

. (46)

7.2 Growth and discounting

Our construction of the multiplicative functional M in (30) that explicitly allows for jumps

in the levels of the functional is motivated by the implications of continuous-time Markov

switching models for the dynamics of equilibrium quantities that are of interest to us. For

the sake of illustration we introduce jumps directly in the growth or consumption processes,

but production economies are also of interest and can be, and in fact have been, investigated

using computational methods.

There are also other potential sources of jumps. We have already shown that even if a

stochastic growth or discount functional contains no jumps in the sample paths (κ = 0),

its martingale component both in additive and multiplicative form will generically contain

a jump component provided there are jumps in either the conditional mean of the growth

or conditional volatility. As we will see, when consumers have EZ preferences the forward-

looking continuation values may exhibit jumps even if the consumption process has a con-

tinuous sample path.15 Jumps thus become relevant when pricing permanent components of

asset payoffs.

In some models with production and capital accumulation, jumps in the equilibrium

consumption process may arise endogenously. In the Cagetti et al. (2002) model, the dis-

crete Markov state determines the mean growth rate of the technology process, but the

process itself has continuous trajectories. Since a regime shift discretely changes the instan-

taneous mean growth rate of the technology process and the conditional distribution of the

future technology, there is also a discrete adjustment in the consumption and investment

processes.16

In the following subsections, we construct the stochastic discount factor functional for the

continuous-time version of the Epstein and Zin (1989) preferences when intertemporal elas-

ticity of substitution is equal to one. We will subsequently use the stochastic discount factor

to calculate the shock-price elasticities for consumption dynamics estimated by Bonomo and

15Calvet and Fisher (2008), Chen (2008), and Bhamra et al. (2008) generate stochastic discount factors
with discontinuous trajectories using the continuous-time version of Epstein and Zin (1989) preferences.

16David (1997) produces a model along similar lines with two different linear technologies where jumps
in the mean growth rates of the two technologies exactly offset each other, so that the distribution of
the aggregate production possibility set is independent of the current state. In this case, the equilibrium
consumption process remains continuous.
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βc αc A
0.0355 0.0330 -0.4627 0.4627 0
0.0127 0.0484 0.1709 -0.1938 0.0229
0.0193 0.0163 0.0554 0 -0.0554

Table 1: Parameterization of the jump risk example, annualized quantities. The intensity
matrix is calculated by taking the matrix logarithm of the transition probability matrix
from Bonomo and Garcia (1996), and setting all negative off-diagonal terms equal to zero.
This produces an intensity matrix with zeros in the same entries as in the original transition
probability matrix. Original parameters estimated using yearly data from 1889–1985 (for
details on the data sources, see Appendix A of the cited paper).

Garcia (1996).

7.3 Example economy with jumps

7.3.1 State dynamics

For illustrative purposes, we consider an example of consumption dynamics with three states,

estimated by Bonomo and Garcia (1996). We focus on the pricing of permanent jump shocks

to the equilibrium consumption stream in the Breeden-Lucas (BL) and Epstein-Zin (EZ)

specification of preferences.

Bonomo and Garcia (1996) specify the consumption dynamics as a conditionally Gaussian

discrete-time process with jumps in the conditional growth rate and volatility. This leads

us to parameterize consumption as a multiplicative functional given by (βc, αc, κc) where

κc = 0 and scaled by the initial condition C0. Table 1 provides the parameter values βc and

αc estimated by Bonomo and Garcia (1996), while Figure 8 gives the filtered probabilities

of the three states. Before 1950, the economy was mostly switching between states 1 and 2,

with longer spells spent in state 2. These were the more volatile times in the first half of

the 20th century. After 1950, the economy switches to the highly persistent, low-volatility,

average-mean growth rate state 3, where it resides for most of the remainder of the sample

(at least until recent events).

7.3.2 Investors’ preferences

As in Section 6.2 we consider two models of preferences. Recall that in model BL the

stochastic discount functional is:

St = exp (−δt)
(

Ct

C0

)−γ

.
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Figure 8: This is Figure 3 from Bonomo and Garcia (1996). The curve with boxes depicts
the filtered probabilities for state two and the solid curve without boxes depicts the filtered
probabilities for state three.

