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Abstract 
 
We show that the age structure of human capital matters for economic growth. This question had not 
been tackled empirically until very recently due to the lack of comparable cross-country data on age-
specific educational attainment. We present the newly developed IIASA/VID dataset, which provides 
consistent information about educational attainment by age and sex for 120 countries for the period 
1970-2000 at five year intervals. The dataset has been created making use of the information 
contained in censuses, labor market surveys, and the Demographic and Health Surveys, coupled with 
a reconstruction exercise based on multistate demographic methods of backward projection. Using 
the framework of the Benhabib-Spiegel (1994) model, we show that improvements in education in 
young age groups are particularly important for explaining economic growth in developing countries. 
Furthermore, we show that the use of education data disaggregated by age improves out-of-sample 
economic growth predictions significantly.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

1. Introduction 
 
Education affects economic growth, but not just through the average number of years of schooling 
experienced by the adult population.  The thesis of this paper is that that the demography of the stock 
of human capital – its age and attainment structure - also matters for economic growth.  
 
Past studies of the effects of education on economic growth have been hamstrung by noisy and 
incomplete data.  The Barro and Lee (2001) data provided information on the distributions of 
national populations by sex, mean years of schooling and levels of educational attainment for the age 
groups 15+ and 25+.  Two subsequent datasets (de la Fuente and Domenech (2006) and Cohen and 
Soto (2007)) were created for the purpose of improving on the Barro and Lee data.  All three use a 
variety of surveys and censuses supplemented with information on school enrollment rates.  A 
detailed analysis of the three data sets, however, finds that there is little basis for choosing among 
them (Bosworth and Collins (2003)).  The IIASA/VID educational attainment dataset (Lutz et al. 
(2007)) uses a different methodology to reconstruct educational attainment data and provides the 
joint distribution of population by age, sex, and educational attainment for 120 countries from 1970 
to 2000 in five-year intervals.  We show in this paper that making use of the information contained in 
this joint distribution is crucial for understanding the relationship between education and economic 
growth and we invite others to use this additional detail in their empirical studies as well.   
 
The study of economic growth must start with the study of the people who produce it.  They work 
with their own hands, design, build and operate the machines of production, and structure and run the 
institutions and markets that make growth possible. Julian Simon concluded that the size of the 
human population together with the technologies these people produce is the root cause of economic 
growth  (Simon 2000). He rightly argues that people are the carriers of knowledge but then goes on to 
the more controversial assertion that since the discoveries of the past were produced by people the 
rate of discoveries must have been influenced by human numbers. 
 
But people do not come as an amorphous mass. Not every member of a given population makes the 
same contribution to the economy. People differ greatly in terms of their ability and willingness to 
contribute, with labor force participation rates and skill levels being the two individual properties that 
have been most systematically recognized in the economics literature. Both of these factors are 
closely related to age. Here we define human capital – the topic of this seminar – as the number of 
people who are participating in the work force, are in sufficiently good health and are differentiated 
by their skill levels which is conveniently approximated by level of educational attainment. In the 
following global level analysis, where data on health and labor force participation are difficult to 
obtain, we only focus on the educational attainment aspect of human capital by age and sex. 
 
Since the level of educational attainment is primarily a property associated with  individuals, any 
change in the distribution of attainment categories in an aggregate population is the consequence of 
changes of the individuals over these categories. In a society closed to migration such changes can 
happen either through the process of educating more individuals (which typically happens at younger 
ages) or through the process of younger people moving up the age pyramid and replacing the elderly 
as they die off. An important complicating factor in this process is the fact that mortality rates tend to 
differ significantly by level of education. The extent of this differential varies from country to 
country. Torrey and Kingkade (1990), for instance, use Russian data to show how average education 
during the 1980s quickly approached that of the US primarily due to the fact that the less educated 
Russians died at much higher rates than the more educated ones.  
 
When it comes to projecting populations by levels of educational attainment, one also has to consider 
the fact that almost universally more educated women have fewer children. For Ethiopia, for 



 

example, recent DHS (Demographic and Health Surveys) data show that women without formal 
education have on average six children while those with secondary or higher have only two. This 
rather complex dynamics of changes in the population structure by age, sex and level of educational 
attainment can be appropriately addressed by demographic models and in particular the multi-state 
cohort component model which has been explicitly designed for such questions (Keyfitz (1985), 
Rogers (1975) and Rogers and  Land (1982)). Since the object of interest here is the changing 
composition of people by level of education these demographic methods specifically designed for 
dealing with people seem to be clearly preferable to other methods – such as the perpetual inventory 
method – that were designed for dealing with the physical capital stock and have difficulty dealing 
with differential attrition rates, among other problems. 
 