In model EZ we use the continuous-time specification of recursive utility preferences given

in Section 6.2. As we saw, when preferences have a unitary elasticity the stochastic discount

functional has a particularly simple form:

St = exp(−δt)
(

C0

Ct

)

S̃t (47)

where S̃t is the multiplicative martingale component of

(

Vt

V0

)1−γ

.

As in Hansen (2007), the continuation value is of the form

log Vt = v · Zt + logCt

where v solves the continuous-time discrete-state Bellman equation:

0 = −δv + βc +
1

1 − γ
dvec {exp∗[(1 − γ)κv]A

′} +
1 − γ

2
dvec {αcαc

′} . (48)
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and17

κv = (1nv
′ − v1n

′) + κc.

To construct this martingale component, write

(1 − γ)(log Vt − log V0) = (1 − γ) [v · (Zt − Z0) + logCt − logC0]

= (1 − γ)

[

∑

0<u≤t

Zu−
′κvZu +

∫ t

0

Zu−
′βcdu+

∫ t

0

Zu−
′αcdWu

]

.

Then

log S̃t =(1 − γ)
∑

0<u≤t

Zu−
′κvZu −

∫ t

0

dvec {exp∗[(1 − γ)κv]A
′} · Zu−du

+ (1 − γ)

∫ t

0

Zu−
′αcdWu −

∫ t

0

dvec

{

(1 − γ)2

2
αcαc

′
}

· Zu−du.

The coefficients in the stochastic discount functional thus are

βs = −δ1n − βc − dvec {exp∗[(1 − γ)κv]A
′} − dvec

{

(1 − γ)2

2
αcαc

′
}

= −δ1n − (1 − γ)δv − γβc

αs = −αc + (1 − γ)αc = −γαc

κs = −κc + (1 − γ)κv = −γκc + (1 − γ) (1nv
′ − v1n

′) .

where we have used equation (48) for the vector δv.

7.3.3 Elasticities and risk-price increments

We specify the growth functional G as the multiplicative martingale component of the con-

sumption functional C, extracted using the procedure outlined in Section 7.1.1. The first

perturbation we consider is the jump component of the permanent shock to logC. Let κ̄c

denote the corresponding jump matrix, dictating how the shock is constructed as function

of the jumps in Z. We parameterize the perturbation H(r) using (βh (r) , 0, rκ̄c) where βh (r)

makes GH (r) a martingale, and then we scale the perturbation by the reciprocal of the long-

run volatility as in Section 7.1.2. This scaling normalizes the risk exposure of the shock.

17This equation is more general than the corresponding equation in Hansen (2007) because it allows for
jumps in the consumption process and heteroskedasticity in the loading on the Brownian increment.
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Figure 9: Shock-price elasticities for the Bonomo and Garcia (1996) consumption dynam-
ics under the Breeden-Lucas (dot-dashed lines) and Epstein-Zin (solid lines) utility speci-
fications. The priced growth functional is the martingale component in the multiplicative
decomposition of C, and the direction of the perturbation is given by the jump component
of the martingale in the additive decomposition of logC. Preference parameters are γ = 10
and δ = 0.01.

The resulting direction matrix is:

1

ς
κ̄c =







0 -2.1804 -0.1139

2.1804 0 2.0664

0.1139 -2.0664 0






(49)

As reflected by the first row of this matrix, a movement from the first state to either of

the other states had an adverse consequence on this permanent shock to consumption. In

contrast, movements from the second state to either of the first two states has a positive

impact on the permanent shock. From the third state, a movement to the high growth first

state has a positive impact and to the low growth second state a negative impact.

The shock-price elasticities (46) for the two utility specifications are shown in Figure 9.

We plot the elasticities conditional on each of the three states, as well as the limiting con-

tribution (19).

In the BL model the paths of the stochastic discount factor S are continuous. Since
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increase the risk prices while the same shift in case of state one leads to a drop by about

fifty percent.