In this paper we present the data IIASA/VID data on educational attainment by age and sex and 
describe the methods used for the reconstruction exercise. Using demographic multi-state methods to 
model the dynamics of human capital formation, we can explain why earlier studies based on coarser 
definitions of human capital resulted in such a wide variety of findings and point the way toward 
more consistent findings based on a full consideration of the dynamics of age-structured human 
capital. In the second part of the paper, we use the model put forward by Benhabib and Spiegel 
(1994) to show empirically that the age structure of human capital matters for subsequent economic 
growth. Furthermore, we also present empirical evidence that out-of-sample economic growth 
predictions which exploit the age structure dimension of human capital data tend to be systematically 
more accurate than predictions based on educational attainment data aggregated by age.    
 
Section 2 describes the IIASA/VID dataset and its extensions for forecasting.  In Section 3, we use 
these data to provide new insights into the relationship between education and economic growth and 
assess the quality of education-based out-of-sample growth projections .  Section 4 contains our 
concluding thoughts. 
 
2. Modeling the dynamics of the educational composition of the population 
  
Traditionally, demographic analysis in general and modeling of population dynamics in particular has 
been confined to the two demographic dimensions age and sex. More recently, it has been suggested 
educational attainment should be added as a third dimension, since education seems to be such an 
important source of measurable population heterogeneity  (in terms of differential fertility and 
mortality rates) that disregarding it would produce distorted results. Moreover there is increasing 
interest in the educational composition of the population per se since education is considered a key 
determinant of many things ranging from health to economic growth to the quality of institutions and 
democracy (Lutz (2009)). 
  
When it comes to measuring education it is important to distinguish between stock and flow 
variables. The most common flow variables are school enrollment rates, which are published for 
most countries by UNESCO and other education agencies. When trying to derive any stock measures 
from such flow data one also has to be aware of the problem that in the settings of many developing 
countries it is advantageous for schools to report exaggerated enrollment figures to national 
authorities, which may lead to biased estimates of educational attainment for poorer countries.  
 
The stock of human capital can be measured in several different ways depending on whether one also 
wants to include aspects of the quality of the education and actual skills held. Historical data on such 
quality assessments based on actual testing of adults are unfortunately only available for a limited 
number of (mostly OECD) countries. For a global level analysis, the stock can be measured by 
categories of highest educational attainment (here the UNESCO-ISCED categories have become the 
standard) as well as by mean years of schooling. The original empirical data mostly come in terms of 



 

attainment distributions.  The calculation of mean years of schooling requires additional country-
specific assumptions. 
  
For virtually every country in the world there is now enough information from censuses and surveys 
to estimate the educational structure of the population by age and sex for at least one recent point in 
time and from there to reconstruct the past dynamics of educational attainment change and to project 
and the likely paths of future changes. This is precisely how the IIASA/VID dataset was created. The 
starting point of the analysis is a distribution such as the one depicted for the Republic of Korea for 
the year 2000 in Figure 1. It gives a multi-state age pyramid with women on the right side and men 
on the left in 5-year age groups above age 15.  The colors in each age group show the numbers of 
men and women without any formal education as well as with some primary, at least completed 
junior secondary and completed tertiary education. It is evident from the figure that younger cohorts 
are much better educated than older ones and among the older ones women are clearly less educated 
than men. This reflects the history of educational improvement in South Korea over the past decades. 
 

 
Figure 1: Population pyramid of South Korea in 2000 with colors indicating different educational 
attainment categories 
 
Using this information by age and sex we can go backwards in time (in five year steps) until 1970, 
reaching the distribution depicted in Figure 2. The cohort aged 65-69 in 2000 is now aged 35-39 in 
1970. It is bigger in size than in 2000 because some people have died over the course of the years but 
the educational attainment distribution is very similar because most people had received their final 
attainment level by age 35. In order to obtain the data depicted in Figure 2, we only have to adjust for 
the facts that people with higher education tend to have lower mortality and —where necessary— for 
the existence of educational migration differentials. For the highest age groups, for example those 
80+ in 2000 and hence aged 50+ in 1970, additional assumptions have to be made about the trend of 
improving attainment, if we want more more age detail for the 50+ cohort in 1970. 
 
Following this principle, the International Institute for Applied Systems Analysis (IIASA), in 
collaboration with the Vienna Institute of Demography (VID) of the Austrian Academy of Sciences, 
has recently produced a unique new dataset which applies demographic multi-state projection 
techniques to reconstruct the population by age, sex and level of educational attainment from 
empirical data from around 2000 back to 1970 in five-year steps. This has been done for 120 
countries and is in detail documented in Lutz et al. (2007). This new data set is superior to other 
existing data sets for four reasons: (1) because of its detail (four educational categories for 5-year age 
groups of men and women), (2) because of the consideration of differential mortality, (3) because of 
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the strict consistency of the definition of educational categories over time, which is a major problem 
in empirical historical data sets, in which the underlying educational definitions often change, and (4) 
because of its natural extension to forecasting.  
 
 

 
Figure 2: Reconstructed population pyramid of South Korea in 1970 with colors indicating different 
educational attainment categories 
 
 
The same demographic multi-state approach can be applied to project the populations for all 
countries by age, sex and level of educational attainment. This follows the same principle based on 
the assumption that the highest educational attainment is stable after a certain age. The forward 
projection method requires assumptions on more parameters than in the case of reconstruction: in 
addition to the educational mortality differentials that had already been used for the reconstructions, 
future trends in education-specific fertility (and migration in the case of an open population) need to 
be assumed, as well as future trends in the age- and sex-specific probabilities of moving to higher 
education categories. By defining alternative scenarios concerning these future educational 
progression probabilities, IIASA has recently produced such projections of the population by levels 
of educational attainment to 2050 for the same set of countries in the world (KC et al. 2008).  
 
The results of the global education trend scenario for South Korea for 2030 are depicted in Figure 3. 
This scenario assumes that the age-specific transition probabilities to higher educational categories 
for each country follow the trends that were observed over the last decade.  Hence, in practice, this 
implies that all countries follow paths that were taken by those countries that are a bit further 
advanced in their education transitions.  Other scenarios relying on different age-specific transition 
probabilities can be found in KC et al. (2008). 
 
The projection for the Republic of Korea clearly shows the significant population aging to be 
expected as a consequence of low fertility combined with the increase life expectancy. In this context 
an interesting economic question is to what extent the expected significant improvement in the level 
of education will be able to compensate for the expected negative consequences of rapid population 
aging. This is an economic question of great relevance for many rapidly ageing societies around the 
world and these new projections of populations by age and level of education should be helpful in 
facilitating such analyses. 
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Figure 3: Projected population pyramid of South Korea in 2030 with colors indicating different 
educational attainment categories 
 
Because of the lack of age structured human capital data, past studies have had to focus on data 
aggregated across all adult ages, i.e. for the populations 15+ or 25+.  The most commonly used 
variable, mean years of schooling, tries to summarize the entire information provided by the above 
given pyramids in one single number. This will inevitably result in a certain loss of information. The 
key question to be discussed here is whether this loss of information is of importance for the study of 
the effect of changes in human capital on economic growth.  Rapid increases in the educational level 
of the young adult population – as we have seen it for Korea above – are significantly diluted once 
they are merged into the broad 15+ category, that includes many less educated older adults and hence 
contain less statistical signal. 
 
There are many ways to use the detailed human capital information that can be seen in these human 
capital/population pyramids.  We used them in Lutz et al. (2008) and found that universal primary 
education (the second of the Millennium Development Goals) does not seem to be enough to kick 
start economic growth and break potential poverty traps and that only widespread secondary 
education among younger adults will be able to achieve this goal. For industrialized countries, as 
expected, the increase in the young population with tertiary education turned out to be key for 
economic growth.   
 