We explore the pricing of exposure to each of the states for the BL specification of
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Figure 11: Risk-price increments for the Bonomo and Garcia (1996) consumption dynamics
for the BL (left column) and EZ (right column) preference specifications. Individual panels
depict the risk-price increments for payoffs of different maturities. The solid black line
corresponds to the long-run elasticity curve from Figure 9, plotted backwards from the
maturity date. Risk prices are obtained by integrating under the individual curves and
scaling by 1/t. The preference parameters are γ = 10 and δ = 0.01.

We depict these risk-price increments for the BL and EZ models in Figure 11 for exposure

to the jump component of the permanent shock to consumption constructed previously. Each

panel represents the decomposition of the risk price for the cash flow of a given maturity

into the contributions of shocks at different horizons.

We first focus on the risk-price increments for the BL model shown in the left column

of Figure 11. The plots capture substantial state dependence in risk-price increments for

proximate shocks, and their convergence as the time of the shocks moves further to the

future. Consistent with the plot for the shock-price elasticities, the risk-price increments in

model BL diminish to zero as the time of shock approaches the maturity date. Notice that in

state three, the state commonly visited during the post war, the risk-price increments remain
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small for an investment horizon of ten quarters but the increments are more notable for the

fifty-quarter horizon as the probability of transiting to a bad state becomes less negligible.

Thus in state three the risk prices are more substantial over the longer time horizons in the

BL model.

Next we compare the risk-price increments in the BL model to those in the EZ model.

The EZ model risk-price increments are displayed in the right column of Figure 11. The

important differences are in the risk-price increments that are close to the maturity date.

In the EZ model there is no drop off in the price increments near the terminal date of

the payoff. For the ten quarter maturity the overall difference between models remains

substantial. As the payoff date is extended to fifty quarters the risk-price increments behave

similarly across models for the first forty quarters (ten years) and then the BL risk-price

increments diminish to zero over the remaining quarters of the investment horizon. Shock-

price elasticities and their counterparts for shocks at intermediate dates thus reveal pricing

subtleties across models that are disguised by the prices of risk exposures over the entire

investment horizon.

8 Conclusion

Stochastic dynamic model economies inform us how alternative shocks influence key eco-

nomic variables at alternative time horizons. Structural models of asset valuation tell us

even more. They inform us how the exposure to nondiversifiable macroeconomic shocks is

compensated over alternative investment horizons. To understand better such implications,

we proposed shock-price elasticities that measure this compensation and are valuation coun-

terparts to impulse response functions. These price elasticities are also the dynamic extension

of local risk prices familiar from finance. Similarly, we constructed shock-exposure elasticities

which capture the sensitivity of expected cash flows. We produced tractable continuous-time

formulas for structural models that explicitly account for stochastic discounting and macroe-

conomic growth. Thus this paper provides an additional tool for analyzing structural models

that connect macroeconomics and asset pricing.

In this paper we deduced price and exposure elasticities by deconstructing the risk premia

of conveniently chosen cash flows. Risk premia on specific assets depend on the exposure

of an underlying cash flow to risk along with the price of that exposure. By design our

elasticity calculations explore marginal changes in exposures in alternative directions, and

in models with nonlinearities these elasticities depend on what benchmark cash flow is used

in their construction and on the evolution of the Markov state. Constructing risk premia

thus requires that we integrate the marginal contributions over the range of the relevant
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exposures. This integration is implicit when we confront empirical evidence using a limited

set of asset payoffs and prices. While we have not proposed a new set of statistical procedures

for testing, we believe the deconstruction of risk premia to be of interest in understanding

better the implications of alternative asset pricing models.

In a series of examples, we showed how to construct the shock elasticities in models

where investors’ preferences include external habit or recursive utility, and where there is

consumption predictability and stochastic volatility, so called “long-run risks.” We also

explored models where the dynamics are driven, at least in part, by a finite-state Markov

chain. We showed examples in which models that have similar implications for local risk

prices have dramatically different implications over long investment horizons, and examples

of models that have very similar long-term price implications but substantially different

implications for shorter horizons.

While our examples feature alternative specifications of investor preferences, the starting

point for the methods we develop is a benchmark macroeconomic growth process and a

corresponding stochastic discount factor process. It is well known that models with explicit

investor heterogeneity in opportunities and limitations to the nature of asset trading can

still be captured by appropriately specified stochastic discount factors. For instance, see

Hansen and Renault (2009). We anticipate that a more comprehensive study of the pricing

implications of these models will reveal interesting comparisons to some of the models that

we have explored in this paper.