3. Age structure and education in cross-country growth regressions 
 
3.1 The role of age-structured education in explaining economic growth 
 
In this paper, we focus on the importance of the age structure of human capital as an explanatory 
variable for economic growth. We are thus empirically assessing the vintage nature of human capital, 
justified by the fact that the learning process of different generations, as well as its interaction with 
the prevailing technology, implies that the age composition of the human capital stock plays a 
prominent role in shaping the effects of education on income growth. From a theoretical point of 
view, these arguments have been put forward prominently by Chari and Hopenhayn (1991) and 
Boucekkine et al. (2002), who construct vintage models of human capital accumulation. Recently, 
Kredler (2009) extends the work by Chari and Hopenhayn (1991) and shows in an infinite horizon 
overlapping generations model with endogenous human capital formation that younger generations 
receive a higher premium on technology-specific skills. The incentive created by this premium 
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induces young individuals to accumulate human capital faster than older generations did, which in 
turn induces a higher rate of growth in earnings. Other theoretical contributions to the interaction 
between human capital accumulation and age structure emphasize the role of depreciation of the 
human capital stock (see Becker, (1964)). Van Immhoff (1988) uses an overlapping generations to 
show that  increases in young-age human capital accumulation are an important determinant of 
income convergence, particularly in economies with low population growth. 
 
In this contribution, we analyze empirically the relationship between the age structure of human 
capital and economic growth in the framework of cross-country growth regressions. In a first stage, 
we need to define the variables which summarize the age/education dynamics. Previous research 
using the IIASA/VID dataset made several different choices when it comes to summarizing the rich 
information contained in the age-structured educational attainment data: Crespo Cuaresma and Lutz 
(2007) use years of schooling by age group, Lutz et al. (2008) use educational attainment proportions 
aggregated in broad age groups and Crespo Cuaresma and Mishra (2009) use educational attainment 
at individual 5-year age groups.  
 
In this contribution we use summary measures based on the dataset of mean years of schooling by 
five-year age groups. We start by constructing synthetic indicators based on extracting the principal 
components of the data on age-structured mean years of schooling. Let 

( )60
ti,

25
ti,

20
ti, MYS  ... MYS  MYS=X   be a matrix of stacked data on the mean years of schooling for 

each age group of the adult population (assumed here to be defined by 20-65), where a
ti,MYS  denotes 

the mean years of schooling of individuals with in the age group (a, a+5) for country i in period t. 
We perform a standard principal component analysis by extracting the eigenvalues of the correlation 
matrix based on X and reducing the dimension of the data by projecting the original data on the 
subspace spanned by the first L eigenvectors. This is a straightforward way of summarizing the 
common dynamics inherent in the data. 
 
Table 1 presents the loadings corresponding to each one of the education measures for the first two 
components estimated on the data of mean years of schooling as the proxy for educational attainment 
by age group. It also presents the corresponding eigenvalues and the (cumulative) proportion of the 
total variance explained by the factors. The two first components explain more than 99% of the 
variance in the original data. The resulting component loadings can be easily interpreted and 
summarize in a simple manner the interplay between the process of aggregate human capital change 
and the dynamics of educational attainment changes at the level of the age structure. The first 
component assigns practically equal positive weights to the education measure corresponding to all 
age groups. Human capital accumulation in a given country is thus reflected in upward trends in this 
component. The second component, on the other hand, assigns (increasingly) negative loadings to the 
educational attainment of older age groups. Increases in this component are related to populations in 
which educational attainment tends to concentrate in young cohorts (we dub this component the 
youth concentration component) . 
 
Figure 4 presents a scatterplot of the two components extracted from the IIASA/VID dataset for the 
full sample of 120 countries in the period 1970-2000. Each observation refers to a country/period 
combination, with periods measured in 5-year intervals. The visible inverted-U relationship shows 
the increase of inter-cohort educational attainment concentration in the first stages of the transition to 
higher levels of educational attainment, which stabilizes or reverts as the young educated cohorts 
enter the older age groups. The shape of the relationship is found both across and within countries.  
 
 



 

 
 
 
 
 

 
 
 
 
 
 
 
 

Table 1: Principal components analysis: loadings for educational attainment variables by age group 
 
 

 
 
Figure 4: Education level component (x-axis) versus youth concentration component (y-axis), full 
sample 
 
The information contained in the IIASA/VID dataset concerning the interplay of overall educational 
developments and the distribution of education across age groups allows us to assess the effects of 
human capital accumulation on economic growth by exploiting differences in the timing and extent 
of education expansions. In particular, this and other summary measures of the data can help us 
estimate the potentially differential effect of human capital accumulation in different cohorts on 
subsequent economic growth.  
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 Factor loadings 
 First component Second component 

MYS20 0.327 0.468 
MYS25 0.331 0.400 
MYS30 0.335 0.294 
MYS35 0.337 0.158 
MYS40 0.339 0.006 
MYS45 0.338 -0.143 
MYS50 0.336 -0.283 
MYS55 0.332 -0.401 
MYS60 0.326 -0.499 

Eigenvalue 8.659 0.287 
% exp. var. 

(cumulative)
0.962 0.994 



 

We start by comparing the results of cross-country growth regressions based on variables which 
integrate away the full age detail and those which retain information about the age structure of human 
capital. We estimate cross-country growth regressions using the standard modelling framework put 
forward by Benhabib and Spiegel (1994). Under the assumption of a Cobb-Douglas production 
function with constant returns to scale on labor and capital, the preferred empirical specification in 
Benhabib and Spiegel (1994) can be written in the form of the following model, 
 
 iiiiiiiTiiT yMYSyMYSkkyy εβββββ ++++−+=− 00403020100 lnln)ln(ln)ln(ln ,   (1) 
 
where yit is GDP per capita in country i at time t, kit  measures physical capital stock per worker, 
MYSi0  is the human capital variable (mean years of schooling of the adult population in Benhabib 
and Spiegel (1994) or Cohen and Soto (2007)).  
 
The interaction between education and the initial level of income is included to model the effect of 
human capital in the process of technology adoption. The theoretical background to the inclusion of 
such a variable, based on the Nelson-Phelps paradigm (Nelson and Phelps, 1966, and Romer, 1990), 
is based on the assumption that the effect of human capital on economic growth through technology 
adoption depends on the distance of the catching-up country to the technological frontier. Human 
capital in the model is assumed to affect technological progress by having an influence both on 
domestic innovation (through the linear term in (1)) and on the diffusion of foreign technology 
(through the interaction term). We estimate the specification given by (1) using the data on income 
per capita and capital-labor ratios in Cohen and Soto (2007), as well as their data on mean years of 
schooling and the measures obtained using the IIASA-VID dataset. The original source for the GDP 
per capita data is Heston et al. (1991) and  for the capital-labor ratio is Easterly and Levine (2001). 
As in Cohen and Soto (2007), we use a cross-section of countries for the period 1970-1990 and 
evaluate the independent variables at the initial year, while the growth rates are annualized rates over 
the 20-year period. Descriptive statistics of the data used in the regressions are found in the 
Appendix. 
 
The estimation results are presented in Table 2 for the sample of seventy countries which are 
common to the Cohen-Soto and IIASA/VID datasets. The first and second column present the results 
based on aggregated educational data for the adult population (mean years of shooling for population 
between 15 and 64 years of age in the case of the IIASA/VID dataset and over 25 years of age for the 
Cohen-Soto data). The third column uses an ad-hoc indicator of the age distribution of human capital 
from the IIASA-VID dataset, namely the difference in mean years of schooling between the age 
group 20-25 and the age group 60-65, in addition to the aggregate mean years of schooling variable. 
This variable is a simple measure of youth concentration and has a relationship with the age-
aggregated measure of educational attainment which is relatively similar to that betweeen the total 
education and youth concentration component in Figure 4. In the fourth column of Table 2, we use 
the value of the two principal components presented above as measures of total educational 
attainment and youth concentration.    
 
Despite the fact that the sign of the estimated parameters coincide with our theoretical expectations, 
the results of the estimation with aggregated data (columns 1 and 2) imply that initial levels of 
educational attainment have no significant effect on economic growth, independently of whether the 
Cohen-Soto or the IIASA-VID dataset are used as source.1 When age-structured variables are used 

                                                 
1 As in Benhabib and Spiegel (1994) and Cohen and Soto (2007), we used OLS to estimate our cross-country growth 
regressions. Alternatively, we also estimated the models using methods which are robust against outliers. The results 



 

(columns 3 and 4), however, the results indicate that overall educational attainment can explain 
differences in income growth for countries at the highest percentiles of the distribution of income, 
while the measures of educational youth concentration appear as significant determinants of 
economic growth with an effect which is decaying with the level of development of the country.  
This result is independent of the proxy used to account for youth concentration (differences in mean 
years of schooling or the second principal component extracted from the IIASA-VID dataset).2 
 