Finally, we have abstracted from econometric and empirical challenges. While we leave

this to future work, we do not wish to diminish the importance of these tasks. In regard

to empirical implications, Bansal and Lehmann (1997), Alvarez and Jermann (2005), and

Koijen et al. (2009) use the holding period return on long-term bonds and the maximal

growth portfolio to gain information about the one-period stochastic discount factor in a

discrete-time asset pricing model. The risk premium on the maximal growth portfolio re-

veals information on the volatility of the logarithm of the stochastic discount factor and

the limiting holding-period return on a discount bond reveals the one-period ratio of the

dominant eigenfunction (e(Xt+1)/e(Xt) in our notation) in a multiplicative factorization of

the stochastic discount factor. Taken together, they construct informative bounds on the

logarithm of the stochastic discount factor and its components. The specification of stochas-

tic growth risk exposure plays no role in their analyses, and thus empirical extensions of this

literature that explicitly confront the valuation of stochastic growth is a potentially fruitful

direction for future research. The initial steps by Lettau and Wachter (2007) and Hansen

et al. (2008) are promising starts in this direction.
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A Derivations for Section 6.2

Consider recursive preferences in the case of unitary elasticity of intertemporal substitution.

Hansen (2009) shows that when the subjective rate of time preference δ ց 0, the stochastic

discount factor is of the following form:

S∗
t = exp(−ηt)St

e(Xt)

e(X0)

where S is the Breeden-Lucas stochastic discount factor specified in Section 6.2, and η and

e(x) = exp(λ′x) are the eigenvalue and eigenfunction associated with the principal martingale

decomposition of C1−γ.

In order to find the eigenvalue and eigenfunction for a general multiplicative functional

M of form (26), decompose λ into a vector λ1 and its final entry, λ2. Then λ solves the pair

of equations

0 =µ̄′
1λ1 + β̄ ′

1

0 =µ̄2λ2 + β̄2 +
1

2
|λ′1σ̄1 + λ2σ̄2 + ᾱ|2 (51)

Additionally, the associated eigenvalue is given by

η = β̄0 − (µ̄2λ2 + β̄2)

Since equation (51) has in general multiple solutions, we follow Hansen and Scheinkman

(2009a) and choose the solution that is associated with the smallest eigenvalue. This solution

is the one that leads to stable dynamics of the Markov processX under the change of measure.

It follows from the specification of e(x) that the stochastic discount factor S∗ is also of

form (26). The coefficients are given by

β̄∗
s,0 = − δ − β̄c,0 + (1 − γ)β̄c,2 + λ2µ̄2

β̄∗
s,1 = − γβ̄c,1 + λ′1µ̄1

β̄∗
s,2 = − γβ̄c,2 + λ2µ̄2

ᾱ∗
s = − γᾱc + λ′1σ̄1 + λ2σ̄2

Finally, Hansen (2009) shows that for a multiplicative functional M parameterized by

(26),

E [Mt| X0 = x] = exp
{

θ0(t) + θ1(t) · x[1] + θ2(t)x
[2]

}

45



where the θi(t) coefficients satisfy the following set of ordinary differential equations, each

with initial condition θi(0) = 0.

d

dt
θ1(t) =β̄ ′

1 + µ̄′
1θ1(t)

d

dt
θ2(t) =β̄2 + µ̄2θ2(t) +

1

2
|ᾱ + θ1(t)

′σ̄1 + θ2(t)σ̄2|2

d

dt
θ0(t) =β̄0 − β̄2 − µ̄2θ2(t)

B Derivations and proofs for Section 7

B.1 Eigenvalue problems

For the multiplicative decomposition in Section 7.1.1, guess that the martingale component

takes the form (33). The martingale restriction for an increment in M̂ conditional on state

Zt− = zi is

0 =
1

2
z′iαα

′zi + βi − η +
∑

j

Aij exp (κ̂ij)

Plugging this restriction into decomposition (32) and comparing coefficients, we obtain the

condition

κ̂ij = log ej − log ei + κij

which yields equation (34) by stacking. Using this condition in the martingale restriction

leads to

0 =
1

2
z′iαα

′zi + βi − η +
∑

j

Aij
ej

ei
exp (κij)

which, after multiplying by ei and stacking the equations, yields the eigenvalue equation

(31).