  Cohen-Soto IIASA-VID IIASA-VID  
age structure 

IIASA-VID  
components 

ln kiT - ln ki0 0.580*** 0.597*** 0.558*** 0.560*** 

 [0.0645] [0.0647] [0.0568] [0.0573] 

MYS i0 0.0106 0.00236 -0.0153*  

 [0.00670] [0.00635] [0.00857]  

yi0 -0.00483 -0.0017 -0.00179 0.00156 

 [0.00316] [0.00313] [0.00377] [0.00439] 

MYS i0 × yi0 -0.000796 -0.000113 0.00171*  

 [0.000657] [0.000630] [0.000868]  

MYSdiff20-60, i0   0.0212**  

   [0.00872]  

MYSdiff20-60, i0 × yi0   -0.00204**  

   [0.000910]  

Total education component    -0.0202* 

    [0.0106] 

Youth concentration component    0.0722** 

    [0.0302] 

Total education component × yi0    0.00224** 

    [0.00107] 

Youth concentration component × yi0    -0.00666** 

    [0.00319] 

Constant 0.0269 0.00592 0.00161 -0.0173 

 [0.0243] [0.0251] [0.0285] [0.0426] 

Observations 70 70 70 70 
R-squared 0.655 0.609 0.664 0.671 

*(**)[***] indicates significance at the 10%(5%)[1%] level. Robust standard errors in brackets. 

 
Table 2: Estimation results: Benhabib-Spiegel model using age-aggregated and age-disaggregated 
data 
 
The Benhabib-Spiegel specification implies that, due to the role that education plays in the income 
convergence process, its effect on economic growth depends on the level of development of the 
country, a feature which is modeled through the inclusion of the interaction between the human 

                                                                                                                                                                     
presented in Table 2 were qualitatively and quantitatively unchanged. These results are available from the authors upon 
request.   
2 It should be noticed that, despite the fact that the Nelson-Phelps framework has been used to justify the empirical 
specification, the theoretical interpretation of these results is ambiguous, as noticed explicitly by Krueger and Lindhal 
(2001). The effect of education on income may be interpreted as affecting steady state income levels, the speed of income 
convergence and the growth rate in the steady state. 
 



 

capital variable and the initial level of income. Figures 5 and 6 show the estimated partial effect on 
economic growth corresponding to the variable summarizing mean years of schooling of the adult 
population, as well as for the youth concentration variable measured as difference in mean years of 
schooling between the 60-65 age group and the 20-25, obtained from the regression presented in the 
third column of Table 2. The estimates are presented in the form of a scatterplot, with initial income 
in the x-axis, and we present the parameter estimates together with a confidence interval of two 
standard deviations computed using the delta method. The results indicate that educational 
improvements taking place at young age groups are positively related to economic growth. This 
effect, in turn, is negatively related to initial income per capita, with poorer countries benefiting most 
of human capital accumulation at the lower end of the age distribution. On the other hand, after 
controlling for the level of youth concentration of educational attainment, the overall level of human 
capital (as measured by mean years of schooling of the adult population) only appears significantly 
related to economic growth for the subsample of richest countries in our dataset. These results 
indicate thus that by concentrating on the initial relative educational attainment of younger age 
groups as compared to older age groups, the growth experience of the countries in the sample for 
1970-1990 can be better explained than using aggregated measures. Furthermore, relatively poor 
countries tended to profit more from educational improvements at the lower level of the age structure 
than rich countries.  
 

 
Figure 5:  Estimated parameter associated with mean years of schooling (adults over 15) (± 
2×standard deviation)  
 
 



 

 
Figure 6:  Parameter associated to the difference in mean years of schooling between the 20-25 age 
group and the 60-65 age group (± 2×standard deviation)  
 
Figure 7 shows the growth rates of income per capita attributable by the model to the human capital 
variables and their interaction with initial income, together with the mean years of schooling of the 
adult population. They correspond to the part of the fitted growth rates of income  which include 
human capital variables ( iiiiiii yMYSdiffMYSdiffyMYSMYS 00,602060,6020500402 lnˆˆlnˆˆ

−− +++ ββββ ). The 
estimated model indicates that the contribution of human capital to economic growth has been 
particularly large in absolute value for rich economies, where the innovation effect plays the most 
important role, and for East Asian countries (Korea, Indonesia, Malaysia and Singapore). These 
economies experienced large educational pushes at the beginning of the period considered, which 
resulted in sizable differences in educational attainment between the young and old cohorts.  
 
Our results shed light on the contradictory results obtained hitherto in the empirical literature relating 
measures of human capital distribution across individuals and economic growth (see for example 
Castelló and Domenech (2002), who find a negative relationship between human capital inequality 
and economic growth, or Park (2006), who reports a positive effect of human capital dispersion on 
income growth). These studies are not able to identify directly the sources of such dispersion in 
educational attainment across individuals. By concentrating exclusively on the dispersion caused by 
the differences in the pair formed by age and educational attainment, we are able to identify the direct 
positive effect of improvements in educational attainment of young individuals.  
 



 

 
Figure 7: Growth rate of GDP per capita attributable to age-structured educational attainment against 
mean years of schooling 
 
 
3.2 On the predictive ability of age-structured human capital data for income growth  
 
The method of reconstruction of educational attainment data based on multi-state projection 
techniques provides a natural framework to generate future projections of age-structured human 
capital measures. In order to evaluate the benefits of using age-structured educational attainment data 
for projecting GDP per-capita paths across countries, we carry out a simple forecasting exercise 
based on the cross-country growth regressions estimated above. Using the estimates presented in 
Table 2, we obtain (out-of-sample) predictions for the annual growth rate of income per-capita based 
on data at the final year of the dataset used in the regressions. We compare the results with the actual 
annual growth rate of GDP per capita in the period 1990-2000 in order to evaluate the predictive 
ability of models based on different proxies for educational attainment.3     
 
For all models, we obtain the projections of GDP per capita growth by assuming that the growth rate 
of capital per worker remains at the average level observed in the period 1970-1990. We obtain 
predictions of GDP per capita growth using the values of the corresponding educational variables for 
each model estimated in Table 2 for 1990.  
 
The mean squared prediction errors for the growth rate of GDP per capita in the period 1990-2000 
using each specification are presented in Table 3 for the full sample, as well as for subsamples of 
non- OECD countries, low and medium income (LMIC) countries and low-income countries. The 
results clearly indicate the superior predictive ability of models based on age-structured mean years 
of schooling data, which systematically attain lower prediction errors than any of the models based 
on aggregate measures of human capital for the full sample, as well as each one of the subsamples 
                                                 
3 Although the income data used for the estimation corresponds to the Penn World Tables Mark 5.6, (Heston et al., 1991), 
we compute these growth rates of GDP per capita using the latest available version of the Penn World Tables (PWT 6.3, 
Heston et al. 2009).      



 

evaluated. Predictions, which come from models which include the direct measurement of the 
interaction between human capital accumulation and the youth concentration effect, are 
systematically better than predictions based on models with aggregated data.  
 

Mean Squared Prediction Error, GDP per capita growth, 1990-2000
Full sample Non-OECD LMIC LIC 

Cohen-Soto dataset 0.1289 0.1260 0.0962 0.2309 
MYS 15+ 0.1197 0.1137 0.0958 0.1642 
Principal components 0.1084* 0.1058* 0.0871* 0.1469 
MYS 15+ and MYS difference  0.1044** 0.1014* 0.0872 0.1363* 
Obs. 70 63 25 12 

 
Note: Mean squared prediction error (multiplied by 100) based on annualized GDP per capita growth for 1990-2000. * (**) indicates 
that the MSPE corresponding to that model/sample is significantly different from the MSPE of the model using the Cohen-Soto dataset 
at the 10% (5%) level using a paired t-test.  
 