The additive decomposition in Section 7.1.2 is obtained in a similar way. Guess the

form of the martingale component log M̄ given by equation (39). The additive martingale

restriction conditional on state Zt− = zi is

0 =
∑

j

κ̄ijAij + β̄i

Using this restriction in (35), and comparing coefficients, we have

β̄i = βi − ρ

κ̄ij = κij + hj − hi
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Thus the martingale restriction implies

ρ =
∑

j

κijAij +
∑

j

Aijhj + βi (52)

Stacking this set of equations and premultiplying by q yields equation (37). The vector

of transient components h can then be found (up to scale) as a solution to the system of

equations (52).

B.2 Proof of Proposition 7.1

Proof. Notice that

d

dr
logE [MtHt (r) | Z0 = z]

∣

∣

∣

∣

r=0

=
Ê [(ê · Zt)Dt | Z0 = z]

Ê [ê · Zt | Z0 = z]

where

Dt =
∑

0<u≤t

(Zu−)′ κdZu +

∫ t

0

(Zu−)′ βddu.

Notice that the additive functional

D̄t =
∑

0<u≤t

(Zu−)′ κdZu −
∫ t

0

(Zu−)′ dvec
{

κdÂ
′
}

du

is a martingale under the change of probability measure. In order to find the expression for

Ê
[

(ê · Zt) D̄t | Z0 = z
]

, we calculate the local covariance between corresponding increments

in D̄ and the moving-average decomposition of ê · Zt in formula (43). We have

Ê
[

(ê · Zt) D̄t | Z0 = z
]

=

= Ê

[
∫ t

0

[

ζ (t− u)′ Zu−
]

[

(Zu−)′ dvec
{

(Ξ (t− u) × κd) Â
′
}]

du

∣

∣

∣

∣

Z0 = z

]

= Ê

[
∫ t

0

(ê · Zt)
[

(Zu−)′ dvec
{

(Ξ (t− u) × κd) Â
′
}]

du

∣

∣

∣

∣

Z0 = z

]

where we used

z′[(Ξ(t− u) × κd)Â
′]z = z′dvec

{

[Ξ(t) × κd] Â
′
}

and
[

ζ (t− u)′Zu−
]

= Ê [ê · Zt | Zu−] .
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Combining this result with the expression for Ê
[

(ê · Zt)
(

Dt − D̄t

)

| Z0 = z
]

completes the

proof.

C Stochastic discount factor

An alternative derivation of the continuous-time stochastic discount factor follows from the

approach in Duffie and Epstein (1992).

i) Take a monotone transformation of the utility index:

Wt = (Vt)
1−γ

For γ > 1, the case that interests us, this transformation is decreasing, so we will have

to make an appropriate sign adjustment.

ii) Notice that λt is the local mean for W . Solve (27) for λt:

λt = δ(γ − 1)

[

logCt +

(

1

γ − 1

)

logWt

]

Wt

= Φ(Ct,Wt)

iii) Following Duffie and Epstein (1992) (see their formula (35)),

St =
Φc(Ct,Wt)

Φc(C0,W0)
exp

[

−
∫ t

0

Φw(Cu,Wu)du

]

=

(

C0

Ct

) (

Wt

W0

)1−γ

exp

(

−δt− δ(γ − 1)

∫ t

0

[

logCu +

(

1

γ − 1

)

logWu

]

du

)

= exp(−δt)
(

C0

Ct

) (

Vt

V0

)1−γ

exp

[

δ(γ − 1)

∫ t

0

(log Vu − logCu)du

]

= exp(−δt)
(

C0

Ct

) (

Vt

V0

)1−γ

exp

[

δ(γ − 1)

∫ t

0

v · Zudu

]

where we have placed a minus sign in front Φw to offset the fact that we used a monotone

decreasing transformation of the utility index. This formula is consistent with our

conclusion in Section 6.2.
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