Table 3: Mean square out-of-sample prediction error (MSPE): GDP per capita growth, 1990-2000  
 
In the next step, we perform unbiasedness tests based on the predictions obtained from each one of 
the models. The tests for unbiasedness are based on the following regression 
 

( ) ijiiii MyyEyy εθα +−+=− |lnln)ln(ln 19902000199019902000 ,     (2) 

where ( )jii MyyE |lnln 199020001990 −  is the prediction of GDP per capita growth in the period 1990-
2000 for country i implied by model j, using data up to 1990. The null hypothesis of unbiasedness 
corresponds to the restriction α=0, θ=1. Table 4 presents the results of the regressions for each 
model, as well as the unbiasedness tests. The test cannot reject that the predictions from the models 
which use age-structured data are unbiased, while significant deviations from unbiasedness appear in 
the models estimated using aggregated data. These results imply that age-structured human capital 
data do not only help understand historical economic growth experiences better, but also provide a 
useful tool to obtain reliable future projections of income per capita.  
 
 

α θ R2 
Unbiasedness 
test [p-value] 

Cohen-Soto dataset 0.015** 0.650** 0.073 3.564** 
[0.006] [0.282] [0.034] 

MYS 15+ 0.013** 0.960*** 0.165 4.734** 
[0.005] [0.262] [0.012] 

Principal components 0.009 0.931*** 0.187 2.044 
[0.006] [0.235] [0.138] 

MYS 15+ and MYS difference 0.009 0.963*** 0.221 2.227 
[0.005] [0.219] [0.116] 

Note: Estimates from equation (2) for the full sample of 70 countries. Unbiasedness tests refer to tests of the null hypothesis α=0, θ=1. 
Table 4: Forecast unbiasedness tests 
 
 
4. Conclusions 
 



 

The IIASA/VID dataset provides detailed data on the demography of human capital that previously 
had not been available.  We have focused in this paper on a particular aspect of the new data – the 
implications of the age structure of human capital on economic growth.  This is only one of a wide 
variety of studies that can be done, using the rich detail of the IIASA/VID data.   
 
The effects of education on economic growth has been a controversial topic with different 
specifications and different datasets yielding different results.  In this paper, we demonstrate that the 
misspecification of models, because of the omission of details of the age structure of the stock of 
human capital, can be one of the causes why human capital appeared statistically insignificant in 
previous cross-country growth regressions. 
 
There are a number of open questions that need to be explored.  The basis of the IIASA/VID data are 
joint distributions of people by age, sex, and educational attainment.  To move from these 
distributions to means years of school requires additional assumptions about the average number of 
years to associate with each level of attainment.  This is not straightforward because some people 
who have a given level of attainment have additional years of schooling, but not enough to reach the 
next attainment threshold.  A second alternative is to weight attainment levels by a fixed set of 
weights that reflect the usual number of years of school associated with each attainment level.  
Whether or how we should weight school attainment levels to obtain synthetic measures of years of 
schooling is a matter for future research. 
 
In this paper, we have emphasized the age structure of human capital.  In doing so, we have ignored 
sex.  The interactions of sex with both age and educational attainment deserves the additional study 
that is now made possible with the new data. 
 
In an article that synthesized the previous research findings Kelley and Schmidt(2005) considered the 
effects of age structure on economic growth and found that changes in age structure could account 
for around one-fifth of the changes in economic growth rates across a wide variety of countries from 
1960 to 1990.  They also found that aggregated mean years of school variables did not have a 
statistically significant effect on economic growth.  It is important to revisit the literature on the 
effects of population age structure on economic growth with the new IIASA/VID detailed data to see 
the extent to which age disaggregated education data matter. 
 
Recently quite a bit of progress have been made in estimating indicators of educational quality 
(Hanushek and Kimko (2000), Altinok and Murseli (2007), and Hanushek and Woessmann (2008)).  
A challenging project for future research would be to use this information to create indicators of 
educational quality by age and attainment level.   
 
 
 
      
  



 

Appendix: Descriptive statistics, variables in cross-country regressions  
 
Variable description Observations Mean Std. Dev. Min Max 
Growth, GDP per capita 1970-1990 70 0.012 0.020 -0.042 0.061 
Initial income per capita (log) 70 8.788 0.952 6.492 10.324 
Growth rate of capital-to-worker ratio 1970-1990 70 0.024 0.026 -0.039 0.096 
Mean years of schooling, 1970 (25+, Cohen-Soto) 70 4.312 2.997 0.055 11.182 
Mean years of schooling, 1970 (15+, IIASA/VID) 70 4.947 2.890 0.400 12.200 
Total education component, 1970 70 -1.457 2.717 -4.857 5.480 
Youth concentration component, 1970 70 -0.190 0.461 -1.138 1.347 
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